xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4b0c0f29)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by jiffies_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding jiffies_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with jiffies_lock held */
60 	write_seqlock(&jiffies_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&jiffies_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&jiffies_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&jiffies_lock);
99 	return period;
100 }
101 
102 
103 static void tick_sched_do_timer(ktime_t now)
104 {
105 	int cpu = smp_processor_id();
106 
107 #ifdef CONFIG_NO_HZ
108 	/*
109 	 * Check if the do_timer duty was dropped. We don't care about
110 	 * concurrency: This happens only when the cpu in charge went
111 	 * into a long sleep. If two cpus happen to assign themself to
112 	 * this duty, then the jiffies update is still serialized by
113 	 * jiffies_lock.
114 	 */
115 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
116 		tick_do_timer_cpu = cpu;
117 #endif
118 
119 	/* Check, if the jiffies need an update */
120 	if (tick_do_timer_cpu == cpu)
121 		tick_do_update_jiffies64(now);
122 }
123 
124 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
125 {
126 #ifdef CONFIG_NO_HZ
127 	/*
128 	 * When we are idle and the tick is stopped, we have to touch
129 	 * the watchdog as we might not schedule for a really long
130 	 * time. This happens on complete idle SMP systems while
131 	 * waiting on the login prompt. We also increment the "start of
132 	 * idle" jiffy stamp so the idle accounting adjustment we do
133 	 * when we go busy again does not account too much ticks.
134 	 */
135 	if (ts->tick_stopped) {
136 		touch_softlockup_watchdog();
137 		if (is_idle_task(current))
138 			ts->idle_jiffies++;
139 	}
140 #endif
141 	update_process_times(user_mode(regs));
142 	profile_tick(CPU_PROFILING);
143 }
144 
145 /*
146  * NOHZ - aka dynamic tick functionality
147  */
148 #ifdef CONFIG_NO_HZ
149 /*
150  * NO HZ enabled ?
151  */
152 int tick_nohz_enabled __read_mostly  = 1;
153 
154 /*
155  * Enable / Disable tickless mode
156  */
157 static int __init setup_tick_nohz(char *str)
158 {
159 	if (!strcmp(str, "off"))
160 		tick_nohz_enabled = 0;
161 	else if (!strcmp(str, "on"))
162 		tick_nohz_enabled = 1;
163 	else
164 		return 0;
165 	return 1;
166 }
167 
168 __setup("nohz=", setup_tick_nohz);
169 
170 /**
171  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
172  *
173  * Called from interrupt entry when the CPU was idle
174  *
175  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
176  * must be updated. Otherwise an interrupt handler could use a stale jiffy
177  * value. We do this unconditionally on any cpu, as we don't know whether the
178  * cpu, which has the update task assigned is in a long sleep.
179  */
180 static void tick_nohz_update_jiffies(ktime_t now)
181 {
182 	int cpu = smp_processor_id();
183 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
184 	unsigned long flags;
185 
186 	ts->idle_waketime = now;
187 
188 	local_irq_save(flags);
189 	tick_do_update_jiffies64(now);
190 	local_irq_restore(flags);
191 
192 	touch_softlockup_watchdog();
193 }
194 
195 /*
196  * Updates the per cpu time idle statistics counters
197  */
198 static void
199 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
200 {
201 	ktime_t delta;
202 
203 	if (ts->idle_active) {
204 		delta = ktime_sub(now, ts->idle_entrytime);
205 		if (nr_iowait_cpu(cpu) > 0)
206 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
207 		else
208 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
209 		ts->idle_entrytime = now;
210 	}
211 
212 	if (last_update_time)
213 		*last_update_time = ktime_to_us(now);
214 
215 }
216 
217 static void tick_nohz_stop_idle(int cpu, ktime_t now)
218 {
219 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
220 
221 	update_ts_time_stats(cpu, ts, now, NULL);
222 	ts->idle_active = 0;
223 
224 	sched_clock_idle_wakeup_event(0);
225 }
226 
227 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
228 {
229 	ktime_t now = ktime_get();
230 
231 	ts->idle_entrytime = now;
232 	ts->idle_active = 1;
233 	sched_clock_idle_sleep_event();
234 	return now;
235 }
236 
237 /**
238  * get_cpu_idle_time_us - get the total idle time of a cpu
239  * @cpu: CPU number to query
240  * @last_update_time: variable to store update time in. Do not update
241  * counters if NULL.
