xref: /openbmc/linux/kernel/time/tick-sched.c (revision 4327b15f)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick this CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231  * is NMI safe.
232  */
233 void tick_nohz_full_kick(void)
234 {
235 	if (!tick_nohz_full_cpu(smp_processor_id()))
236 		return;
237 
238 	irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
239 }
240 
241 /*
242  * Kick the CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 	if (!tick_nohz_full_cpu(cpu))
248 		return;
249 
250 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252 
253 static void nohz_full_kick_ipi(void *info)
254 {
255 	__tick_nohz_full_check();
256 }
257 
258 /*
259  * Kick all full dynticks CPUs in order to force these to re-evaluate
260  * their dependency on the tick and restart it if necessary.
261  */
262 void tick_nohz_full_kick_all(void)
263 {
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	smp_call_function_many(tick_nohz_full_mask,
269 			       nohz_full_kick_ipi, NULL, false);
270 	tick_nohz_full_kick();
271 	preempt_enable();
272 }
273 
274 /*
275  * Re-evaluate the need for the tick as we switch the current task.
276  * It might need the tick due to per task/process properties:
277  * perf events, posix cpu timers, ...
278  */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 	unsigned long flags;
282 
283 	local_irq_save(flags);
284 
285 	if (!tick_nohz_full_cpu(smp_processor_id()))
286 		goto out;
287 
288 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 		tick_nohz_full_kick();
290 
291 out:
292 	local_irq_restore(flags);
293 }
294 
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 		free_bootmem_cpumask_var(tick_nohz_full_mask);
302 		return 1;
303 	}
304 	tick_nohz_full_running = true;
305 
306 	return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309 
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 						 unsigned long action,
312 						 void *hcpu)
313 {
314 	unsigned int cpu = (unsigned long)hcpu;
315 
316 	switch (action & ~CPU_TASKS_FROZEN) {
317 	case CPU_DOWN_PREPARE:
318 		/*
319 		 * If we handle the timekeeping duty for full dynticks CPUs,
320 		 * we can't safely shutdown that CPU.
321 		 */
322 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 			return NOTIFY_BAD;
324 		break;
325 	}
326 	return NOTIFY_OK;
327 }
328 
329 /*
330  * Worst case string length in chunks of CPU range seems 2 steps
331  * separations: 0,2,4,6,...
332  * This is NR_CPUS + sizeof('\0')
333  */
334 static char __initdata nohz_full_buf[NR_CPUS + 1];
335 
336 static int tick_nohz_init_all(void)
337 {
338 	int err = -1;
339 
340 #ifdef CONFIG_NO_HZ_FULL_ALL
341 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
342 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
343 		return err;
344 	}
345 	err = 0;
346 	cpumask_setall(tick_nohz_full_mask);
347 	tick_nohz_full_running = true;
348 #endif
349 	return err;
350 }
351 
352 void __init tick_nohz_init(void)
353 {
354 	int cpu;
355 
356 	if (!tick_nohz_full_running) {
357 		if (tick_nohz_init_all() < 0)
358 			return;
359 	}
360 
361 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
362 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
363 		cpumask_clear(tick_nohz_full_mask);
364 		tick_nohz_full_running = false;
365 		return;
366 	}
367 
368 	cpu = smp_processor_id();
369 
370 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
371 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
372 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
373 	}
374 
375 	cpumask_andnot(housekeeping_mask,
376 		       cpu_possible_mask, tick_nohz_full_mask);
377 
378 	for_each_cpu(cpu, tick_nohz_full_mask)
379 		context_tracking_cpu_set(cpu);
380 
381 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
382 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
383 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
384 }
385 #endif
386 
387 /*
388  * NOHZ - aka dynamic tick functionality
389  */
390 #ifdef CONFIG_NO_HZ_COMMON
391 /*
392  * NO HZ enabled ?
