xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4a32fea9)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick the CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  */
231 void tick_nohz_full_kick_cpu(int cpu)
232 {
233 	if (!tick_nohz_full_cpu(cpu))
234 		return;
235 
236 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
237 }
238 
239 static void nohz_full_kick_ipi(void *info)
240 {
241 	__tick_nohz_full_check();
242 }
243 
244 /*
245  * Kick all full dynticks CPUs in order to force these to re-evaluate
246  * their dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_all(void)
249 {
250 	if (!tick_nohz_full_running)
251 		return;
252 
253 	preempt_disable();
254 	smp_call_function_many(tick_nohz_full_mask,
255 			       nohz_full_kick_ipi, NULL, false);
256 	tick_nohz_full_kick();
257 	preempt_enable();
258 }
259 
260 /*
261  * Re-evaluate the need for the tick as we switch the current task.
262  * It might need the tick due to per task/process properties:
263  * perf events, posix cpu timers, ...
264  */
265 void __tick_nohz_task_switch(struct task_struct *tsk)
266 {
267 	unsigned long flags;
268 
269 	local_irq_save(flags);
270 
271 	if (!tick_nohz_full_cpu(smp_processor_id()))
272 		goto out;
273 
274 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
275 		tick_nohz_full_kick();
276 
277 out:
278 	local_irq_restore(flags);
279 }
280 
281 /* Parse the boot-time nohz CPU list from the kernel parameters. */
282 static int __init tick_nohz_full_setup(char *str)
283 {
284 	int cpu;
285 
286 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
287 	alloc_bootmem_cpumask_var(&housekeeping_mask);
288 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
289 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
290 		return 1;
291 	}
292 
293 	cpu = smp_processor_id();
294 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
295 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
296 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
297 	}
298 	cpumask_andnot(housekeeping_mask,
299 		       cpu_possible_mask, tick_nohz_full_mask);
300 	tick_nohz_full_running = true;
301 
302 	return 1;
303 }
304 __setup("nohz_full=", tick_nohz_full_setup);
305 
306 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
307 						 unsigned long action,
308 						 void *hcpu)
309 {
310 	unsigned int cpu = (unsigned long)hcpu;
311 
312 	switch (action & ~CPU_TASKS_FROZEN) {
313 	case CPU_DOWN_PREPARE:
314 		/*
315 		 * If we handle the timekeeping duty for full dynticks CPUs,
316 		 * we can't safely shutdown that CPU.
317 		 */
318 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
319 			return NOTIFY_BAD;
320 		break;
321 	}
322 	return NOTIFY_OK;
323 }
324 
325 /*
326  * Worst case string length in chunks of CPU range seems 2 steps
327  * separations: 0,2,4,6,...
328  * This is NR_CPUS + sizeof('\0')
329  */
330 static char __initdata nohz_full_buf[NR_CPUS + 1];
331 
332 static int tick_nohz_init_all(void)
333 {
334 	int err = -1;
335 
336 #ifdef CONFIG_NO_HZ_FULL_ALL
337 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
338 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
339 		return err;
340 	}
341 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
342 		pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n");
343 		return err;
344 	}
345 	err = 0;
346 	cpumask_setall(tick_nohz_full_mask);
347 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
348 	cpumask_clear(housekeeping_mask);
349 	cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
350 	tick_nohz_full_running = true;
351 #endif
352 	return err;
353 }
354 
355 void __init tick_nohz_init(void)
356 {
357 	int cpu;
358 
359 	if (!tick_nohz_full_running) {
360 		if (tick_nohz_init_all() < 0)
361 			return;
362 	}
363 
364 	for_each_cpu(cpu, tick_nohz_full_mask)
365 		context_tracking_cpu_set(cpu);
366 
367 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
368 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
369 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
370 }
371 #endif
372 
373 /*
374  * NOHZ - aka dynamic tick functionality
375  */
376 #ifdef CONFIG_NO_HZ_COMMON
377 /*
378  * NO HZ enabled ?