242  *
243  * Return the cummulative idle time (since boot) for a given
244  * CPU, in microseconds.
245  *
246  * This time is measured via accounting rather than sampling,
247  * and is as accurate as ktime_get() is.
248  *
249  * This function returns -1 if NOHZ is not enabled.
250  */
251 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
252 {
253 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
254 	ktime_t now, idle;
255 
256 	if (!tick_nohz_enabled)
257 		return -1;
258 
259 	now = ktime_get();
260 	if (last_update_time) {
261 		update_ts_time_stats(cpu, ts, now, last_update_time);
262 		idle = ts->idle_sleeptime;
263 	} else {
264 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
265 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
266 
267 			idle = ktime_add(ts->idle_sleeptime, delta);
268 		} else {
269 			idle = ts->idle_sleeptime;
270 		}
271 	}
272 
273 	return ktime_to_us(idle);
274 
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
277 
278 /**
279  * get_cpu_iowait_time_us - get the total iowait time of a cpu
280  * @cpu: CPU number to query
281  * @last_update_time: variable to store update time in. Do not update
282  * counters if NULL.
283  *
284  * Return the cummulative iowait time (since boot) for a given
285  * CPU, in microseconds.
286  *
287  * This time is measured via accounting rather than sampling,
288  * and is as accurate as ktime_get() is.
289  *
290  * This function returns -1 if NOHZ is not enabled.
291  */
292 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
293 {
294 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
295 	ktime_t now, iowait;
296 
297 	if (!tick_nohz_enabled)
298 		return -1;
299 
300 	now = ktime_get();
301 	if (last_update_time) {
302 		update_ts_time_stats(cpu, ts, now, last_update_time);
303 		iowait = ts->iowait_sleeptime;
304 	} else {
305 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
306 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
307 
308 			iowait = ktime_add(ts->iowait_sleeptime, delta);
309 		} else {
310 			iowait = ts->iowait_sleeptime;
311 		}
312 	}
313 
314 	return ktime_to_us(iowait);
315 }
316 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
317 
318 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
319 					 ktime_t now, int cpu)
320 {
321 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
322 	ktime_t last_update, expires, ret = { .tv64 = 0 };
323 	unsigned long rcu_delta_jiffies;
324 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
325 	u64 time_delta;
326 
327 	/* Read jiffies and the time when jiffies were updated last */
328 	do {
329 		seq = read_seqbegin(&jiffies_lock);
330 		last_update = last_jiffies_update;
331 		last_jiffies = jiffies;
332 		time_delta = timekeeping_max_deferment();
333 	} while (read_seqretry(&jiffies_lock, seq));
334 
335 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
336 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
337 		next_jiffies = last_jiffies + 1;
338 		delta_jiffies = 1;
339 	} else {
340 		/* Get the next timer wheel timer */
341 		next_jiffies = get_next_timer_interrupt(last_jiffies);
342 		delta_jiffies = next_jiffies - last_jiffies;
343 		if (rcu_delta_jiffies < delta_jiffies) {
344 			next_jiffies = last_jiffies + rcu_delta_jiffies;
345 			delta_jiffies = rcu_delta_jiffies;
346 		}
347 	}
348 	/*
349 	 * Do not stop the tick, if we are only one off
350 	 * or if the cpu is required for rcu
351 	 */
352 	if (!ts->tick_stopped && delta_jiffies == 1)
353 		goto out;
354 
355 	/* Schedule the tick, if we are at least one jiffie off */
356 	if ((long)delta_jiffies >= 1) {
357 
358 		/*
359 		 * If this cpu is the one which updates jiffies, then
360 		 * give up the assignment and let it be taken by the
361 		 * cpu which runs the tick timer next, which might be
362 		 * this cpu as well. If we don't drop this here the
363 		 * jiffies might be stale and do_timer() never
364 		 * invoked. Keep track of the fact that it was the one
365 		 * which had the do_timer() duty last. If this cpu is
366 		 * the one which had the do_timer() duty last, we
367 		 * limit the sleep time to the timekeeping
368 		 * max_deferement value which we retrieved
369 		 * above. Otherwise we can sleep as long as we want.