393  */
394 static int tick_nohz_enabled __read_mostly  = 1;
395 int tick_nohz_active  __read_mostly;
396 /*
397  * Enable / Disable tickless mode
398  */
399 static int __init setup_tick_nohz(char *str)
400 {
401 	if (!strcmp(str, "off"))
402 		tick_nohz_enabled = 0;
403 	else if (!strcmp(str, "on"))
404 		tick_nohz_enabled = 1;
405 	else
406 		return 0;
407 	return 1;
408 }
409 
410 __setup("nohz=", setup_tick_nohz);
411 
412 /**
413  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
414  *
415  * Called from interrupt entry when the CPU was idle
416  *
417  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
418  * must be updated. Otherwise an interrupt handler could use a stale jiffy
419  * value. We do this unconditionally on any cpu, as we don't know whether the
420  * cpu, which has the update task assigned is in a long sleep.
421  */
422 static void tick_nohz_update_jiffies(ktime_t now)
423 {
424 	unsigned long flags;
425 
426 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
427 
428 	local_irq_save(flags);
429 	tick_do_update_jiffies64(now);
430 	local_irq_restore(flags);
431 
432 	touch_softlockup_watchdog();
433 }
434 
435 /*
436  * Updates the per cpu time idle statistics counters
437  */
438 static void
439 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
440 {
441 	ktime_t delta;
442 
443 	if (ts->idle_active) {
444 		delta = ktime_sub(now, ts->idle_entrytime);
445 		if (nr_iowait_cpu(cpu) > 0)
446 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
447 		else
448 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
449 		ts->idle_entrytime = now;
450 	}
451 
452 	if (last_update_time)
453 		*last_update_time = ktime_to_us(now);
454 
455 }
456 
457 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
458 {
459 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
460 	ts->idle_active = 0;
461 
462 	sched_clock_idle_wakeup_event(0);
463 }
464 
465 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
466 {
467 	ktime_t now = ktime_get();
468 
469 	ts->idle_entrytime = now;
470 	ts->idle_active = 1;
471 	sched_clock_idle_sleep_event();
472 	return now;
473 }
474 
475 /**
476  * get_cpu_idle_time_us - get the total idle time of a cpu
477  * @cpu: CPU number to query
478  * @last_update_time: variable to store update time in. Do not update
479  * counters if NULL.
480  *
481  * Return the cummulative idle time (since boot) for a given
482  * CPU, in microseconds.
483  *
484  * This time is measured via accounting rather than sampling,
485  * and is as accurate as ktime_get() is.
486  *
487  * This function returns -1 if NOHZ is not enabled.
488  */
489 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
490 {
491 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
492 	ktime_t now, idle;
493 
494 	if (!tick_nohz_active)
495 		return -1;
496 
497 	now = ktime_get();
498 	if (last_update_time) {
499 		update_ts_time_stats(cpu, ts, now, last_update_time);
500 		idle = ts->idle_sleeptime;
501 	} else {
502 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
503 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
504 
505 			idle = ktime_add(ts->idle_sleeptime, delta);
506 		} else {
507 			idle = ts->idle_sleeptime;
508 		}
509 	}
510 
511 	return ktime_to_us(idle);
512 
513 }
514 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
515 
516 /**
517  * get_cpu_iowait_time_us - get the total iowait time of a cpu
518  * @cpu: CPU number to query
519  * @last_update_time: variable to store update time in. Do not update
520  * counters if NULL.
521  *
522  * Return the cummulative iowait time (since boot) for a given
523  * CPU, in microseconds.
524  *
525  * This time is measured via accounting rather than sampling,
526  * and is as accurate as ktime_get() is.
527  *
528  * This function returns -1 if NOHZ is not enabled.