379  */
380 static int tick_nohz_enabled __read_mostly  = 1;
381 int tick_nohz_active  __read_mostly;
382 /*
383  * Enable / Disable tickless mode
384  */
385 static int __init setup_tick_nohz(char *str)
386 {
387 	if (!strcmp(str, "off"))
388 		tick_nohz_enabled = 0;
389 	else if (!strcmp(str, "on"))
390 		tick_nohz_enabled = 1;
391 	else
392 		return 0;
393 	return 1;
394 }
395 
396 __setup("nohz=", setup_tick_nohz);
397 
398 /**
399  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
400  *
401  * Called from interrupt entry when the CPU was idle
402  *
403  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
404  * must be updated. Otherwise an interrupt handler could use a stale jiffy
405  * value. We do this unconditionally on any cpu, as we don't know whether the
406  * cpu, which has the update task assigned is in a long sleep.
407  */
408 static void tick_nohz_update_jiffies(ktime_t now)
409 {
410 	unsigned long flags;
411 
412 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
413 
414 	local_irq_save(flags);
415 	tick_do_update_jiffies64(now);
416 	local_irq_restore(flags);
417 
418 	touch_softlockup_watchdog();
419 }
420 
421 /*
422  * Updates the per cpu time idle statistics counters
423  */
424 static void
425 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
426 {
427 	ktime_t delta;
428 
429 	if (ts->idle_active) {
430 		delta = ktime_sub(now, ts->idle_entrytime);
431 		if (nr_iowait_cpu(cpu) > 0)
432 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
433 		else
434 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
435 		ts->idle_entrytime = now;
436 	}
437 
438 	if (last_update_time)
439 		*last_update_time = ktime_to_us(now);
440 
441 }
442 
443 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
444 {
445 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
446 	ts->idle_active = 0;
447 
448 	sched_clock_idle_wakeup_event(0);
449 }
450 
451 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
452 {
453 	ktime_t now = ktime_get();
454 
455 	ts->idle_entrytime = now;
456 	ts->idle_active = 1;
457 	sched_clock_idle_sleep_event();
458 	return now;
459 }
460 
461 /**
462  * get_cpu_idle_time_us - get the total idle time of a cpu
463  * @cpu: CPU number to query
464  * @last_update_time: variable to store update time in. Do not update
465  * counters if NULL.
466  *
467  * Return the cummulative idle time (since boot) for a given
468  * CPU, in microseconds.
469  *
470  * This time is measured via accounting rather than sampling,
471  * and is as accurate as ktime_get() is.
472  *
473  * This function returns -1 if NOHZ is not enabled.
474  */
475 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
476 {
477 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
478 	ktime_t now, idle;
479 
480 	if (!tick_nohz_active)
481 		return -1;
482 
483 	now = ktime_get();
484 	if (last_update_time) {
485 		update_ts_time_stats(cpu, ts, now, last_update_time);
486 		idle = ts->idle_sleeptime;
487 	} else {
488 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
489 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
490 
491 			idle = ktime_add(ts->idle_sleeptime, delta);
492 		} else {
493 			idle = ts->idle_sleeptime;
494 		}
495 	}
496 
497 	return ktime_to_us(idle);
498 
499 }
500 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
501 
502 /**
503  * get_cpu_iowait_time_us - get the total iowait time of a cpu
504  * @cpu: CPU number to query
505  * @last_update_time: variable to store update time in. Do not update
506  * counters if NULL.
507  *
508  * Return the cummulative iowait time (since boot) for a given
509  * CPU, in microseconds.
510  *
511  * This time is measured via accounting rather than sampling,
512  * and is as accurate as ktime_get() is.
513  *
514  * This function returns -1 if NOHZ is not enabled.