370 		 */
371 		if (cpu == tick_do_timer_cpu) {
372 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
373 			ts->do_timer_last = 1;
374 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
375 			time_delta = KTIME_MAX;
376 			ts->do_timer_last = 0;
377 		} else if (!ts->do_timer_last) {
378 			time_delta = KTIME_MAX;
379 		}
380 
381 		/*
382 		 * calculate the expiry time for the next timer wheel
383 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
384 		 * that there is no timer pending or at least extremely
385 		 * far into the future (12 days for HZ=1000). In this
386 		 * case we set the expiry to the end of time.
387 		 */
388 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
389 			/*
390 			 * Calculate the time delta for the next timer event.
391 			 * If the time delta exceeds the maximum time delta
392 			 * permitted by the current clocksource then adjust
393 			 * the time delta accordingly to ensure the
394 			 * clocksource does not wrap.
395 			 */
396 			time_delta = min_t(u64, time_delta,
397 					   tick_period.tv64 * delta_jiffies);
398 		}
399 
400 		if (time_delta < KTIME_MAX)
401 			expires = ktime_add_ns(last_update, time_delta);
402 		else
403 			expires.tv64 = KTIME_MAX;
404 
405 		/* Skip reprogram of event if its not changed */
406 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
407 			goto out;
408 
409 		ret = expires;
410 
411 		/*
412 		 * nohz_stop_sched_tick can be called several times before
413 		 * the nohz_restart_sched_tick is called. This happens when
414 		 * interrupts arrive which do not cause a reschedule. In the
415 		 * first call we save the current tick time, so we can restart
416 		 * the scheduler tick in nohz_restart_sched_tick.
417 		 */
418 		if (!ts->tick_stopped) {
419 			nohz_balance_enter_idle(cpu);
420 			calc_load_enter_idle();
421 
422 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
423 			ts->tick_stopped = 1;
424 		}
425 
426 		/*
427 		 * If the expiration time == KTIME_MAX, then
428 		 * in this case we simply stop the tick timer.
429 		 */
430 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
431 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
432 				hrtimer_cancel(&ts->sched_timer);
433 			goto out;
434 		}
435 
436 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
437 			hrtimer_start(&ts->sched_timer, expires,
438 				      HRTIMER_MODE_ABS_PINNED);
439 			/* Check, if the timer was already in the past */
440 			if (hrtimer_active(&ts->sched_timer))
441 				goto out;
442 		} else if (!tick_program_event(expires, 0))
443 				goto out;
444 		/*
445 		 * We are past the event already. So we crossed a
446 		 * jiffie boundary. Update jiffies and raise the
447 		 * softirq.
448 		 */
449 		tick_do_update_jiffies64(ktime_get());
450 	}
451 	raise_softirq_irqoff(TIMER_SOFTIRQ);
452 out:
453 	ts->next_jiffies = next_jiffies;
454 	ts->last_jiffies = last_jiffies;
455 	ts->sleep_length = ktime_sub(dev->next_event, now);
456 
457 	return ret;
458 }
459 
460 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
461 {
462 	/*
463 	 * If this cpu is offline and it is the one which updates
464 	 * jiffies, then give up the assignment and let it be taken by
465 	 * the cpu which runs the tick timer next. If we don't drop
466 	 * this here the jiffies might be stale and do_timer() never
467 	 * invoked.
468 	 */
469 	if (unlikely(!cpu_online(cpu))) {
470 		if (cpu == tick_do_timer_cpu)
471 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
472 	}
473 
474 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
475 		return false;
476 
477 	if (need_resched())
478 		return false;
479 
480 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
481 		static int ratelimit;
482 
483 		if (ratelimit < 10 &&
484 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
485 			pr_warn("NOHZ: local_softirq_pending %02x\n",
486 				(unsigned int) local_softirq_pending());
487 			ratelimit++;
488 		}
489 		return false;
490 	}
491 
492 	return true;
493 }
494 
495 static void __tick_nohz_idle_enter(struct tick_sched *ts)
496 {
497 	ktime_t now, expires;
498 	int cpu = smp_processor_id();
499 
500 	now = tick_nohz_start_idle(cpu, ts);
501 
502 	if (can_stop_idle_tick(cpu, ts)) {
503 		int was_stopped = ts->tick_stopped;
504 
505 		ts->idle_calls++;
506 
507 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
508 		if (expires.tv64 > 0LL) {
509 			ts->idle_sleeps++;
510 			ts->idle_expires = expires;
511 		}
512 
513 		if (!was_stopped && ts->tick_stopped)
514 			ts->idle_jiffies = ts->last_jiffies;
515 	}
516 }
517 
518 /**
519  * tick_nohz_idle_enter - stop the idle tick from the idle task
520  *
521  * When the next event is more than a tick into the future, stop the idle tick
522  * Called when we start the idle loop.
