xref: /openbmc/linux/kernel/time/tick-sched.c (revision 3d36aebc)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 bool tick_nohz_full_running;
158 
159 static bool can_stop_full_tick(void)
160 {
161 	WARN_ON_ONCE(!irqs_disabled());
162 
163 	if (!sched_can_stop_tick()) {
164 		trace_tick_stop(0, "more than 1 task in runqueue\n");
165 		return false;
166 	}
167 
168 	if (!posix_cpu_timers_can_stop_tick(current)) {
169 		trace_tick_stop(0, "posix timers running\n");
170 		return false;
171 	}
172 
173 	if (!perf_event_can_stop_tick()) {
174 		trace_tick_stop(0, "perf events running\n");
175 		return false;
176 	}
177 
178 	/* sched_clock_tick() needs us? */
179 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
180 	/*
181 	 * TODO: kick full dynticks CPUs when
182 	 * sched_clock_stable is set.
183 	 */
184 	if (!sched_clock_stable()) {
185 		trace_tick_stop(0, "unstable sched clock\n");
186 		/*
187 		 * Don't allow the user to think they can get
188 		 * full NO_HZ with this machine.
189 		 */
190 		WARN_ONCE(tick_nohz_full_running,
191 			  "NO_HZ FULL will not work with unstable sched clock");
192 		return false;
193 	}
194 #endif
195 
196 	return true;
197 }
198 
199 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
200 
201 /*
202  * Re-evaluate the need for the tick on the current CPU
203  * and restart it if necessary.
204  */
205 void __tick_nohz_full_check(void)
206 {
207 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
208 
209 	if (tick_nohz_full_cpu(smp_processor_id())) {
210 		if (ts->tick_stopped && !is_idle_task(current)) {
211 			if (!can_stop_full_tick())
212 				tick_nohz_restart_sched_tick(ts, ktime_get());
213 		}
214 	}
215 }
216 
217 static void nohz_full_kick_work_func(struct irq_work *work)
218 {
219 	__tick_nohz_full_check();
220 }
221 
222 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
223 	.func = nohz_full_kick_work_func,
224 };
225 
226 /*
227  * Kick the CPU if it's full dynticks in order to force it to
228  * re-evaluate its dependency on the tick and restart it if necessary.
229  */
230 void tick_nohz_full_kick_cpu(int cpu)
231 {
232 	if (!tick_nohz_full_cpu(cpu))
233 		return;
234 
235 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
236 }
237 
238 static void nohz_full_kick_ipi(void *info)
239 {
240 	__tick_nohz_full_check();
241 }
242 
243 /*
244  * Kick all full dynticks CPUs in order to force these to re-evaluate
245  * their dependency on the tick and restart it if necessary.
246  */
247 void tick_nohz_full_kick_all(void)
248 {
249 	if (!tick_nohz_full_running)
250 		return;
251 
252 	preempt_disable();
253 	smp_call_function_many(tick_nohz_full_mask,
254 			       nohz_full_kick_ipi, NULL, false);
255 	tick_nohz_full_kick();
256 	preempt_enable();
257 }
258 
259 /*
260  * Re-evaluate the need for the tick as we switch the current task.
261  * It might need the tick due to per task/process properties:
262  * perf events, posix cpu timers, ...
263  */
264 void __tick_nohz_task_switch(struct task_struct *tsk)
265 {
266 	unsigned long flags;
267 
268 	local_irq_save(flags);
269 
270 	if (!tick_nohz_full_cpu(smp_processor_id()))
271 		goto out;
272 
273 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
274 		tick_nohz_full_kick();
275 
276 out:
277 	local_irq_restore(flags);
278 }
279 
280 /* Parse the boot-time nohz CPU list from the kernel parameters. */
281 static int __init tick_nohz_full_setup(char *str)
282 {
283 	int cpu;
284 
285 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
286 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
287 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
288 		return 1;
289 	}
290 
291 	cpu = smp_processor_id();
292 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
293 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
294 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
295 	}
296 	tick_nohz_full_running = true;
297 
298 	return 1;
299 }
300 __setup("nohz_full=", tick_nohz_full_setup);
301 
302 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
303 						 unsigned long action,
304 						 void *hcpu)
305 {
306 	unsigned int cpu = (unsigned long)hcpu;
307 
308 	switch (action & ~CPU_TASKS_FROZEN) {
309 	case CPU_DOWN_PREPARE:
310 		/*
311 		 * If we handle the timekeeping duty for full dynticks CPUs,
312 		 * we can't safely shutdown that CPU.
