xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4800cd83)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 
143 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 	ts->idle_waketime = now;
145 
146 	local_irq_save(flags);
147 	tick_do_update_jiffies64(now);
148 	local_irq_restore(flags);
149 
150 	touch_softlockup_watchdog();
151 }
152 
153 /*
154  * Updates the per cpu time idle statistics counters
155  */
156 static void
157 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158 {
159 	ktime_t delta;
160 
161 	if (ts->idle_active) {
162 		delta = ktime_sub(now, ts->idle_entrytime);
163 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 		if (nr_iowait_cpu(cpu) > 0)
165 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166 		ts->idle_entrytime = now;
167 	}
168 
169 	if (last_update_time)
170 		*last_update_time = ktime_to_us(now);
171 
172 }
173 
174 static void tick_nohz_stop_idle(int cpu, ktime_t now)
175 {
176 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
177 
178 	update_ts_time_stats(cpu, ts, now, NULL);
179 	ts->idle_active = 0;
180 
181 	sched_clock_idle_wakeup_event(0);
182 }
183 
184 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185 {
186 	ktime_t now;
187 
188 	now = ktime_get();
189 
190 	update_ts_time_stats(cpu, ts, now, NULL);
191 
192 	ts->idle_entrytime = now;
193 	ts->idle_active = 1;
194 	sched_clock_idle_sleep_event();
195 	return now;
196 }
197 
198 /**
199  * get_cpu_idle_time_us - get the total idle time of a cpu
200  * @cpu: CPU number to query
201  * @last_update_time: variable to store update time in
202  *
203  * Return the cummulative idle time (since boot) for a given
204  * CPU, in microseconds. The idle time returned includes
205  * the iowait time (unlike what "top" and co report).
206  *
207  * This time is measured via accounting rather than sampling,
208  * and is as accurate as ktime_get() is.
209  *
210  * This function returns -1 if NOHZ is not enabled.
211  */
212 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
213 {
214 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
215 
216 	if (!tick_nohz_enabled)
217 		return -1;
218 
219 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
220 
221 	return ktime_to_us(ts->idle_sleeptime);
222 }
223 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
224 
225 /*
226  * get_cpu_iowait_time_us - get the total iowait time of a cpu
227  * @cpu: CPU number to query
228  * @last_update_time: variable to store update time in
229  *
230  * Return the cummulative iowait time (since boot) for a given
231  * CPU, in microseconds.
232  *
233  * This time is measured via accounting rather than sampling,
234  * and is as accurate as ktime_get() is.
235  *
236  * This function returns -1 if NOHZ is not enabled.
237  */
238 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
239 {
240 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
241 
242 	if (!tick_nohz_enabled)
243 		return -1;
244 
245 	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
246 
247 	return ktime_to_us(ts->iowait_sleeptime);
248 }
249 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
250 
251 /**
252  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
253  *
254  * When the next event is more than a tick into the future, stop the idle tick
255  * Called either from the idle loop or from irq_exit() when an idle period was
256  * just interrupted by an interrupt which did not cause a reschedule.
257  */
258 void tick_nohz_stop_sched_tick(int inidle)
259 {
260 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
261 	struct tick_sched *ts;
262 	ktime_t last_update, expires, now;
263 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
264 	u64 time_delta;
265 	int cpu;
266 
267 	local_irq_save(flags);
268 
269 	cpu = smp_processor_id();
270 	ts = &per_cpu(tick_cpu_sched, cpu);
271 
272 	/*
273 	 * Call to tick_nohz_start_idle stops the last_update_time from being
274 	 * updated. Thus, it must not be called in the event we are called from
275 	 * irq_exit() with the prior state different than idle.
276 	 */
277 	if (!inidle && !ts->inidle)
278 		goto end;
279 
280 	/*
281 	 * Set ts->inidle unconditionally. Even if the system did not
282 	 * switch to NOHZ mode the cpu frequency governers rely on the
283 	 * update of the idle time accounting in tick_nohz_start_idle().
284 	 */
285 	ts->inidle = 1;
286 
287 	now = tick_nohz_start_idle(cpu, ts);
288 
289 	/*
290 	 * If this cpu is offline and it is the one which updates
291 	 * jiffies, then give up the assignment and let it be taken by
292 	 * the cpu which runs the tick timer next. If we don't drop
293 	 * this here the jiffies might be stale and do_timer() never
294 	 * invoked.