523  *
524  * The arch is responsible of calling:
525  *
526  * - rcu_idle_enter() after its last use of RCU before the CPU is put
527  *  to sleep.
528  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
529  */
530 void tick_nohz_idle_enter(void)
531 {
532 	struct tick_sched *ts;
533 
534 	WARN_ON_ONCE(irqs_disabled());
535 
536 	/*
537  	 * Update the idle state in the scheduler domain hierarchy
538  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
539  	 * State will be updated to busy during the first busy tick after
540  	 * exiting idle.
541  	 */
542 	set_cpu_sd_state_idle();
543 
544 	local_irq_disable();
545 
546 	ts = &__get_cpu_var(tick_cpu_sched);
547 	/*
548 	 * set ts->inidle unconditionally. even if the system did not
549 	 * switch to nohz mode the cpu frequency governers rely on the
550 	 * update of the idle time accounting in tick_nohz_start_idle().
551 	 */
552 	ts->inidle = 1;
553 	__tick_nohz_idle_enter(ts);
554 
555 	local_irq_enable();
556 }
557 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
558 
559 /**
560  * tick_nohz_irq_exit - update next tick event from interrupt exit
561  *
562  * When an interrupt fires while we are idle and it doesn't cause
563  * a reschedule, it may still add, modify or delete a timer, enqueue
564  * an RCU callback, etc...
565  * So we need to re-calculate and reprogram the next tick event.
566  */
567 void tick_nohz_irq_exit(void)
568 {
569 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
570 
571 	if (!ts->inidle)
572 		return;
573 
574 	/* Cancel the timer because CPU already waken up from the C-states*/
575 	menu_hrtimer_cancel();
576 	__tick_nohz_idle_enter(ts);
577 }
578 
579 /**
580  * tick_nohz_get_sleep_length - return the length of the current sleep
581  *
582  * Called from power state control code with interrupts disabled
583  */
584 ktime_t tick_nohz_get_sleep_length(void)
585 {
586 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
587 
588 	return ts->sleep_length;
589 }
590 
591 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
592 {
593 	hrtimer_cancel(&ts->sched_timer);
594 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
595 
596 	while (1) {
597 		/* Forward the time to expire in the future */
598 		hrtimer_forward(&ts->sched_timer, now, tick_period);
599 
600 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
601 			hrtimer_start_expires(&ts->sched_timer,
602 					      HRTIMER_MODE_ABS_PINNED);
603 			/* Check, if the timer was already in the past */
604 			if (hrtimer_active(&ts->sched_timer))
605 				break;
606 		} else {
607 			if (!tick_program_event(
608 				hrtimer_get_expires(&ts->sched_timer), 0))
609 				break;
610 		}
611 		/* Reread time and update jiffies */
612 		now = ktime_get();
613 		tick_do_update_jiffies64(now);
614 	}
615 }
616 
617 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
618 {
619 	/* Update jiffies first */
620 	tick_do_update_jiffies64(now);
621 	update_cpu_load_nohz();
622 
623 	calc_load_exit_idle();
624 	touch_softlockup_watchdog();
625 	/*
626 	 * Cancel the scheduled timer and restore the tick
627 	 */
628 	ts->tick_stopped  = 0;
629 	ts->idle_exittime = now;
630 
631 	tick_nohz_restart(ts, now);
632 }
633 
634 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
635 {
636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
637 	unsigned long ticks;
638 
639 	if (vtime_accounting_enabled())
640 		return;
641 	/*
642 	 * We stopped the tick in idle. Update process times would miss the
643 	 * time we slept as update_process_times does only a 1 tick
644 	 * accounting. Enforce that this is accounted to idle !
645 	 */
646 	ticks = jiffies - ts->idle_jiffies;
647 	/*
648 	 * We might be one off. Do not randomly account a huge number of ticks!
