xref: /openbmc/linux/kernel/time/tick-sched.c (revision 411fe24e)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49  * The time, when the last jiffy update happened. Protected by jiffies_lock.
50  */
51 static ktime_t last_jiffies_update;
52 
53 /*
54  * Must be called with interrupts disabled !
55  */
56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 	unsigned long ticks = 0;
59 	ktime_t delta;
60 
61 	/*
62 	 * Do a quick check without holding jiffies_lock:
63 	 */
64 	delta = ktime_sub(now, last_jiffies_update);
65 	if (delta < tick_period)
66 		return;
67 
68 	/* Reevaluate with jiffies_lock held */
69 	write_seqlock(&jiffies_lock);
70 
71 	delta = ktime_sub(now, last_jiffies_update);
72 	if (delta >= tick_period) {
73 
74 		delta = ktime_sub(delta, tick_period);
75 		last_jiffies_update = ktime_add(last_jiffies_update,
76 						tick_period);
77 
78 		/* Slow path for long timeouts */
79 		if (unlikely(delta >= tick_period)) {
80 			s64 incr = ktime_to_ns(tick_period);
81 
82 			ticks = ktime_divns(delta, incr);
83 
84 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 							   incr * ticks);
86 		}
87 		do_timer(++ticks);
88 
89 		/* Keep the tick_next_period variable up to date */
90 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 	} else {
92 		write_sequnlock(&jiffies_lock);
93 		return;
94 	}
95 	write_sequnlock(&jiffies_lock);
96 	update_wall_time();
97 }
98 
99 /*
100  * Initialize and return retrieve the jiffies update.
101  */
102 static ktime_t tick_init_jiffy_update(void)
103 {
104 	ktime_t period;
105 
106 	write_seqlock(&jiffies_lock);
107 	/* Did we start the jiffies update yet ? */
108 	if (last_jiffies_update == 0)
109 		last_jiffies_update = tick_next_period;
110 	period = last_jiffies_update;
111 	write_sequnlock(&jiffies_lock);
112 	return period;
113 }
114 
115 
116 static void tick_sched_do_timer(ktime_t now)
117 {
118 	int cpu = smp_processor_id();
119 
120 #ifdef CONFIG_NO_HZ_COMMON
121 	/*
122 	 * Check if the do_timer duty was dropped. We don't care about
123 	 * concurrency: This happens only when the CPU in charge went
124 	 * into a long sleep. If two CPUs happen to assign themselves to
125 	 * this duty, then the jiffies update is still serialized by
126 	 * jiffies_lock.
127 	 */
128 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 	    && !tick_nohz_full_cpu(cpu))
130 		tick_do_timer_cpu = cpu;
131 #endif
132 
133 	/* Check, if the jiffies need an update */
134 	if (tick_do_timer_cpu == cpu)
135 		tick_do_update_jiffies64(now);
136 }
137 
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139 {
140 #ifdef CONFIG_NO_HZ_COMMON
141 	/*
142 	 * When we are idle and the tick is stopped, we have to touch
143 	 * the watchdog as we might not schedule for a really long
144 	 * time. This happens on complete idle SMP systems while
145 	 * waiting on the login prompt. We also increment the "start of
146 	 * idle" jiffy stamp so the idle accounting adjustment we do
147 	 * when we go busy again does not account too much ticks.
148 	 */
149 	if (ts->tick_stopped) {
150 		touch_softlockup_watchdog_sched();
151 		if (is_idle_task(current))
152 			ts->idle_jiffies++;
153 		/*
154 		 * In case the current tick fired too early past its expected
155 		 * expiration, make sure we don't bypass the next clock reprogramming
156 		 * to the same deadline.