529  */
530 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
531 {
532 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
533 	ktime_t now, iowait;
534 
535 	if (!tick_nohz_active)
536 		return -1;
537 
538 	now = ktime_get();
539 	if (last_update_time) {
540 		update_ts_time_stats(cpu, ts, now, last_update_time);
541 		iowait = ts->iowait_sleeptime;
542 	} else {
543 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
544 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
545 
546 			iowait = ktime_add(ts->iowait_sleeptime, delta);
547 		} else {
548 			iowait = ts->iowait_sleeptime;
549 		}
550 	}
551 
552 	return ktime_to_us(iowait);
553 }
554 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
555 
556 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
557 					 ktime_t now, int cpu)
558 {
559 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
560 	ktime_t last_update, expires, ret = { .tv64 = 0 };
561 	unsigned long rcu_delta_jiffies;
562 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
563 	u64 time_delta;
564 
565 	time_delta = timekeeping_max_deferment();
566 
567 	/* Read jiffies and the time when jiffies were updated last */
568 	do {
569 		seq = read_seqbegin(&jiffies_lock);
570 		last_update = last_jiffies_update;
571 		last_jiffies = jiffies;
572 	} while (read_seqretry(&jiffies_lock, seq));
573 
574 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
575 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
576 		next_jiffies = last_jiffies + 1;
577 		delta_jiffies = 1;
578 	} else {
579 		/* Get the next timer wheel timer */
580 		next_jiffies = get_next_timer_interrupt(last_jiffies);
581 		delta_jiffies = next_jiffies - last_jiffies;
582 		if (rcu_delta_jiffies < delta_jiffies) {
583 			next_jiffies = last_jiffies + rcu_delta_jiffies;
584 			delta_jiffies = rcu_delta_jiffies;
585 		}
586 	}
587 
588 	/*
589 	 * Do not stop the tick, if we are only one off (or less)
590 	 * or if the cpu is required for RCU:
591 	 */
592 	if (!ts->tick_stopped && delta_jiffies <= 1)
593 		goto out;
594 
595 	/* Schedule the tick, if we are at least one jiffie off */
596 	if ((long)delta_jiffies >= 1) {
597 
598 		/*
599 		 * If this cpu is the one which updates jiffies, then
600 		 * give up the assignment and let it be taken by the
601 		 * cpu which runs the tick timer next, which might be
602 		 * this cpu as well. If we don't drop this here the
603 		 * jiffies might be stale and do_timer() never
604 		 * invoked. Keep track of the fact that it was the one
605 		 * which had the do_timer() duty last. If this cpu is
606 		 * the one which had the do_timer() duty last, we
607 		 * limit the sleep time to the timekeeping
608 		 * max_deferement value which we retrieved
609 		 * above. Otherwise we can sleep as long as we want.
610 		 */
611 		if (cpu == tick_do_timer_cpu) {
612 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
613 			ts->do_timer_last = 1;
614 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
615 			time_delta = KTIME_MAX;
616 			ts->do_timer_last = 0;
617 		} else if (!ts->do_timer_last) {
618 			time_delta = KTIME_MAX;
619 		}
620 
621 #ifdef CONFIG_NO_HZ_FULL
622 		if (!ts->inidle) {
623 			time_delta = min(time_delta,
624 					 scheduler_tick_max_deferment());
625 		}
626 #endif
627 
628 		/*
629 		 * calculate the expiry time for the next timer wheel
630 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
631 		 * that there is no timer pending or at least extremely
632 		 * far into the future (12 days for HZ=1000). In this
633 		 * case we set the expiry to the end of time.
634 		 */
635 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
636 			/*
637 			 * Calculate the time delta for the next timer event.
638 			 * If the time delta exceeds the maximum time delta
639 			 * permitted by the current clocksource then adjust
640 			 * the time delta accordingly to ensure the
641 			 * clocksource does not wrap.
642 			 */
643 			time_delta = min_t(u64, time_delta,
644 					   tick_period.tv64 * delta_jiffies);
645 		}
646 
647 		if (time_delta < KTIME_MAX)
648 			expires = ktime_add_ns(last_update, time_delta);
649 		else
650 			expires.tv64 = KTIME_MAX;
651 
652 		/* Skip reprogram of event if its not changed */
653 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
654 			goto out;
655 
656 		ret = expires;
657 
658 		/*
659 		 * nohz_stop_sched_tick can be called several times before
660 		 * the nohz_restart_sched_tick is called. This happens when
661 		 * interrupts arrive which do not cause a reschedule. In the
662 		 * first call we save the current tick time, so we can restart
663 		 * the scheduler tick in nohz_restart_sched_tick.
664 		 */
665 		if (!ts->tick_stopped) {
666 			nohz_balance_enter_idle(cpu);
667 			calc_load_enter_idle();
668 
669 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
670 			ts->tick_stopped = 1;
671 			trace_tick_stop(1, " ");
672 		}
673 
674 		/*
675 		 * If the expiration time == KTIME_MAX, then
676 		 * in this case we simply stop the tick timer.