649 	 */
650 	if (ticks && ticks < LONG_MAX)
651 		account_idle_ticks(ticks);
652 #endif
653 }
654 
655 /**
656  * tick_nohz_idle_exit - restart the idle tick from the idle task
657  *
658  * Restart the idle tick when the CPU is woken up from idle
659  * This also exit the RCU extended quiescent state. The CPU
660  * can use RCU again after this function is called.
661  */
662 void tick_nohz_idle_exit(void)
663 {
664 	int cpu = smp_processor_id();
665 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
666 	ktime_t now;
667 
668 	local_irq_disable();
669 
670 	WARN_ON_ONCE(!ts->inidle);
671 
672 	ts->inidle = 0;
673 
674 	/* Cancel the timer because CPU already waken up from the C-states*/
675 	menu_hrtimer_cancel();
676 	if (ts->idle_active || ts->tick_stopped)
677 		now = ktime_get();
678 
679 	if (ts->idle_active)
680 		tick_nohz_stop_idle(cpu, now);
681 
682 	if (ts->tick_stopped) {
683 		tick_nohz_restart_sched_tick(ts, now);
684 		tick_nohz_account_idle_ticks(ts);
685 	}
686 
687 	local_irq_enable();
688 }
689 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
690 
691 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
692 {
693 	hrtimer_forward(&ts->sched_timer, now, tick_period);
694 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
695 }
696 
697 /*
698  * The nohz low res interrupt handler
699  */
700 static void tick_nohz_handler(struct clock_event_device *dev)
701 {
702 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
703 	struct pt_regs *regs = get_irq_regs();
704 	ktime_t now = ktime_get();
705 
706 	dev->next_event.tv64 = KTIME_MAX;
707 
708 	tick_sched_do_timer(now);
709 	tick_sched_handle(ts, regs);
710 
711 	while (tick_nohz_reprogram(ts, now)) {
712 		now = ktime_get();
713 		tick_do_update_jiffies64(now);
714 	}
715 }
716 
717 /**
718  * tick_nohz_switch_to_nohz - switch to nohz mode
719  */
720 static void tick_nohz_switch_to_nohz(void)
721 {
722 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
723 	ktime_t next;
724 
725 	if (!tick_nohz_enabled)
726 		return;
727 
728 	local_irq_disable();
729 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
730 		local_irq_enable();
731 		return;
732 	}
733 
734 	ts->nohz_mode = NOHZ_MODE_LOWRES;
735 
736 	/*
737 	 * Recycle the hrtimer in ts, so we can share the
738 	 * hrtimer_forward with the highres code.
739 	 */
740 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
741 	/* Get the next period */
742 	next = tick_init_jiffy_update();
743 
744 	for (;;) {
745 		hrtimer_set_expires(&ts->sched_timer, next);
746 		if (!tick_program_event(next, 0))
747 			break;
748 		next = ktime_add(next, tick_period);
749 	}
750 	local_irq_enable();
751 }
752 
753 /*
754  * When NOHZ is enabled and the tick is stopped, we need to kick the
755  * tick timer from irq_enter() so that the jiffies update is kept
756  * alive during long running softirqs. That's ugly as hell, but
757  * correctness is key even if we need to fix the offending softirq in
758  * the first place.
759  *
760  * Note, this is different to tick_nohz_restart. We just kick the
761  * timer and do not touch the other magic bits which need to be done
762  * when idle is left.
763  */
764 static void tick_nohz_kick_tick(int cpu, ktime_t now)
765 {
766 #if 0
767 	/* Switch back to 2.6.27 behaviour */
768 
769 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
770 	ktime_t delta;
771 
772 	/*
773 	 * Do not touch the tick device, when the next expiry is either
774 	 * already reached or less/equal than the tick period.
775 	 */
776 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
777 	if (delta.tv64 <= tick_period.tv64)
778 		return;
779 
780 	tick_nohz_restart(ts, now);
781 #endif
782 }
783 
784 static inline void tick_check_nohz(int cpu)
785 {
786 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
787 	ktime_t now;
788 
789 	if (!ts->idle_active && !ts->tick_stopped)
790 		return;
791 	now = ktime_get();
792 	if (ts->idle_active)
793 		tick_nohz_stop_idle(cpu, now);
794 	if (ts->tick_stopped) {
795 		tick_nohz_update_jiffies(now);
796 		tick_nohz_kick_tick(cpu, now);
797 	}
798 }
799 
800 #else
801 
802 static inline void tick_nohz_switch_to_nohz(void) { }
803 static inline void tick_check_nohz(int cpu) { }
804 
805 #endif /* NO_HZ */
806 
807 /*
808  * Called from irq_enter to notify about the possible interruption of idle()
809  */
810 void tick_check_idle(int cpu)
811 {
812 	tick_check_oneshot_broadcast(cpu);
813 	tick_check_nohz(cpu);
814 }
815 
816 /*
817  * High resolution timer specific code
818  */
819 #ifdef CONFIG_HIGH_RES_TIMERS
820 /*
821  * We rearm the timer until we get disabled by the idle code.