295 	 */
296 	if (unlikely(!cpu_online(cpu))) {
297 		if (cpu == tick_do_timer_cpu)
298 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
299 	}
300 
301 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
302 		goto end;
303 
304 	if (need_resched())
305 		goto end;
306 
307 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308 		static int ratelimit;
309 
310 		if (ratelimit < 10) {
311 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
312 			       (unsigned int) local_softirq_pending());
313 			ratelimit++;
314 		}
315 		goto end;
316 	}
317 
318 	ts->idle_calls++;
319 	/* Read jiffies and the time when jiffies were updated last */
320 	do {
321 		seq = read_seqbegin(&xtime_lock);
322 		last_update = last_jiffies_update;
323 		last_jiffies = jiffies;
324 		time_delta = timekeeping_max_deferment();
325 	} while (read_seqretry(&xtime_lock, seq));
326 
327 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
328 	    arch_needs_cpu(cpu)) {
329 		next_jiffies = last_jiffies + 1;
330 		delta_jiffies = 1;
331 	} else {
332 		/* Get the next timer wheel timer */
333 		next_jiffies = get_next_timer_interrupt(last_jiffies);
334 		delta_jiffies = next_jiffies - last_jiffies;
335 	}
336 	/*
337 	 * Do not stop the tick, if we are only one off
338 	 * or if the cpu is required for rcu
339 	 */
340 	if (!ts->tick_stopped && delta_jiffies == 1)
341 		goto out;
342 
343 	/* Schedule the tick, if we are at least one jiffie off */
344 	if ((long)delta_jiffies >= 1) {
345 
346 		/*
347 		 * If this cpu is the one which updates jiffies, then
348 		 * give up the assignment and let it be taken by the
349 		 * cpu which runs the tick timer next, which might be
350 		 * this cpu as well. If we don't drop this here the
351 		 * jiffies might be stale and do_timer() never
352 		 * invoked. Keep track of the fact that it was the one
353 		 * which had the do_timer() duty last. If this cpu is
354 		 * the one which had the do_timer() duty last, we
355 		 * limit the sleep time to the timekeeping
356 		 * max_deferement value which we retrieved
357 		 * above. Otherwise we can sleep as long as we want.
358 		 */
359 		if (cpu == tick_do_timer_cpu) {
360 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
361 			ts->do_timer_last = 1;
362 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
363 			time_delta = KTIME_MAX;
364 			ts->do_timer_last = 0;
365 		} else if (!ts->do_timer_last) {
366 			time_delta = KTIME_MAX;
367 		}
368 
369 		/*
370 		 * calculate the expiry time for the next timer wheel
371 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
372 		 * that there is no timer pending or at least extremely
373 		 * far into the future (12 days for HZ=1000). In this
374 		 * case we set the expiry to the end of time.
375 		 */
376 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
377 			/*
378 			 * Calculate the time delta for the next timer event.
379 			 * If the time delta exceeds the maximum time delta
380 			 * permitted by the current clocksource then adjust
381 			 * the time delta accordingly to ensure the
382 			 * clocksource does not wrap.
383 			 */
384 			time_delta = min_t(u64, time_delta,
385 					   tick_period.tv64 * delta_jiffies);
386 		}
387 
388 		if (time_delta < KTIME_MAX)
389 			expires = ktime_add_ns(last_update, time_delta);
390 		else
391 			expires.tv64 = KTIME_MAX;
392 
393 		if (delta_jiffies > 1)
394 			cpumask_set_cpu(cpu, nohz_cpu_mask);
395 
396 		/* Skip reprogram of event if its not changed */
397 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
398 			goto out;
399 
400 		/*
401 		 * nohz_stop_sched_tick can be called several times before
402 		 * the nohz_restart_sched_tick is called. This happens when
403 		 * interrupts arrive which do not cause a reschedule. In the
404 		 * first call we save the current tick time, so we can restart
405 		 * the scheduler tick in nohz_restart_sched_tick.
406 		 */
407 		if (!ts->tick_stopped) {
408 			select_nohz_load_balancer(1);
409 
410 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
411 			ts->tick_stopped = 1;
412 			ts->idle_jiffies = last_jiffies;
413 			rcu_enter_nohz();
414 		}
415 
416 		ts->idle_sleeps++;
417 
418 		/* Mark expires */
419 		ts->idle_expires = expires;
420 
421 		/*
422 		 * If the expiration time == KTIME_MAX, then
423 		 * in this case we simply stop the tick timer.