157 		 */
158 		ts->next_tick = 0;
159 	}
160 #endif
161 	update_process_times(user_mode(regs));
162 	profile_tick(CPU_PROFILING);
163 }
164 #endif
165 
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask;
168 cpumask_var_t housekeeping_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	WARN_ON_ONCE(!irqs_disabled());
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Parse the boot-time nohz CPU list from the kernel parameters. */
389 static int __init tick_nohz_full_setup(char *str)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
393 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
394 		free_bootmem_cpumask_var(tick_nohz_full_mask);
395 		return 1;
396 	}
397 	tick_nohz_full_running = true;
398 
399 	return 1;
400 }
401 __setup("nohz_full=", tick_nohz_full_setup);
402 
403 static int tick_nohz_cpu_down(unsigned int cpu)
404 {
405 	/*
406 	 * The boot CPU handles housekeeping duty (unbound timers,
407 	 * workqueues, timekeeping, ...) on behalf of full dynticks
408 	 * CPUs. It must remain online when nohz full is enabled.
409 	 */
410 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
411 		return -EBUSY;
412 	return 0;
413 }
414 
415 static int tick_nohz_init_all(void)
416 {
417 	int err = -1;
418 
419 #ifdef CONFIG_NO_HZ_FULL_ALL
420 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
421 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
422 		return err;
423 	}
424 	err = 0;
425 	cpumask_setall(tick_nohz_full_mask);
426 	tick_nohz_full_running = true;
427 #endif
428 	return err;
429 }
430 
431 void __init tick_nohz_init(void)
432 {
433 	int cpu, ret;
434 
435 	if (!tick_nohz_full_running) {
436 		if (tick_nohz_init_all() < 0)
437 			return;
438 	}
439 
440 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
441 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
442 		cpumask_clear(tick_nohz_full_mask);
443 		tick_nohz_full_running = false;
444 		return;
445 	}
446 
447 	/*
448 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
449 	 * locking contexts. But then we need irq work to raise its own
450 	 * interrupts to avoid circular dependency on the tick
451 	 */
452 	if (!arch_irq_work_has_interrupt()) {
453 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
454 		cpumask_clear(tick_nohz_full_mask);
455 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
456 		tick_nohz_full_running = false;
457 		return;
458 	}
459 
460 	cpu = smp_processor_id();
461 
462 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
463 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
464 			cpu);
465 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
466 	}
467 
468 	cpumask_andnot(housekeeping_mask,
469 		       cpu_possible_mask, tick_nohz_full_mask);
470 
471 	for_each_cpu(cpu, tick_nohz_full_mask)
472 		context_tracking_cpu_set(cpu);
473 
474 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
475 					"kernel/nohz:predown", NULL,
476 					tick_nohz_cpu_down);
477 	WARN_ON(ret < 0);
478 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 		cpumask_pr_args(tick_nohz_full_mask));
480 
481 	/*
482 	 * We need at least one CPU to handle housekeeping work such
483 	 * as timekeeping, unbound timers, workqueues, ...
484 	 */
485 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
486 }
487 #endif
488 
489 /*
490  * NOHZ - aka dynamic tick functionality
491  */
492 #ifdef CONFIG_NO_HZ_COMMON
493 /*
494  * NO HZ enabled ?
495  */
496 bool tick_nohz_enabled __read_mostly  = true;
497 unsigned long tick_nohz_active  __read_mostly;
498 /*
499  * Enable / Disable tickless mode
500  */
501 static int __init setup_tick_nohz(char *str)
502 {
503 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
504 }
505 
506 __setup("nohz=", setup_tick_nohz);
507 
508 int tick_nohz_tick_stopped(void)
509 {
510 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
511 }
512 
513 /**
514  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
515  *
516  * Called from interrupt entry when the CPU was idle
517  *
518  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
519  * must be updated. Otherwise an interrupt handler could use a stale jiffy
520  * value. We do this unconditionally on any CPU, as we don't know whether the
521  * CPU, which has the update task assigned is in a long sleep.