822  * Called with interrupts disabled.
823  */
824 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
825 {
826 	struct tick_sched *ts =
827 		container_of(timer, struct tick_sched, sched_timer);
828 	struct pt_regs *regs = get_irq_regs();
829 	ktime_t now = ktime_get();
830 
831 	tick_sched_do_timer(now);
832 
833 	/*
834 	 * Do not call, when we are not in irq context and have
835 	 * no valid regs pointer
836 	 */
837 	if (regs)
838 		tick_sched_handle(ts, regs);
839 
840 	hrtimer_forward(timer, now, tick_period);
841 
842 	return HRTIMER_RESTART;
843 }
844 
845 static int sched_skew_tick;
846 
847 static int __init skew_tick(char *str)
848 {
849 	get_option(&str, &sched_skew_tick);
850 
851 	return 0;
852 }
853 early_param("skew_tick", skew_tick);
854 
855 /**
856  * tick_setup_sched_timer - setup the tick emulation timer
857  */
858 void tick_setup_sched_timer(void)
859 {
860 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
861 	ktime_t now = ktime_get();
862 
863 	/*
864 	 * Emulate tick processing via per-CPU hrtimers:
865 	 */
866 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
867 	ts->sched_timer.function = tick_sched_timer;
868 
869 	/* Get the next period (per cpu) */
870 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
871 
872 	/* Offset the tick to avert jiffies_lock contention. */
873 	if (sched_skew_tick) {
874 		u64 offset = ktime_to_ns(tick_period) >> 1;
875 		do_div(offset, num_possible_cpus());
876 		offset *= smp_processor_id();
877 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
878 	}
879 
880 	for (;;) {
881 		hrtimer_forward(&ts->sched_timer, now, tick_period);
882 		hrtimer_start_expires(&ts->sched_timer,
883 				      HRTIMER_MODE_ABS_PINNED);
884 		/* Check, if the timer was already in the past */
885 		if (hrtimer_active(&ts->sched_timer))
886 			break;
887 		now = ktime_get();
888 	}
889 
890 #ifdef CONFIG_NO_HZ
891 	if (tick_nohz_enabled)
892 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
893 #endif
894 }
895 #endif /* HIGH_RES_TIMERS */
896 
897 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
898 void tick_cancel_sched_timer(int cpu)
899 {
900 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
901 
902 # ifdef CONFIG_HIGH_RES_TIMERS
903 	if (ts->sched_timer.base)
904 		hrtimer_cancel(&ts->sched_timer);
905 # endif
906 
907 	memset(ts, 0, sizeof(*ts));
908 }
909 #endif
910 
911 /**
912  * Async notification about clocksource changes
913  */
914 void tick_clock_notify(void)
915 {
916 	int cpu;
917 
918 	for_each_possible_cpu(cpu)
919 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
920 }
921 
922 /*
923  * Async notification about clock event changes
924  */
925 void tick_oneshot_notify(void)
926 {
927 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
928 
929 	set_bit(0, &ts->check_clocks);
930 }
931 
932 /**
933  * Check, if a change happened, which makes oneshot possible.
934  *
935  * Called cyclic from the hrtimer softirq (driven by the timer
936  * softirq) allow_nohz signals, that we can switch into low-res nohz
937  * mode, because high resolution timers are disabled (either compile
938  * or runtime).
939  */
940 int tick_check_oneshot_change(int allow_nohz)
941 {
942 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
943 
944 	if (!test_and_clear_bit(0, &ts->check_clocks))
945 		return 0;
946 
947 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
948 		return 0;
949 
950 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
951 		return 0;
952 
953 	if (!allow_nohz)
954 		return 1;
955 
956 	tick_nohz_switch_to_nohz();
957 	return 0;
958 }
959