515  */
516 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
517 {
518 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
519 	ktime_t now, iowait;
520 
521 	if (!tick_nohz_active)
522 		return -1;
523 
524 	now = ktime_get();
525 	if (last_update_time) {
526 		update_ts_time_stats(cpu, ts, now, last_update_time);
527 		iowait = ts->iowait_sleeptime;
528 	} else {
529 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
530 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
531 
532 			iowait = ktime_add(ts->iowait_sleeptime, delta);
533 		} else {
534 			iowait = ts->iowait_sleeptime;
535 		}
536 	}
537 
538 	return ktime_to_us(iowait);
539 }
540 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
541 
542 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
543 					 ktime_t now, int cpu)
544 {
545 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
546 	ktime_t last_update, expires, ret = { .tv64 = 0 };
547 	unsigned long rcu_delta_jiffies;
548 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
549 	u64 time_delta;
550 
551 	time_delta = timekeeping_max_deferment();
552 
553 	/* Read jiffies and the time when jiffies were updated last */
554 	do {
555 		seq = read_seqbegin(&jiffies_lock);
556 		last_update = last_jiffies_update;
557 		last_jiffies = jiffies;
558 	} while (read_seqretry(&jiffies_lock, seq));
559 
560 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
561 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
562 		next_jiffies = last_jiffies + 1;
563 		delta_jiffies = 1;
564 	} else {
565 		/* Get the next timer wheel timer */
566 		next_jiffies = get_next_timer_interrupt(last_jiffies);
567 		delta_jiffies = next_jiffies - last_jiffies;
568 		if (rcu_delta_jiffies < delta_jiffies) {
569 			next_jiffies = last_jiffies + rcu_delta_jiffies;
570 			delta_jiffies = rcu_delta_jiffies;
571 		}
572 	}
573 
574 	/*
575 	 * Do not stop the tick, if we are only one off (or less)
576 	 * or if the cpu is required for RCU:
577 	 */
578 	if (!ts->tick_stopped && delta_jiffies <= 1)
579 		goto out;
580 
581 	/* Schedule the tick, if we are at least one jiffie off */
582 	if ((long)delta_jiffies >= 1) {
583 
584 		/*
585 		 * If this cpu is the one which updates jiffies, then
586 		 * give up the assignment and let it be taken by the
587 		 * cpu which runs the tick timer next, which might be
588 		 * this cpu as well. If we don't drop this here the
589 		 * jiffies might be stale and do_timer() never
590 		 * invoked. Keep track of the fact that it was the one
591 		 * which had the do_timer() duty last. If this cpu is
592 		 * the one which had the do_timer() duty last, we
593 		 * limit the sleep time to the timekeeping
594 		 * max_deferement value which we retrieved
595 		 * above. Otherwise we can sleep as long as we want.
596 		 */
597 		if (cpu == tick_do_timer_cpu) {
598 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
599 			ts->do_timer_last = 1;
600 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
601 			time_delta = KTIME_MAX;
602 			ts->do_timer_last = 0;
603 		} else if (!ts->do_timer_last) {
604 			time_delta = KTIME_MAX;
605 		}
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 		if (!ts->inidle) {
609 			time_delta = min(time_delta,
610 					 scheduler_tick_max_deferment());
611 		}
612 #endif
613 
614 		/*
615 		 * calculate the expiry time for the next timer wheel
616 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
617 		 * that there is no timer pending or at least extremely
618 		 * far into the future (12 days for HZ=1000). In this
619 		 * case we set the expiry to the end of time.
620 		 */
621 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
622 			/*
623 			 * Calculate the time delta for the next timer event.
624 			 * If the time delta exceeds the maximum time delta
625 			 * permitted by the current clocksource then adjust
626 			 * the time delta accordingly to ensure the
627 			 * clocksource does not wrap.
628 			 */
629 			time_delta = min_t(u64, time_delta,
630 					   tick_period.tv64 * delta_jiffies);
631 		}
632 
633 		if (time_delta < KTIME_MAX)
634 			expires = ktime_add_ns(last_update, time_delta);
635 		else
636 			expires.tv64 = KTIME_MAX;
637 
638 		/* Skip reprogram of event if its not changed */
639 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
640 			goto out;
641 
642 		ret = expires;
643 
644 		/*
645 		 * nohz_stop_sched_tick can be called several times before
646 		 * the nohz_restart_sched_tick is called. This happens when
647 		 * interrupts arrive which do not cause a reschedule. In the
648 		 * first call we save the current tick time, so we can restart
649 		 * the scheduler tick in nohz_restart_sched_tick.