677 		 */
678 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
679 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
680 				hrtimer_cancel(&ts->sched_timer);
681 			goto out;
682 		}
683 
684 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
685 			hrtimer_start(&ts->sched_timer, expires,
686 				      HRTIMER_MODE_ABS_PINNED);
687 			/* Check, if the timer was already in the past */
688 			if (hrtimer_active(&ts->sched_timer))
689 				goto out;
690 		} else if (!tick_program_event(expires, 0))
691 				goto out;
692 		/*
693 		 * We are past the event already. So we crossed a
694 		 * jiffie boundary. Update jiffies and raise the
695 		 * softirq.
696 		 */
697 		tick_do_update_jiffies64(ktime_get());
698 	}
699 	raise_softirq_irqoff(TIMER_SOFTIRQ);
700 out:
701 	ts->next_jiffies = next_jiffies;
702 	ts->last_jiffies = last_jiffies;
703 	ts->sleep_length = ktime_sub(dev->next_event, now);
704 
705 	return ret;
706 }
707 
708 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
709 {
710 #ifdef CONFIG_NO_HZ_FULL
711 	int cpu = smp_processor_id();
712 
713 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
714 		return;
715 
716 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
717 		return;
718 
719 	if (!can_stop_full_tick())
720 		return;
721 
722 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
723 #endif
724 }
725 
726 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
727 {
728 	/*
729 	 * If this cpu is offline and it is the one which updates
730 	 * jiffies, then give up the assignment and let it be taken by
731 	 * the cpu which runs the tick timer next. If we don't drop
732 	 * this here the jiffies might be stale and do_timer() never
733 	 * invoked.
734 	 */
735 	if (unlikely(!cpu_online(cpu))) {
736 		if (cpu == tick_do_timer_cpu)
737 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
738 		return false;
739 	}
740 
741 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
742 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
743 		return false;
744 	}
745 
746 	if (need_resched())
747 		return false;
748 
749 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
750 		static int ratelimit;
751 
752 		if (ratelimit < 10 &&
753 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
754 			pr_warn("NOHZ: local_softirq_pending %02x\n",
755 				(unsigned int) local_softirq_pending());
756 			ratelimit++;
757 		}
758 		return false;
759 	}
760 
761 	if (tick_nohz_full_enabled()) {
762 		/*
763 		 * Keep the tick alive to guarantee timekeeping progression
764 		 * if there are full dynticks CPUs around
765 		 */
766 		if (tick_do_timer_cpu == cpu)
767 			return false;
768 		/*
769 		 * Boot safety: make sure the timekeeping duty has been
770 		 * assigned before entering dyntick-idle mode,
771 		 */
772 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
773 			return false;
774 	}
775 
776 	return true;
777 }
778 
779 static void __tick_nohz_idle_enter(struct tick_sched *ts)
780 {
781 	ktime_t now, expires;
782 	int cpu = smp_processor_id();
783 
784 	now = tick_nohz_start_idle(ts);
785 
786 	if (can_stop_idle_tick(cpu, ts)) {
787 		int was_stopped = ts->tick_stopped;
788 
789 		ts->idle_calls++;
790 
791 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
792 		if (expires.tv64 > 0LL) {
793 			ts->idle_sleeps++;
794 			ts->idle_expires = expires;
795 		}
796 
797 		if (!was_stopped && ts->tick_stopped)
798 			ts->idle_jiffies = ts->last_jiffies;
799 	}
800 }
801 
802 /**
803  * tick_nohz_idle_enter - stop the idle tick from the idle task
804  *
805  * When the next event is more than a tick into the future, stop the idle tick
806  * Called when we start the idle loop.
807  *
808  * The arch is responsible of calling:
809  *
810  * - rcu_idle_enter() after its last use of RCU before the CPU is put
811  *  to sleep.