522  */
523 static void tick_nohz_update_jiffies(ktime_t now)
524 {
525 	unsigned long flags;
526 
527 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
528 
529 	local_irq_save(flags);
530 	tick_do_update_jiffies64(now);
531 	local_irq_restore(flags);
532 
533 	touch_softlockup_watchdog_sched();
534 }
535 
536 /*
537  * Updates the per-CPU time idle statistics counters
538  */
539 static void
540 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
541 {
542 	ktime_t delta;
543 
544 	if (ts->idle_active) {
545 		delta = ktime_sub(now, ts->idle_entrytime);
546 		if (nr_iowait_cpu(cpu) > 0)
547 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
548 		else
549 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
550 		ts->idle_entrytime = now;
551 	}
552 
553 	if (last_update_time)
554 		*last_update_time = ktime_to_us(now);
555 
556 }
557 
558 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
559 {
560 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
561 	ts->idle_active = 0;
562 
563 	sched_clock_idle_wakeup_event(0);
564 }
565 
566 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
567 {
568 	ktime_t now = ktime_get();
569 
570 	ts->idle_entrytime = now;
571 	ts->idle_active = 1;
572 	sched_clock_idle_sleep_event();
573 	return now;
574 }
575 
576 /**
577  * get_cpu_idle_time_us - get the total idle time of a CPU
578  * @cpu: CPU number to query
579  * @last_update_time: variable to store update time in. Do not update
580  * counters if NULL.
581  *
582  * Return the cumulative idle time (since boot) for a given
583  * CPU, in microseconds.
584  *
585  * This time is measured via accounting rather than sampling,
586  * and is as accurate as ktime_get() is.
587  *
588  * This function returns -1 if NOHZ is not enabled.
589  */
590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
591 {
592 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 	ktime_t now, idle;
594 
595 	if (!tick_nohz_active)
596 		return -1;
597 
598 	now = ktime_get();
599 	if (last_update_time) {
600 		update_ts_time_stats(cpu, ts, now, last_update_time);
601 		idle = ts->idle_sleeptime;
602 	} else {
603 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
604 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
605 
606 			idle = ktime_add(ts->idle_sleeptime, delta);
607 		} else {
608 			idle = ts->idle_sleeptime;
609 		}
610 	}
611 
612 	return ktime_to_us(idle);
613 
614 }
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
616 
617 /**
618  * get_cpu_iowait_time_us - get the total iowait time of a CPU
619  * @cpu: CPU number to query
620  * @last_update_time: variable to store update time in. Do not update
621  * counters if NULL.
622  *
623  * Return the cumulative iowait time (since boot) for a given
624  * CPU, in microseconds.
625  *
626  * This time is measured via accounting rather than sampling,
627  * and is as accurate as ktime_get() is.
628  *
629  * This function returns -1 if NOHZ is not enabled.
630  */
631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
632 {
633 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 	ktime_t now, iowait;
635 
636 	if (!tick_nohz_active)
637 		return -1;
638 
639 	now = ktime_get();
640 	if (last_update_time) {
641 		update_ts_time_stats(cpu, ts, now, last_update_time);
642 		iowait = ts->iowait_sleeptime;
643 	} else {
644 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
645 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
646 
647 			iowait = ktime_add(ts->iowait_sleeptime, delta);
648 		} else {
649 			iowait = ts->iowait_sleeptime;
650 		}
651 	}
652 
653 	return ktime_to_us(iowait);
654 }
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
656 
657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
658 {
659 	hrtimer_cancel(&ts->sched_timer);
660 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
661 
662 	/* Forward the time to expire in the future */
663 	hrtimer_forward(&ts->sched_timer, now, tick_period);
664 
665 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
667 	else
668 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
669 
670 	/*
671 	 * Reset to make sure next tick stop doesn't get fooled by past
672 	 * cached clock deadline.