650 		 */
651 		if (!ts->tick_stopped) {
652 			nohz_balance_enter_idle(cpu);
653 			calc_load_enter_idle();
654 
655 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
656 			ts->tick_stopped = 1;
657 			trace_tick_stop(1, " ");
658 		}
659 
660 		/*
661 		 * If the expiration time == KTIME_MAX, then
662 		 * in this case we simply stop the tick timer.
663 		 */
664 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
665 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 				hrtimer_cancel(&ts->sched_timer);
667 			goto out;
668 		}
669 
670 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
671 			hrtimer_start(&ts->sched_timer, expires,
672 				      HRTIMER_MODE_ABS_PINNED);
673 			/* Check, if the timer was already in the past */
674 			if (hrtimer_active(&ts->sched_timer))
675 				goto out;
676 		} else if (!tick_program_event(expires, 0))
677 				goto out;
678 		/*
679 		 * We are past the event already. So we crossed a
680 		 * jiffie boundary. Update jiffies and raise the
681 		 * softirq.
682 		 */
683 		tick_do_update_jiffies64(ktime_get());
684 	}
685 	raise_softirq_irqoff(TIMER_SOFTIRQ);
686 out:
687 	ts->next_jiffies = next_jiffies;
688 	ts->last_jiffies = last_jiffies;
689 	ts->sleep_length = ktime_sub(dev->next_event, now);
690 
691 	return ret;
692 }
693 
694 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
695 {
696 #ifdef CONFIG_NO_HZ_FULL
697 	int cpu = smp_processor_id();
698 
699 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
700 		return;
701 
702 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
703 		return;
704 
705 	if (!can_stop_full_tick())
706 		return;
707 
708 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
709 #endif
710 }
711 
712 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
713 {
714 	/*
715 	 * If this cpu is offline and it is the one which updates
716 	 * jiffies, then give up the assignment and let it be taken by
717 	 * the cpu which runs the tick timer next. If we don't drop
718 	 * this here the jiffies might be stale and do_timer() never
719 	 * invoked.
720 	 */
721 	if (unlikely(!cpu_online(cpu))) {
722 		if (cpu == tick_do_timer_cpu)
723 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
724 		return false;
725 	}
726 
727 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
728 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
729 		return false;
730 	}
731 
732 	if (need_resched())
733 		return false;
734 
735 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
736 		static int ratelimit;
737 
738 		if (ratelimit < 10 &&
739 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
740 			pr_warn("NOHZ: local_softirq_pending %02x\n",
741 				(unsigned int) local_softirq_pending());
742 			ratelimit++;
743 		}
744 		return false;
745 	}
746 
747 	if (tick_nohz_full_enabled()) {
748 		/*
749 		 * Keep the tick alive to guarantee timekeeping progression
750 		 * if there are full dynticks CPUs around
751 		 */
752 		if (tick_do_timer_cpu == cpu)
753 			return false;
754 		/*
755 		 * Boot safety: make sure the timekeeping duty has been
756 		 * assigned before entering dyntick-idle mode,
757 		 */
758 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
759 			return false;
760 	}
761 
762 	return true;
763 }
764 
765 static void __tick_nohz_idle_enter(struct tick_sched *ts)
766 {
767 	ktime_t now, expires;
768 	int cpu = smp_processor_id();
769 
770 	now = tick_nohz_start_idle(ts);
771 
772 	if (can_stop_idle_tick(cpu, ts)) {
773 		int was_stopped = ts->tick_stopped;
774 
775 		ts->idle_calls++;
776 
777 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
778 		if (expires.tv64 > 0LL) {
779 			ts->idle_sleeps++;
780 			ts->idle_expires = expires;
781 		}
782 
783 		if (!was_stopped && ts->tick_stopped)
784 			ts->idle_jiffies = ts->last_jiffies;
785 	}
786 }
787 
788 /**
789  * tick_nohz_idle_enter - stop the idle tick from the idle task
790  *
791  * When the next event is more than a tick into the future, stop the idle tick
792  * Called when we start the idle loop.
793  *
794  * The arch is responsible of calling:
795  *
796  * - rcu_idle_enter() after its last use of RCU before the CPU is put
797  *  to sleep.