812  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
813  */
814 void tick_nohz_idle_enter(void)
815 {
816 	struct tick_sched *ts;
817 
818 	WARN_ON_ONCE(irqs_disabled());
819 
820 	/*
821  	 * Update the idle state in the scheduler domain hierarchy
822  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
823  	 * State will be updated to busy during the first busy tick after
824  	 * exiting idle.
825  	 */
826 	set_cpu_sd_state_idle();
827 
828 	local_irq_disable();
829 
830 	ts = &__get_cpu_var(tick_cpu_sched);
831 	ts->inidle = 1;
832 	__tick_nohz_idle_enter(ts);
833 
834 	local_irq_enable();
835 }
836 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
837 
838 /**
839  * tick_nohz_irq_exit - update next tick event from interrupt exit
840  *
841  * When an interrupt fires while we are idle and it doesn't cause
842  * a reschedule, it may still add, modify or delete a timer, enqueue
843  * an RCU callback, etc...
844  * So we need to re-calculate and reprogram the next tick event.
845  */
846 void tick_nohz_irq_exit(void)
847 {
848 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
849 
850 	if (ts->inidle)
851 		__tick_nohz_idle_enter(ts);
852 	else
853 		tick_nohz_full_stop_tick(ts);
854 }
855 
856 /**
857  * tick_nohz_get_sleep_length - return the length of the current sleep
858  *
859  * Called from power state control code with interrupts disabled
860  */
861 ktime_t tick_nohz_get_sleep_length(void)
862 {
863 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
864 
865 	return ts->sleep_length;
866 }
867 
868 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
869 {
870 	hrtimer_cancel(&ts->sched_timer);
871 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
872 
873 	while (1) {
874 		/* Forward the time to expire in the future */
875 		hrtimer_forward(&ts->sched_timer, now, tick_period);
876 
877 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
878 			hrtimer_start_expires(&ts->sched_timer,
879 					      HRTIMER_MODE_ABS_PINNED);
880 			/* Check, if the timer was already in the past */
881 			if (hrtimer_active(&ts->sched_timer))
882 				break;
883 		} else {
884 			if (!tick_program_event(
885 				hrtimer_get_expires(&ts->sched_timer), 0))
886 				break;
887 		}
888 		/* Reread time and update jiffies */
889 		now = ktime_get();
890 		tick_do_update_jiffies64(now);
891 	}
892 }
893 
894 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
895 {
896 	/* Update jiffies first */
897 	tick_do_update_jiffies64(now);
898 	update_cpu_load_nohz();
899 
900 	calc_load_exit_idle();
901 	touch_softlockup_watchdog();
902 	/*
903 	 * Cancel the scheduled timer and restore the tick
904 	 */
905 	ts->tick_stopped  = 0;
906 	ts->idle_exittime = now;
907 
908 	tick_nohz_restart(ts, now);
909 }
910 
911 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
912 {
913 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
914 	unsigned long ticks;
915 
916 	if (vtime_accounting_enabled())
917 		return;
918 	/*
919 	 * We stopped the tick in idle. Update process times would miss the
920 	 * time we slept as update_process_times does only a 1 tick
921 	 * accounting. Enforce that this is accounted to idle !
922 	 */
923 	ticks = jiffies - ts->idle_jiffies;
924 	/*
925 	 * We might be one off. Do not randomly account a huge number of ticks!
926 	 */
927 	if (ticks && ticks < LONG_MAX)
928 		account_idle_ticks(ticks);
929 #endif
930 }
931 
932 /**
933  * tick_nohz_idle_exit - restart the idle tick from the idle task
934  *
935  * Restart the idle tick when the CPU is woken up from idle
936  * This also exit the RCU extended quiescent state. The CPU
937  * can use RCU again after this function is called.