673 	 */
674 	ts->next_tick = 0;
675 }
676 
677 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
678 					 ktime_t now, int cpu)
679 {
680 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
681 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
682 	unsigned long seq, basejiff;
683 	ktime_t	tick;
684 
685 	/* Read jiffies and the time when jiffies were updated last */
686 	do {
687 		seq = read_seqbegin(&jiffies_lock);
688 		basemono = last_jiffies_update;
689 		basejiff = jiffies;
690 	} while (read_seqretry(&jiffies_lock, seq));
691 	ts->last_jiffies = basejiff;
692 
693 	if (rcu_needs_cpu(basemono, &next_rcu) ||
694 	    arch_needs_cpu() || irq_work_needs_cpu()) {
695 		next_tick = basemono + TICK_NSEC;
696 	} else {
697 		/*
698 		 * Get the next pending timer. If high resolution
699 		 * timers are enabled this only takes the timer wheel
700 		 * timers into account. If high resolution timers are
701 		 * disabled this also looks at the next expiring
702 		 * hrtimer.
703 		 */
704 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
705 		ts->next_timer = next_tmr;
706 		/* Take the next rcu event into account */
707 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
708 	}
709 
710 	/*
711 	 * If the tick is due in the next period, keep it ticking or
712 	 * force prod the timer.
713 	 */
714 	delta = next_tick - basemono;
715 	if (delta <= (u64)TICK_NSEC) {
716 		tick = 0;
717 
718 		/*
719 		 * Tell the timer code that the base is not idle, i.e. undo
720 		 * the effect of get_next_timer_interrupt():
721 		 */
722 		timer_clear_idle();
723 		/*
724 		 * We've not stopped the tick yet, and there's a timer in the
725 		 * next period, so no point in stopping it either, bail.
726 		 */
727 		if (!ts->tick_stopped)
728 			goto out;
729 
730 		/*
731 		 * If, OTOH, we did stop it, but there's a pending (expired)
732 		 * timer reprogram the timer hardware to fire now.
733 		 *
734 		 * We will not restart the tick proper, just prod the timer
735 		 * hardware into firing an interrupt to process the pending
736 		 * timers. Just like tick_irq_exit() will not restart the tick
737 		 * for 'normal' interrupts.
738 		 *
739 		 * Only once we exit the idle loop will we re-enable the tick,
740 		 * see tick_nohz_idle_exit().
741 		 */
742 		if (delta == 0) {
743 			tick_nohz_restart(ts, now);
744 			goto out;
745 		}
746 	}
747 
748 	/*
749 	 * If this CPU is the one which updates jiffies, then give up
750 	 * the assignment and let it be taken by the CPU which runs
751 	 * the tick timer next, which might be this CPU as well. If we
752 	 * don't drop this here the jiffies might be stale and
753 	 * do_timer() never invoked. Keep track of the fact that it
754 	 * was the one which had the do_timer() duty last. If this CPU
755 	 * is the one which had the do_timer() duty last, we limit the
756 	 * sleep time to the timekeeping max_deferment value.
757 	 * Otherwise we can sleep as long as we want.
758 	 */
759 	delta = timekeeping_max_deferment();
760 	if (cpu == tick_do_timer_cpu) {
761 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
762 		ts->do_timer_last = 1;
763 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
764 		delta = KTIME_MAX;
765 		ts->do_timer_last = 0;
766 	} else if (!ts->do_timer_last) {
767 		delta = KTIME_MAX;
768 	}
769 
770 #ifdef CONFIG_NO_HZ_FULL
771 	/* Limit the tick delta to the maximum scheduler deferment */
772 	if (!ts->inidle)
773 		delta = min(delta, scheduler_tick_max_deferment());
774 #endif
775 
776 	/* Calculate the next expiry time */
777 	if (delta < (KTIME_MAX - basemono))
778 		expires = basemono + delta;
779 	else
780 		expires = KTIME_MAX;
781 
782 	expires = min_t(u64, expires, next_tick);
783 	tick = expires;
784 
785 	/* Skip reprogram of event if its not changed */
786 	if (ts->tick_stopped && (expires == ts->next_tick)) {
787 		/* Sanity check: make sure clockevent is actually programmed */
788 		if (likely(dev->next_event <= ts->next_tick))
789 			goto out;
790 
791 		WARN_ON_ONCE(1);
792 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
793 			    basemono, ts->next_tick, dev->next_event,
794 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
795 	}
796 
797 	/*
798 	 * nohz_stop_sched_tick can be called several times before
799 	 * the nohz_restart_sched_tick is called. This happens when
800 	 * interrupts arrive which do not cause a reschedule. In the
801 	 * first call we save the current tick time, so we can restart
802 	 * the scheduler tick in nohz_restart_sched_tick.