798  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
799  */
800 void tick_nohz_idle_enter(void)
801 {
802 	struct tick_sched *ts;
803 
804 	WARN_ON_ONCE(irqs_disabled());
805 
806 	/*
807  	 * Update the idle state in the scheduler domain hierarchy
808  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
809  	 * State will be updated to busy during the first busy tick after
810  	 * exiting idle.
811  	 */
812 	set_cpu_sd_state_idle();
813 
814 	local_irq_disable();
815 
816 	ts = this_cpu_ptr(&tick_cpu_sched);
817 	ts->inidle = 1;
818 	__tick_nohz_idle_enter(ts);
819 
820 	local_irq_enable();
821 }
822 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
823 
824 /**
825  * tick_nohz_irq_exit - update next tick event from interrupt exit
826  *
827  * When an interrupt fires while we are idle and it doesn't cause
828  * a reschedule, it may still add, modify or delete a timer, enqueue
829  * an RCU callback, etc...
830  * So we need to re-calculate and reprogram the next tick event.
831  */
832 void tick_nohz_irq_exit(void)
833 {
834 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
835 
836 	if (ts->inidle)
837 		__tick_nohz_idle_enter(ts);
838 	else
839 		tick_nohz_full_stop_tick(ts);
840 }
841 
842 /**
843  * tick_nohz_get_sleep_length - return the length of the current sleep
844  *
845  * Called from power state control code with interrupts disabled
846  */
847 ktime_t tick_nohz_get_sleep_length(void)
848 {
849 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
850 
851 	return ts->sleep_length;
852 }
853 
854 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
855 {
856 	hrtimer_cancel(&ts->sched_timer);
857 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
858 
859 	while (1) {
860 		/* Forward the time to expire in the future */
861 		hrtimer_forward(&ts->sched_timer, now, tick_period);
862 
863 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
864 			hrtimer_start_expires(&ts->sched_timer,
865 					      HRTIMER_MODE_ABS_PINNED);
866 			/* Check, if the timer was already in the past */
867 			if (hrtimer_active(&ts->sched_timer))
868 				break;
869 		} else {
870 			if (!tick_program_event(
871 				hrtimer_get_expires(&ts->sched_timer), 0))
872 				break;
873 		}
874 		/* Reread time and update jiffies */
875 		now = ktime_get();
876 		tick_do_update_jiffies64(now);
877 	}
878 }
879 
880 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
881 {
882 	/* Update jiffies first */
883 	tick_do_update_jiffies64(now);
884 	update_cpu_load_nohz();
885 
886 	calc_load_exit_idle();
887 	touch_softlockup_watchdog();
888 	/*
889 	 * Cancel the scheduled timer and restore the tick
890 	 */
891 	ts->tick_stopped  = 0;
892 	ts->idle_exittime = now;
893 
894 	tick_nohz_restart(ts, now);
895 }
896 
897 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
898 {
899 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
900 	unsigned long ticks;
901 
902 	if (vtime_accounting_enabled())
903 		return;
904 	/*
905 	 * We stopped the tick in idle. Update process times would miss the
906 	 * time we slept as update_process_times does only a 1 tick
907 	 * accounting. Enforce that this is accounted to idle !
908 	 */
909 	ticks = jiffies - ts->idle_jiffies;
910 	/*
911 	 * We might be one off. Do not randomly account a huge number of ticks!
912 	 */
913 	if (ticks && ticks < LONG_MAX)
914 		account_idle_ticks(ticks);
915 #endif
916 }
917 
918 /**
919  * tick_nohz_idle_exit - restart the idle tick from the idle task
920  *
921  * Restart the idle tick when the CPU is woken up from idle
922  * This also exit the RCU extended quiescent state. The CPU
923  * can use RCU again after this function is called.