938  */
939 void tick_nohz_idle_exit(void)
940 {
941 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
942 	ktime_t now;
943 
944 	local_irq_disable();
945 
946 	WARN_ON_ONCE(!ts->inidle);
947 
948 	ts->inidle = 0;
949 
950 	if (ts->idle_active || ts->tick_stopped)
951 		now = ktime_get();
952 
953 	if (ts->idle_active)
954 		tick_nohz_stop_idle(ts, now);
955 
956 	if (ts->tick_stopped) {
957 		tick_nohz_restart_sched_tick(ts, now);
958 		tick_nohz_account_idle_ticks(ts);
959 	}
960 
961 	local_irq_enable();
962 }
963 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
964 
965 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
966 {
967 	hrtimer_forward(&ts->sched_timer, now, tick_period);
968 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
969 }
970 
971 /*
972  * The nohz low res interrupt handler
973  */
974 static void tick_nohz_handler(struct clock_event_device *dev)
975 {
976 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
977 	struct pt_regs *regs = get_irq_regs();
978 	ktime_t now = ktime_get();
979 
980 	dev->next_event.tv64 = KTIME_MAX;
981 
982 	tick_sched_do_timer(now);
983 	tick_sched_handle(ts, regs);
984 
985 	while (tick_nohz_reprogram(ts, now)) {
986 		now = ktime_get();
987 		tick_do_update_jiffies64(now);
988 	}
989 }
990 
991 /**
992  * tick_nohz_switch_to_nohz - switch to nohz mode
993  */
994 static void tick_nohz_switch_to_nohz(void)
995 {
996 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
997 	ktime_t next;
998 
999 	if (!tick_nohz_enabled)
1000 		return;
1001 
1002 	local_irq_disable();
1003 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
1004 		local_irq_enable();
1005 		return;
1006 	}
1007 	tick_nohz_active = 1;
1008 	ts->nohz_mode = NOHZ_MODE_LOWRES;
1009 
1010 	/*
1011 	 * Recycle the hrtimer in ts, so we can share the
1012 	 * hrtimer_forward with the highres code.
1013 	 */
1014 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1015 	/* Get the next period */
1016 	next = tick_init_jiffy_update();
1017 
1018 	for (;;) {
1019 		hrtimer_set_expires(&ts->sched_timer, next);
1020 		if (!tick_program_event(next, 0))
1021 			break;
1022 		next = ktime_add(next, tick_period);
1023 	}
1024 	local_irq_enable();
1025 }
1026 
1027 /*
1028  * When NOHZ is enabled and the tick is stopped, we need to kick the
1029  * tick timer from irq_enter() so that the jiffies update is kept
1030  * alive during long running softirqs. That's ugly as hell, but
1031  * correctness is key even if we need to fix the offending softirq in
1032  * the first place.
1033  *
1034  * Note, this is different to tick_nohz_restart. We just kick the
1035  * timer and do not touch the other magic bits which need to be done
1036  * when idle is left.
1037  */
1038 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1039 {
1040 #if 0
1041 	/* Switch back to 2.6.27 behaviour */
1042 	ktime_t delta;
1043 
1044 	/*
1045 	 * Do not touch the tick device, when the next expiry is either
1046 	 * already reached or less/equal than the tick period.
1047 	 */
1048 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1049 	if (delta.tv64 <= tick_period.tv64)
1050 		return;
1051 
1052 	tick_nohz_restart(ts, now);
1053 #endif
1054 }
1055 
1056 static inline void tick_nohz_irq_enter(void)
1057 {
1058 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1059 	ktime_t now;
1060 
1061 	if (!ts->idle_active && !ts->tick_stopped)
1062 		return;
1063 	now = ktime_get();
1064 	if (ts->idle_active)
1065 		tick_nohz_stop_idle(ts, now);
1066 	if (ts->tick_stopped) {
1067 		tick_nohz_update_jiffies(now);
1068 		tick_nohz_kick_tick(ts, now);
1069 	}
1070 }
1071 
1072 #else
1073 
1074 static inline void tick_nohz_switch_to_nohz(void) { }
1075 static inline void tick_nohz_irq_enter(void) { }
1076 
1077 #endif /* CONFIG_NO_HZ_COMMON */
1078 
1079 /*
1080  * Called from irq_enter to notify about the possible interruption of idle()
1081  */
1082 void tick_irq_enter(void)
1083 {
1084 	tick_check_oneshot_broadcast_this_cpu();
1085 	tick_nohz_irq_enter();
1086 }
1087 
1088 /*
1089  * High resolution timer specific code
1090  */
1091 #ifdef CONFIG_HIGH_RES_TIMERS
1092 /*
1093  * We rearm the timer until we get disabled by the idle code.