803 	 */
804 	if (!ts->tick_stopped) {
805 		nohz_balance_enter_idle(cpu);
806 		calc_load_enter_idle();
807 		cpu_load_update_nohz_start();
808 
809 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
810 		ts->tick_stopped = 1;
811 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
812 	}
813 
814 	ts->next_tick = tick;
815 
816 	/*
817 	 * If the expiration time == KTIME_MAX, then we simply stop
818 	 * the tick timer.
819 	 */
820 	if (unlikely(expires == KTIME_MAX)) {
821 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
822 			hrtimer_cancel(&ts->sched_timer);
823 		goto out;
824 	}
825 
826 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
827 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
828 	else
829 		tick_program_event(tick, 1);
830 out:
831 	/*
832 	 * Update the estimated sleep length until the next timer
833 	 * (not only the tick).
834 	 */
835 	ts->sleep_length = ktime_sub(dev->next_event, now);
836 	return tick;
837 }
838 
839 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
840 {
841 	/* Update jiffies first */
842 	tick_do_update_jiffies64(now);
843 	cpu_load_update_nohz_stop();
844 
845 	/*
846 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
847 	 * the clock forward checks in the enqueue path:
848 	 */
849 	timer_clear_idle();
850 
851 	calc_load_exit_idle();
852 	touch_softlockup_watchdog_sched();
853 	/*
854 	 * Cancel the scheduled timer and restore the tick
855 	 */
856 	ts->tick_stopped  = 0;
857 	ts->idle_exittime = now;
858 
859 	tick_nohz_restart(ts, now);
860 }
861 
862 static void tick_nohz_full_update_tick(struct tick_sched *ts)
863 {
864 #ifdef CONFIG_NO_HZ_FULL
865 	int cpu = smp_processor_id();
866 
867 	if (!tick_nohz_full_cpu(cpu))
868 		return;
869 
870 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
871 		return;
872 
873 	if (can_stop_full_tick(cpu, ts))
874 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
875 	else if (ts->tick_stopped)
876 		tick_nohz_restart_sched_tick(ts, ktime_get());
877 #endif
878 }
879 
880 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
881 {
882 	/*
883 	 * If this CPU is offline and it is the one which updates
884 	 * jiffies, then give up the assignment and let it be taken by
885 	 * the CPU which runs the tick timer next. If we don't drop
886 	 * this here the jiffies might be stale and do_timer() never
887 	 * invoked.
888 	 */
889 	if (unlikely(!cpu_online(cpu))) {
890 		if (cpu == tick_do_timer_cpu)
891 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
892 		/*
893 		 * Make sure the CPU doesn't get fooled by obsolete tick
894 		 * deadline if it comes back online later.