924  */
925 void tick_nohz_idle_exit(void)
926 {
927 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
928 	ktime_t now;
929 
930 	local_irq_disable();
931 
932 	WARN_ON_ONCE(!ts->inidle);
933 
934 	ts->inidle = 0;
935 
936 	if (ts->idle_active || ts->tick_stopped)
937 		now = ktime_get();
938 
939 	if (ts->idle_active)
940 		tick_nohz_stop_idle(ts, now);
941 
942 	if (ts->tick_stopped) {
943 		tick_nohz_restart_sched_tick(ts, now);
944 		tick_nohz_account_idle_ticks(ts);
945 	}
946 
947 	local_irq_enable();
948 }
949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
950 
951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
952 {
953 	hrtimer_forward(&ts->sched_timer, now, tick_period);
954 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
955 }
956 
957 /*
958  * The nohz low res interrupt handler
959  */
960 static void tick_nohz_handler(struct clock_event_device *dev)
961 {
962 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
963 	struct pt_regs *regs = get_irq_regs();
964 	ktime_t now = ktime_get();
965 
966 	dev->next_event.tv64 = KTIME_MAX;
967 
968 	tick_sched_do_timer(now);
969 	tick_sched_handle(ts, regs);
970 
971 	while (tick_nohz_reprogram(ts, now)) {
972 		now = ktime_get();
973 		tick_do_update_jiffies64(now);
974 	}
975 }
976 
977 /**
978  * tick_nohz_switch_to_nohz - switch to nohz mode
979  */
980 static void tick_nohz_switch_to_nohz(void)
981 {
982 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
983 	ktime_t next;
984 
985 	if (!tick_nohz_enabled)
986 		return;
987 
988 	local_irq_disable();
989 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
990 		local_irq_enable();
991 		return;
992 	}
993 	tick_nohz_active = 1;
994 	ts->nohz_mode = NOHZ_MODE_LOWRES;
995 
996 	/*
997 	 * Recycle the hrtimer in ts, so we can share the
998 	 * hrtimer_forward with the highres code.
999 	 */
1000 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1001 	/* Get the next period */
1002 	next = tick_init_jiffy_update();
1003 
1004 	for (;;) {
1005 		hrtimer_set_expires(&ts->sched_timer, next);
1006 		if (!tick_program_event(next, 0))
1007 			break;
1008 		next = ktime_add(next, tick_period);
1009 	}
1010 	local_irq_enable();
1011 }
1012 
1013 /*
1014  * When NOHZ is enabled and the tick is stopped, we need to kick the
1015  * tick timer from irq_enter() so that the jiffies update is kept
1016  * alive during long running softirqs. That's ugly as hell, but
1017  * correctness is key even if we need to fix the offending softirq in
1018  * the first place.
1019  *
1020  * Note, this is different to tick_nohz_restart. We just kick the
1021  * timer and do not touch the other magic bits which need to be done
1022  * when idle is left.
1023  */
1024 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1025 {
1026 #if 0
1027 	/* Switch back to 2.6.27 behaviour */
1028 	ktime_t delta;
1029 
1030 	/*
1031 	 * Do not touch the tick device, when the next expiry is either
1032 	 * already reached or less/equal than the tick period.
1033 	 */
1034 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1035 	if (delta.tv64 <= tick_period.tv64)
1036 		return;
1037 
1038 	tick_nohz_restart(ts, now);
1039 #endif
1040 }
1041 
1042 static inline void tick_nohz_irq_enter(void)
1043 {
1044 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1045 	ktime_t now;
1046 
1047 	if (!ts->idle_active && !ts->tick_stopped)
1048 		return;
1049 	now = ktime_get();
1050 	if (ts->idle_active)
1051 		tick_nohz_stop_idle(ts, now);
1052 	if (ts->tick_stopped) {
1053 		tick_nohz_update_jiffies(now);
1054 		tick_nohz_kick_tick(ts, now);
1055 	}
1056 }
1057 
1058 #else
1059 
1060 static inline void tick_nohz_switch_to_nohz(void) { }
1061 static inline void tick_nohz_irq_enter(void) { }
1062 
1063 #endif /* CONFIG_NO_HZ_COMMON */
1064 
1065 /*
1066  * Called from irq_enter to notify about the possible interruption of idle()
1067  */
1068 void tick_irq_enter(void)
1069 {
1070 	tick_check_oneshot_broadcast_this_cpu();
1071 	tick_nohz_irq_enter();
1072 }
1073 
1074 /*
1075  * High resolution timer specific code
1076  */
1077 #ifdef CONFIG_HIGH_RES_TIMERS
1078 /*
1079  * We rearm the timer until we get disabled by the idle code.