313 		 */
314 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
315 			return NOTIFY_BAD;
316 		break;
317 	}
318 	return NOTIFY_OK;
319 }
320 
321 /*
322  * Worst case string length in chunks of CPU range seems 2 steps
323  * separations: 0,2,4,6,...
324  * This is NR_CPUS + sizeof('\0')
325  */
326 static char __initdata nohz_full_buf[NR_CPUS + 1];
327 
328 static int tick_nohz_init_all(void)
329 {
330 	int err = -1;
331 
332 #ifdef CONFIG_NO_HZ_FULL_ALL
333 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
334 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
335 		return err;
336 	}
337 	err = 0;
338 	cpumask_setall(tick_nohz_full_mask);
339 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
340 	tick_nohz_full_running = true;
341 #endif
342 	return err;
343 }
344 
345 void __init tick_nohz_init(void)
346 {
347 	int cpu;
348 
349 	if (!tick_nohz_full_running) {
350 		if (tick_nohz_init_all() < 0)
351 			return;
352 	}
353 
354 	for_each_cpu(cpu, tick_nohz_full_mask)
355 		context_tracking_cpu_set(cpu);
356 
357 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
358 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
359 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
360 }
361 #endif
362 
363 /*
364  * NOHZ - aka dynamic tick functionality
365  */
366 #ifdef CONFIG_NO_HZ_COMMON
367 /*
368  * NO HZ enabled ?
369  */
370 static int tick_nohz_enabled __read_mostly  = 1;
371 int tick_nohz_active  __read_mostly;
372 /*
373  * Enable / Disable tickless mode
374  */
375 static int __init setup_tick_nohz(char *str)
376 {
377 	if (!strcmp(str, "off"))
378 		tick_nohz_enabled = 0;
379 	else if (!strcmp(str, "on"))
380 		tick_nohz_enabled = 1;
381 	else
382 		return 0;
383 	return 1;
384 }
385 
386 __setup("nohz=", setup_tick_nohz);
387 
388 /**
389  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
390  *
391  * Called from interrupt entry when the CPU was idle
392  *
393  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
394  * must be updated. Otherwise an interrupt handler could use a stale jiffy
395  * value. We do this unconditionally on any cpu, as we don't know whether the
396  * cpu, which has the update task assigned is in a long sleep.
397  */
398 static void tick_nohz_update_jiffies(ktime_t now)
399 {
400 	unsigned long flags;
401 
402 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
403 
404 	local_irq_save(flags);
405 	tick_do_update_jiffies64(now);
406 	local_irq_restore(flags);
407 
408 	touch_softlockup_watchdog();
409 }
410 
411 /*
412  * Updates the per cpu time idle statistics counters
413  */
414 static void
415 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
416 {
417 	ktime_t delta;
418 
419 	if (ts->idle_active) {
420 		delta = ktime_sub(now, ts->idle_entrytime);
421 		if (nr_iowait_cpu(cpu) > 0)
422 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
423 		else
424 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
425 		ts->idle_entrytime = now;
426 	}
427 
428 	if (last_update_time)
429 		*last_update_time = ktime_to_us(now);
430 
431 }
432 
433 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
434 {
435 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
436 	ts->idle_active = 0;
437 
438 	sched_clock_idle_wakeup_event(0);
439 }
440 
441 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
442 {
443 	ktime_t now = ktime_get();
444 
445 	ts->idle_entrytime = now;
446 	ts->idle_active = 1;
447 	sched_clock_idle_sleep_event();
448 	return now;
449 }
450 
451 /**
452  * get_cpu_idle_time_us - get the total idle time of a cpu
453  * @cpu: CPU number to query
454  * @last_update_time: variable to store update time in. Do not update
455  * counters if NULL.