895 		 */
896 		ts->next_tick = 0;
897 		return false;
898 	}
899 
900 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
901 		ts->sleep_length = NSEC_PER_SEC / HZ;
902 		return false;
903 	}
904 
905 	if (need_resched())
906 		return false;
907 
908 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
909 		static int ratelimit;
910 
911 		if (ratelimit < 10 &&
912 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
913 			pr_warn("NOHZ: local_softirq_pending %02x\n",
914 				(unsigned int) local_softirq_pending());
915 			ratelimit++;
916 		}
917 		return false;
918 	}
919 
920 	if (tick_nohz_full_enabled()) {
921 		/*
922 		 * Keep the tick alive to guarantee timekeeping progression
923 		 * if there are full dynticks CPUs around
924 		 */
925 		if (tick_do_timer_cpu == cpu)
926 			return false;
927 		/*
928 		 * Boot safety: make sure the timekeeping duty has been
929 		 * assigned before entering dyntick-idle mode,
930 		 */
931 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
932 			return false;
933 	}
934 
935 	return true;
936 }
937 
938 static void __tick_nohz_idle_enter(struct tick_sched *ts)
939 {
940 	ktime_t now, expires;
941 	int cpu = smp_processor_id();
942 
943 	now = tick_nohz_start_idle(ts);
944 
945 	if (can_stop_idle_tick(cpu, ts)) {
946 		int was_stopped = ts->tick_stopped;
947 
948 		ts->idle_calls++;
949 
950 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
951 		if (expires > 0LL) {
952 			ts->idle_sleeps++;
953 			ts->idle_expires = expires;
954 		}
955 
956 		if (!was_stopped && ts->tick_stopped)
957 			ts->idle_jiffies = ts->last_jiffies;
958 	}
959 }
960 
961 /**
962  * tick_nohz_idle_enter - stop the idle tick from the idle task
963  *
964  * When the next event is more than a tick into the future, stop the idle tick
965  * Called when we start the idle loop.
966  *
967  * The arch is responsible of calling:
968  *
969  * - rcu_idle_enter() after its last use of RCU before the CPU is put
970  *  to sleep.
971  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
972  */
973 void tick_nohz_idle_enter(void)
974 {
975 	struct tick_sched *ts;
976 
977 	WARN_ON_ONCE(irqs_disabled());
978 
979 	/*
980 	 * Update the idle state in the scheduler domain hierarchy
981 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
982 	 * State will be updated to busy during the first busy tick after
983 	 * exiting idle.
984 	 */
985 	set_cpu_sd_state_idle();
986 
987 	local_irq_disable();
988 
989 	ts = this_cpu_ptr(&tick_cpu_sched);
990 	ts->inidle = 1;
991 	__tick_nohz_idle_enter(ts);
992 
993 	local_irq_enable();
994 }
995 
996 /**
997  * tick_nohz_irq_exit - update next tick event from interrupt exit
998  *
999  * When an interrupt fires while we are idle and it doesn't cause
1000  * a reschedule, it may still add, modify or delete a timer, enqueue
1001  * an RCU callback, etc...
1002  * So we need to re-calculate and reprogram the next tick event.
1003  */
1004 void tick_nohz_irq_exit(void)
1005 {
1006 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1007 
1008 	if (ts->inidle)
1009 		__tick_nohz_idle_enter(ts);
1010 	else
1011 		tick_nohz_full_update_tick(ts);
1012 }
1013 
1014 /**
1015  * tick_nohz_get_sleep_length - return the length of the current sleep
1016  *
1017  * Called from power state control code with interrupts disabled
1018  */
1019 ktime_t tick_nohz_get_sleep_length(void)
1020 {
1021 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1022 
1023 	return ts->sleep_length;
1024 }
1025 
1026 /**
1027  * tick_nohz_get_idle_calls - return the current idle calls counter value
1028  *
1029  * Called from the schedutil frequency scaling governor in scheduler context.
1030  */
1031 unsigned long tick_nohz_get_idle_calls(void)
1032 {
1033 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1034 
1035 	return ts->idle_calls;
1036 }
1037 
1038 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1039 {
1040 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1041 	unsigned long ticks;
1042 
1043 	if (vtime_accounting_cpu_enabled())
1044 		return;
1045 	/*
1046 	 * We stopped the tick in idle. Update process times would miss the
1047 	 * time we slept as update_process_times does only a 1 tick
1048 	 * accounting. Enforce that this is accounted to idle !
1049 	 */
1050 	ticks = jiffies - ts->idle_jiffies;
1051 	/*
1052 	 * We might be one off. Do not randomly account a huge number of ticks!