1080  * Called with interrupts disabled.
1081  */
1082 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1083 {
1084 	struct tick_sched *ts =
1085 		container_of(timer, struct tick_sched, sched_timer);
1086 	struct pt_regs *regs = get_irq_regs();
1087 	ktime_t now = ktime_get();
1088 
1089 	tick_sched_do_timer(now);
1090 
1091 	/*
1092 	 * Do not call, when we are not in irq context and have
1093 	 * no valid regs pointer
1094 	 */
1095 	if (regs)
1096 		tick_sched_handle(ts, regs);
1097 
1098 	hrtimer_forward(timer, now, tick_period);
1099 
1100 	return HRTIMER_RESTART;
1101 }
1102 
1103 static int sched_skew_tick;
1104 
1105 static int __init skew_tick(char *str)
1106 {
1107 	get_option(&str, &sched_skew_tick);
1108 
1109 	return 0;
1110 }
1111 early_param("skew_tick", skew_tick);
1112 
1113 /**
1114  * tick_setup_sched_timer - setup the tick emulation timer
1115  */
1116 void tick_setup_sched_timer(void)
1117 {
1118 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1119 	ktime_t now = ktime_get();
1120 
1121 	/*
1122 	 * Emulate tick processing via per-CPU hrtimers:
1123 	 */
1124 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1125 	ts->sched_timer.function = tick_sched_timer;
1126 
1127 	/* Get the next period (per cpu) */
1128 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1129 
1130 	/* Offset the tick to avert jiffies_lock contention. */
1131 	if (sched_skew_tick) {
1132 		u64 offset = ktime_to_ns(tick_period) >> 1;
1133 		do_div(offset, num_possible_cpus());
1134 		offset *= smp_processor_id();
1135 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1136 	}
1137 
1138 	for (;;) {
1139 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1140 		hrtimer_start_expires(&ts->sched_timer,
1141 				      HRTIMER_MODE_ABS_PINNED);
1142 		/* Check, if the timer was already in the past */
1143 		if (hrtimer_active(&ts->sched_timer))
1144 			break;
1145 		now = ktime_get();
1146 	}
1147 
1148 #ifdef CONFIG_NO_HZ_COMMON
1149 	if (tick_nohz_enabled) {
1150 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1151 		tick_nohz_active = 1;
1152 	}
1153 #endif
1154 }
1155 #endif /* HIGH_RES_TIMERS */
1156 
1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1158 void tick_cancel_sched_timer(int cpu)
1159 {
1160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1161 
1162 # ifdef CONFIG_HIGH_RES_TIMERS
1163 	if (ts->sched_timer.base)
1164 		hrtimer_cancel(&ts->sched_timer);
1165 # endif
1166 
1167 	memset(ts, 0, sizeof(*ts));
1168 }
1169 #endif
1170 
1171 /**
1172  * Async notification about clocksource changes
1173  */
1174 void tick_clock_notify(void)
1175 {
1176 	int cpu;
1177 
1178 	for_each_possible_cpu(cpu)
1179 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1180 }
1181 
1182 /*
1183  * Async notification about clock event changes
1184  */
1185 void tick_oneshot_notify(void)
1186 {
1187 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188 
1189 	set_bit(0, &ts->check_clocks);
1190 }
1191 
1192 /**
1193  * Check, if a change happened, which makes oneshot possible.
1194  *
1195  * Called cyclic from the hrtimer softirq (driven by the timer
1196  * softirq) allow_nohz signals, that we can switch into low-res nohz
1197  * mode, because high resolution timers are disabled (either compile
1198  * or runtime).
1199  */
1200 int tick_check_oneshot_change(int allow_nohz)
1201 {
1202 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1203 
1204 	if (!test_and_clear_bit(0, &ts->check_clocks))
1205 		return 0;
1206 
1207 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1208 		return 0;
1209 
1210 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1211 		return 0;
1212 
1213 	if (!allow_nohz)
1214 		return 1;
1215 
1216 	tick_nohz_switch_to_nohz();
1217 	return 0;
1218 }
1219