424 		 */
425 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
426 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
427 				hrtimer_cancel(&ts->sched_timer);
428 			goto out;
429 		}
430 
431 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
432 			hrtimer_start(&ts->sched_timer, expires,
433 				      HRTIMER_MODE_ABS_PINNED);
434 			/* Check, if the timer was already in the past */
435 			if (hrtimer_active(&ts->sched_timer))
436 				goto out;
437 		} else if (!tick_program_event(expires, 0))
438 				goto out;
439 		/*
440 		 * We are past the event already. So we crossed a
441 		 * jiffie boundary. Update jiffies and raise the
442 		 * softirq.
443 		 */
444 		tick_do_update_jiffies64(ktime_get());
445 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
446 	}
447 	raise_softirq_irqoff(TIMER_SOFTIRQ);
448 out:
449 	ts->next_jiffies = next_jiffies;
450 	ts->last_jiffies = last_jiffies;
451 	ts->sleep_length = ktime_sub(dev->next_event, now);
452 end:
453 	local_irq_restore(flags);
454 }
455 
456 /**
457  * tick_nohz_get_sleep_length - return the length of the current sleep
458  *
459  * Called from power state control code with interrupts disabled
460  */
461 ktime_t tick_nohz_get_sleep_length(void)
462 {
463 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
464 
465 	return ts->sleep_length;
466 }
467 
468 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
469 {
470 	hrtimer_cancel(&ts->sched_timer);
471 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
472 
473 	while (1) {
474 		/* Forward the time to expire in the future */
475 		hrtimer_forward(&ts->sched_timer, now, tick_period);
476 
477 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
478 			hrtimer_start_expires(&ts->sched_timer,
479 					      HRTIMER_MODE_ABS_PINNED);
480 			/* Check, if the timer was already in the past */
481 			if (hrtimer_active(&ts->sched_timer))
482 				break;
483 		} else {
484 			if (!tick_program_event(
485 				hrtimer_get_expires(&ts->sched_timer), 0))
486 				break;
487 		}
488 		/* Update jiffies and reread time */
489 		tick_do_update_jiffies64(now);
490 		now = ktime_get();
491 	}
492 }
493 
494 /**
495  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
496  *
497  * Restart the idle tick when the CPU is woken up from idle
498  */
499 void tick_nohz_restart_sched_tick(void)
500 {
501 	int cpu = smp_processor_id();
502 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
503 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
504 	unsigned long ticks;
505 #endif
506 	ktime_t now;
507 
508 	local_irq_disable();
509 	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
510 		now = ktime_get();
511 
512 	if (ts->idle_active)
513 		tick_nohz_stop_idle(cpu, now);
514 
515 	if (!ts->inidle || !ts->tick_stopped) {
516 		ts->inidle = 0;
517 		local_irq_enable();
518 		return;
519 	}
520 
521 	ts->inidle = 0;
522 
523 	rcu_exit_nohz();
524 
525 	/* Update jiffies first */
526 	select_nohz_load_balancer(0);
527 	tick_do_update_jiffies64(now);
528 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
529 
530 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
531 	/*
532 	 * We stopped the tick in idle. Update process times would miss the
533 	 * time we slept as update_process_times does only a 1 tick
534 	 * accounting. Enforce that this is accounted to idle !
535 	 */
536 	ticks = jiffies - ts->idle_jiffies;
537 	/*
538 	 * We might be one off. Do not randomly account a huge number of ticks!
539 	 */
540 	if (ticks && ticks < LONG_MAX)
541 		account_idle_ticks(ticks);
542 #endif
543 
544 	touch_softlockup_watchdog();
545 	/*
546 	 * Cancel the scheduled timer and restore the tick
547 	 */
548 	ts->tick_stopped  = 0;
549 	ts->idle_exittime = now;
550 
551 	tick_nohz_restart(ts, now);
552 
553 	local_irq_enable();
554 }
555 
556 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
557 {
558 	hrtimer_forward(&ts->sched_timer, now, tick_period);
559 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
560 }
561 
562 /*
563  * The nohz low res interrupt handler
564  */
565 static void tick_nohz_handler(struct clock_event_device *dev)
566 {
567 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
568 	struct pt_regs *regs = get_irq_regs();
569 	int cpu = smp_processor_id();
570 	ktime_t now = ktime_get();
571 
572 	dev->next_event.tv64 = KTIME_MAX;
573 
574 	/*
575 	 * Check if the do_timer duty was dropped. We don't care about
576 	 * concurrency: This happens only when the cpu in charge went
577 	 * into a long sleep. If two cpus happen to assign themself to
578 	 * this duty, then the jiffies update is still serialized by
579 	 * xtime_lock.