1053 	 */
1054 	if (ticks && ticks < LONG_MAX)
1055 		account_idle_ticks(ticks);
1056 #endif
1057 }
1058 
1059 /**
1060  * tick_nohz_idle_exit - restart the idle tick from the idle task
1061  *
1062  * Restart the idle tick when the CPU is woken up from idle
1063  * This also exit the RCU extended quiescent state. The CPU
1064  * can use RCU again after this function is called.
1065  */
1066 void tick_nohz_idle_exit(void)
1067 {
1068 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1069 	ktime_t now;
1070 
1071 	local_irq_disable();
1072 
1073 	WARN_ON_ONCE(!ts->inidle);
1074 
1075 	ts->inidle = 0;
1076 
1077 	if (ts->idle_active || ts->tick_stopped)
1078 		now = ktime_get();
1079 
1080 	if (ts->idle_active)
1081 		tick_nohz_stop_idle(ts, now);
1082 
1083 	if (ts->tick_stopped) {
1084 		tick_nohz_restart_sched_tick(ts, now);
1085 		tick_nohz_account_idle_ticks(ts);
1086 	}
1087 
1088 	local_irq_enable();
1089 }
1090 
1091 /*
1092  * The nohz low res interrupt handler
1093  */
1094 static void tick_nohz_handler(struct clock_event_device *dev)
1095 {
1096 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1097 	struct pt_regs *regs = get_irq_regs();
1098 	ktime_t now = ktime_get();
1099 
1100 	dev->next_event = KTIME_MAX;
1101 
1102 	tick_sched_do_timer(now);
1103 	tick_sched_handle(ts, regs);
1104 
1105 	/* No need to reprogram if we are running tickless  */
1106 	if (unlikely(ts->tick_stopped))
1107 		return;
1108 
1109 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1110 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1111 }
1112 
1113 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1114 {
1115 	if (!tick_nohz_enabled)
1116 		return;
1117 	ts->nohz_mode = mode;
1118 	/* One update is enough */
1119 	if (!test_and_set_bit(0, &tick_nohz_active))
1120 		timers_update_migration(true);
1121 }
1122 
1123 /**
1124  * tick_nohz_switch_to_nohz - switch to nohz mode
1125  */
1126 static void tick_nohz_switch_to_nohz(void)
1127 {
1128 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1129 	ktime_t next;
1130 
1131 	if (!tick_nohz_enabled)
1132 		return;
1133 
1134 	if (tick_switch_to_oneshot(tick_nohz_handler))
1135 		return;
1136 
1137 	/*
1138 	 * Recycle the hrtimer in ts, so we can share the
1139 	 * hrtimer_forward with the highres code.
1140 	 */
1141 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1142 	/* Get the next period */
1143 	next = tick_init_jiffy_update();
1144 
1145 	hrtimer_set_expires(&ts->sched_timer, next);
1146 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1147 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1148 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1149 }
1150 
1151 static inline void tick_nohz_irq_enter(void)
1152 {
1153 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1154 	ktime_t now;
1155 
1156 	if (!ts->idle_active && !ts->tick_stopped)
1157 		return;
1158 	now = ktime_get();
1159 	if (ts->idle_active)
1160 		tick_nohz_stop_idle(ts, now);
1161 	if (ts->tick_stopped)
1162 		tick_nohz_update_jiffies(now);
1163 }
1164 
1165 #else
1166 
1167 static inline void tick_nohz_switch_to_nohz(void) { }
1168 static inline void tick_nohz_irq_enter(void) { }
1169 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1170 
1171 #endif /* CONFIG_NO_HZ_COMMON */
1172 
1173 /*
1174  * Called from irq_enter to notify about the possible interruption of idle()
1175  */
1176 void tick_irq_enter(void)
1177 {
1178 	tick_check_oneshot_broadcast_this_cpu();
1179 	tick_nohz_irq_enter();
1180 }
1181 
1182 /*
1183  * High resolution timer specific code
1184  */
1185 #ifdef CONFIG_HIGH_RES_TIMERS
1186 /*
1187  * We rearm the timer until we get disabled by the idle code.