1094  * Called with interrupts disabled.
1095  */
1096 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1097 {
1098 	struct tick_sched *ts =
1099 		container_of(timer, struct tick_sched, sched_timer);
1100 	struct pt_regs *regs = get_irq_regs();
1101 	ktime_t now = ktime_get();
1102 
1103 	tick_sched_do_timer(now);
1104 
1105 	/*
1106 	 * Do not call, when we are not in irq context and have
1107 	 * no valid regs pointer
1108 	 */
1109 	if (regs)
1110 		tick_sched_handle(ts, regs);
1111 
1112 	hrtimer_forward(timer, now, tick_period);
1113 
1114 	return HRTIMER_RESTART;
1115 }
1116 
1117 static int sched_skew_tick;
1118 
1119 static int __init skew_tick(char *str)
1120 {
1121 	get_option(&str, &sched_skew_tick);
1122 
1123 	return 0;
1124 }
1125 early_param("skew_tick", skew_tick);
1126 
1127 /**
1128  * tick_setup_sched_timer - setup the tick emulation timer
1129  */
1130 void tick_setup_sched_timer(void)
1131 {
1132 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1133 	ktime_t now = ktime_get();
1134 
1135 	/*
1136 	 * Emulate tick processing via per-CPU hrtimers:
1137 	 */
1138 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1139 	ts->sched_timer.function = tick_sched_timer;
1140 
1141 	/* Get the next period (per cpu) */
1142 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1143 
1144 	/* Offset the tick to avert jiffies_lock contention. */
1145 	if (sched_skew_tick) {
1146 		u64 offset = ktime_to_ns(tick_period) >> 1;
1147 		do_div(offset, num_possible_cpus());
1148 		offset *= smp_processor_id();
1149 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1150 	}
1151 
1152 	for (;;) {
1153 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1154 		hrtimer_start_expires(&ts->sched_timer,
1155 				      HRTIMER_MODE_ABS_PINNED);
1156 		/* Check, if the timer was already in the past */
1157 		if (hrtimer_active(&ts->sched_timer))
1158 			break;
1159 		now = ktime_get();
1160 	}
1161 
1162 #ifdef CONFIG_NO_HZ_COMMON
1163 	if (tick_nohz_enabled) {
1164 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1165 		tick_nohz_active = 1;
1166 	}
1167 #endif
1168 }
1169 #endif /* HIGH_RES_TIMERS */
1170 
1171 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1172 void tick_cancel_sched_timer(int cpu)
1173 {
1174 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1175 
1176 # ifdef CONFIG_HIGH_RES_TIMERS
1177 	if (ts->sched_timer.base)
1178 		hrtimer_cancel(&ts->sched_timer);
1179 # endif
1180 
1181 	memset(ts, 0, sizeof(*ts));
1182 }
1183 #endif
1184 
1185 /**
1186  * Async notification about clocksource changes
1187  */
1188 void tick_clock_notify(void)
1189 {
1190 	int cpu;
1191 
1192 	for_each_possible_cpu(cpu)
1193 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1194 }
1195 
1196 /*
1197  * Async notification about clock event changes
1198  */
1199 void tick_oneshot_notify(void)
1200 {
1201 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1202 
1203 	set_bit(0, &ts->check_clocks);
1204 }
1205 
1206 /**
1207  * Check, if a change happened, which makes oneshot possible.
1208  *
1209  * Called cyclic from the hrtimer softirq (driven by the timer
1210  * softirq) allow_nohz signals, that we can switch into low-res nohz
1211  * mode, because high resolution timers are disabled (either compile
1212  * or runtime).
1213  */
1214 int tick_check_oneshot_change(int allow_nohz)
1215 {
1216 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1217 
1218 	if (!test_and_clear_bit(0, &ts->check_clocks))
1219 		return 0;
1220 
1221 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1222 		return 0;
1223 
1224 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1225 		return 0;
1226 
1227 	if (!allow_nohz)
1228 		return 1;
1229 
1230 	tick_nohz_switch_to_nohz();
1231 	return 0;
1232 }
1233