580 	 */
581 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
582 		tick_do_timer_cpu = cpu;
583 
584 	/* Check, if the jiffies need an update */
585 	if (tick_do_timer_cpu == cpu)
586 		tick_do_update_jiffies64(now);
587 
588 	/*
589 	 * When we are idle and the tick is stopped, we have to touch
590 	 * the watchdog as we might not schedule for a really long
591 	 * time. This happens on complete idle SMP systems while
592 	 * waiting on the login prompt. We also increment the "start
593 	 * of idle" jiffy stamp so the idle accounting adjustment we
594 	 * do when we go busy again does not account too much ticks.
595 	 */
596 	if (ts->tick_stopped) {
597 		touch_softlockup_watchdog();
598 		ts->idle_jiffies++;
599 	}
600 
601 	update_process_times(user_mode(regs));
602 	profile_tick(CPU_PROFILING);
603 
604 	while (tick_nohz_reprogram(ts, now)) {
605 		now = ktime_get();
606 		tick_do_update_jiffies64(now);
607 	}
608 }
609 
610 /**
611  * tick_nohz_switch_to_nohz - switch to nohz mode
612  */
613 static void tick_nohz_switch_to_nohz(void)
614 {
615 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
616 	ktime_t next;
617 
618 	if (!tick_nohz_enabled)
619 		return;
620 
621 	local_irq_disable();
622 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
623 		local_irq_enable();
624 		return;
625 	}
626 
627 	ts->nohz_mode = NOHZ_MODE_LOWRES;
628 
629 	/*
630 	 * Recycle the hrtimer in ts, so we can share the
631 	 * hrtimer_forward with the highres code.
632 	 */
633 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
634 	/* Get the next period */
635 	next = tick_init_jiffy_update();
636 
637 	for (;;) {
638 		hrtimer_set_expires(&ts->sched_timer, next);
639 		if (!tick_program_event(next, 0))
640 			break;
641 		next = ktime_add(next, tick_period);
642 	}
643 	local_irq_enable();
644 
645 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
646 }
647 
648 /*
649  * When NOHZ is enabled and the tick is stopped, we need to kick the
650  * tick timer from irq_enter() so that the jiffies update is kept
651  * alive during long running softirqs. That's ugly as hell, but
652  * correctness is key even if we need to fix the offending softirq in
653  * the first place.
654  *
655  * Note, this is different to tick_nohz_restart. We just kick the
656  * timer and do not touch the other magic bits which need to be done
657  * when idle is left.
658  */
659 static void tick_nohz_kick_tick(int cpu, ktime_t now)
660 {
661 #if 0
662 	/* Switch back to 2.6.27 behaviour */
663 
664 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
665 	ktime_t delta;
666 
667 	/*
668 	 * Do not touch the tick device, when the next expiry is either
669 	 * already reached or less/equal than the tick period.
670 	 */
671 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
672 	if (delta.tv64 <= tick_period.tv64)
673 		return;
674 
675 	tick_nohz_restart(ts, now);
676 #endif
677 }
678 
679 static inline void tick_check_nohz(int cpu)
680 {
681 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
682 	ktime_t now;
683 
684 	if (!ts->idle_active && !ts->tick_stopped)
685 		return;
686 	now = ktime_get();
687 	if (ts->idle_active)
688 		tick_nohz_stop_idle(cpu, now);
689 	if (ts->tick_stopped) {
690 		tick_nohz_update_jiffies(now);
691 		tick_nohz_kick_tick(cpu, now);
692 	}
693 }
694 
695 #else
696 
697 static inline void tick_nohz_switch_to_nohz(void) { }
698 static inline void tick_check_nohz(int cpu) { }
699 
700 #endif /* NO_HZ */
701 
702 /*
703  * Called from irq_enter to notify about the possible interruption of idle()
704  */
705 void tick_check_idle(int cpu)
706 {
707 	tick_check_oneshot_broadcast(cpu);
708 	tick_check_nohz(cpu);
709 }
710 
711 /*
712  * High resolution timer specific code
713  */
714 #ifdef CONFIG_HIGH_RES_TIMERS
715 /*
716  * We rearm the timer until we get disabled by the idle code.