1188  * Called with interrupts disabled.
1189  */
1190 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1191 {
1192 	struct tick_sched *ts =
1193 		container_of(timer, struct tick_sched, sched_timer);
1194 	struct pt_regs *regs = get_irq_regs();
1195 	ktime_t now = ktime_get();
1196 
1197 	tick_sched_do_timer(now);
1198 
1199 	/*
1200 	 * Do not call, when we are not in irq context and have
1201 	 * no valid regs pointer
1202 	 */
1203 	if (regs)
1204 		tick_sched_handle(ts, regs);
1205 
1206 	/* No need to reprogram if we are in idle or full dynticks mode */
1207 	if (unlikely(ts->tick_stopped))
1208 		return HRTIMER_NORESTART;
1209 
1210 	hrtimer_forward(timer, now, tick_period);
1211 
1212 	return HRTIMER_RESTART;
1213 }
1214 
1215 static int sched_skew_tick;
1216 
1217 static int __init skew_tick(char *str)
1218 {
1219 	get_option(&str, &sched_skew_tick);
1220 
1221 	return 0;
1222 }
1223 early_param("skew_tick", skew_tick);
1224 
1225 /**
1226  * tick_setup_sched_timer - setup the tick emulation timer
1227  */
1228 void tick_setup_sched_timer(void)
1229 {
1230 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1231 	ktime_t now = ktime_get();
1232 
1233 	/*
1234 	 * Emulate tick processing via per-CPU hrtimers:
1235 	 */
1236 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1237 	ts->sched_timer.function = tick_sched_timer;
1238 
1239 	/* Get the next period (per-CPU) */
1240 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1241 
1242 	/* Offset the tick to avert jiffies_lock contention. */
1243 	if (sched_skew_tick) {
1244 		u64 offset = ktime_to_ns(tick_period) >> 1;
1245 		do_div(offset, num_possible_cpus());
1246 		offset *= smp_processor_id();
1247 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1248 	}
1249 
1250 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1251 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1252 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1253 }
1254 #endif /* HIGH_RES_TIMERS */
1255 
1256 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1257 void tick_cancel_sched_timer(int cpu)
1258 {
1259 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1260 
1261 # ifdef CONFIG_HIGH_RES_TIMERS
1262 	if (ts->sched_timer.base)
1263 		hrtimer_cancel(&ts->sched_timer);
1264 # endif
1265 
1266 	memset(ts, 0, sizeof(*ts));
1267 }
1268 #endif
1269 
1270 /**
1271  * Async notification about clocksource changes
1272  */
1273 void tick_clock_notify(void)
1274 {
1275 	int cpu;
1276 
1277 	for_each_possible_cpu(cpu)
1278 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1279 }
1280 
1281 /*
1282  * Async notification about clock event changes
1283  */
1284 void tick_oneshot_notify(void)
1285 {
1286 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1287 
1288 	set_bit(0, &ts->check_clocks);
1289 }
1290 
1291 /**
1292  * Check, if a change happened, which makes oneshot possible.
1293  *
1294  * Called cyclic from the hrtimer softirq (driven by the timer
1295  * softirq) allow_nohz signals, that we can switch into low-res nohz
1296  * mode, because high resolution timers are disabled (either compile
1297  * or runtime). Called with interrupts disabled.
1298  */
1299 int tick_check_oneshot_change(int allow_nohz)
1300 {
1301 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302 
1303 	if (!test_and_clear_bit(0, &ts->check_clocks))
1304 		return 0;
1305 
1306 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1307 		return 0;
1308 
1309 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1310 		return 0;
1311 
1312 	if (!allow_nohz)
1313 		return 1;
1314 
1315 	tick_nohz_switch_to_nohz();
1316 	return 0;
1317 }
1318