717  * Called with interrupts disabled and timer->base->cpu_base->lock held.
718  */
719 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
720 {
721 	struct tick_sched *ts =
722 		container_of(timer, struct tick_sched, sched_timer);
723 	struct pt_regs *regs = get_irq_regs();
724 	ktime_t now = ktime_get();
725 	int cpu = smp_processor_id();
726 
727 #ifdef CONFIG_NO_HZ
728 	/*
729 	 * Check if the do_timer duty was dropped. We don't care about
730 	 * concurrency: This happens only when the cpu in charge went
731 	 * into a long sleep. If two cpus happen to assign themself to
732 	 * this duty, then the jiffies update is still serialized by
733 	 * xtime_lock.
734 	 */
735 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
736 		tick_do_timer_cpu = cpu;
737 #endif
738 
739 	/* Check, if the jiffies need an update */
740 	if (tick_do_timer_cpu == cpu)
741 		tick_do_update_jiffies64(now);
742 
743 	/*
744 	 * Do not call, when we are not in irq context and have
745 	 * no valid regs pointer
746 	 */
747 	if (regs) {
748 		/*
749 		 * When we are idle and the tick is stopped, we have to touch
750 		 * the watchdog as we might not schedule for a really long
751 		 * time. This happens on complete idle SMP systems while
752 		 * waiting on the login prompt. We also increment the "start of
753 		 * idle" jiffy stamp so the idle accounting adjustment we do
754 		 * when we go busy again does not account too much ticks.
755 		 */
756 		if (ts->tick_stopped) {
757 			touch_softlockup_watchdog();
758 			ts->idle_jiffies++;
759 		}
760 		update_process_times(user_mode(regs));
761 		profile_tick(CPU_PROFILING);
762 	}
763 
764 	hrtimer_forward(timer, now, tick_period);
765 
766 	return HRTIMER_RESTART;
767 }
768 
769 /**
770  * tick_setup_sched_timer - setup the tick emulation timer
771  */
772 void tick_setup_sched_timer(void)
773 {
774 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
775 	ktime_t now = ktime_get();
776 
777 	/*
778 	 * Emulate tick processing via per-CPU hrtimers:
779 	 */
780 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
781 	ts->sched_timer.function = tick_sched_timer;
782 
783 	/* Get the next period (per cpu) */
784 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
785 
786 	for (;;) {
787 		hrtimer_forward(&ts->sched_timer, now, tick_period);
788 		hrtimer_start_expires(&ts->sched_timer,
789 				      HRTIMER_MODE_ABS_PINNED);
790 		/* Check, if the timer was already in the past */
791 		if (hrtimer_active(&ts->sched_timer))
792 			break;
793 		now = ktime_get();
794 	}
795 
796 #ifdef CONFIG_NO_HZ
797 	if (tick_nohz_enabled) {
798 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
799 		printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
800 	}
801 #endif
802 }
803 #endif /* HIGH_RES_TIMERS */
804 
805 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
806 void tick_cancel_sched_timer(int cpu)
807 {
808 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
809 
810 # ifdef CONFIG_HIGH_RES_TIMERS
811 	if (ts->sched_timer.base)
812 		hrtimer_cancel(&ts->sched_timer);
813 # endif
814 
815 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
816 }
817 #endif
818 
819 /**
820  * Async notification about clocksource changes
821  */
822 void tick_clock_notify(void)
823 {
824 	int cpu;
825 
826 	for_each_possible_cpu(cpu)
827 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
828 }
829 
830 /*
831  * Async notification about clock event changes
832  */
833 void tick_oneshot_notify(void)
834 {
835 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
836 
837 	set_bit(0, &ts->check_clocks);
838 }
839 
840 /**
841  * Check, if a change happened, which makes oneshot possible.
842  *
843  * Called cyclic from the hrtimer softirq (driven by the timer
844  * softirq) allow_nohz signals, that we can switch into low-res nohz
845  * mode, because high resolution timers are disabled (either compile
846  * or runtime).
847  */
848 int tick_check_oneshot_change(int allow_nohz)
849 {
850 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
851 
852 	if (!test_and_clear_bit(0, &ts->check_clocks))
853 		return 0;
854 
855 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
856 		return 0;
857 
858 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
859 		return 0;
860 
861 	if (!allow_nohz)
862 		return 1;
863 
864 	tick_nohz_switch_to_nohz();
865 	return 0;
866 }
867