456  *
457  * Return the cummulative idle time (since boot) for a given
458  * CPU, in microseconds.
459  *
460  * This time is measured via accounting rather than sampling,
461  * and is as accurate as ktime_get() is.
462  *
463  * This function returns -1 if NOHZ is not enabled.
464  */
465 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
466 {
467 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
468 	ktime_t now, idle;
469 
470 	if (!tick_nohz_active)
471 		return -1;
472 
473 	now = ktime_get();
474 	if (last_update_time) {
475 		update_ts_time_stats(cpu, ts, now, last_update_time);
476 		idle = ts->idle_sleeptime;
477 	} else {
478 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
479 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
480 
481 			idle = ktime_add(ts->idle_sleeptime, delta);
482 		} else {
483 			idle = ts->idle_sleeptime;
484 		}
485 	}
486 
487 	return ktime_to_us(idle);
488 
489 }
490 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
491 
492 /**
493  * get_cpu_iowait_time_us - get the total iowait time of a cpu
494  * @cpu: CPU number to query
495  * @last_update_time: variable to store update time in. Do not update
496  * counters if NULL.
497  *
498  * Return the cummulative iowait time (since boot) for a given
499  * CPU, in microseconds.
500  *
501  * This time is measured via accounting rather than sampling,
502  * and is as accurate as ktime_get() is.
503  *
504  * This function returns -1 if NOHZ is not enabled.
505  */
506 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
507 {
508 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
509 	ktime_t now, iowait;
510 
511 	if (!tick_nohz_active)
512 		return -1;
513 
514 	now = ktime_get();
515 	if (last_update_time) {
516 		update_ts_time_stats(cpu, ts, now, last_update_time);
517 		iowait = ts->iowait_sleeptime;
518 	} else {
519 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
520 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
521 
522 			iowait = ktime_add(ts->iowait_sleeptime, delta);
523 		} else {
524 			iowait = ts->iowait_sleeptime;
525 		}
526 	}
527 
528 	return ktime_to_us(iowait);
529 }
530 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
531 
532 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
533 					 ktime_t now, int cpu)
534 {
535 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
536 	ktime_t last_update, expires, ret = { .tv64 = 0 };
537 	unsigned long rcu_delta_jiffies;
538 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
539 	u64 time_delta;
540 
541 	time_delta = timekeeping_max_deferment();
542 
543 	/* Read jiffies and the time when jiffies were updated last */
544 	do {
545 		seq = read_seqbegin(&jiffies_lock);
546 		last_update = last_jiffies_update;
547 		last_jiffies = jiffies;
548 	} while (read_seqretry(&jiffies_lock, seq));
549 
550 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
551 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
552 		next_jiffies = last_jiffies + 1;
553 		delta_jiffies = 1;
554 	} else {
555 		/* Get the next timer wheel timer */
556 		next_jiffies = get_next_timer_interrupt(last_jiffies);
557 		delta_jiffies = next_jiffies - last_jiffies;
558 		if (rcu_delta_jiffies < delta_jiffies) {
559 			next_jiffies = last_jiffies + rcu_delta_jiffies;
560 			delta_jiffies = rcu_delta_jiffies;
561 		}
562 	}
563 
564 	/*
565 	 * Do not stop the tick, if we are only one off (or less)
566 	 * or if the cpu is required for RCU:
567 	 */
568 	if (!ts->tick_stopped && delta_jiffies <= 1)
569 		goto out;
570 
571 	/* Schedule the tick, if we are at least one jiffie off */
572 	if ((long)delta_jiffies >= 1) {
573 
574 		/*
575 		 * If this cpu is the one which updates jiffies, then
576 		 * give up the assignment and let it be taken by the
577 		 * cpu which runs the tick timer next, which might be
578 		 * this cpu as well. If we don't drop this here the
579 		 * jiffies might be stale and do_timer() never
580 		 * invoked. Keep track of the fact that it was the one
581 		 * which had the do_timer() duty last. If this cpu is
582 		 * the one which had the do_timer() duty last, we
583 		 * limit the sleep time to the timekeeping
584 		 * max_deferement value which we retrieved
585 		 * above. Otherwise we can sleep as long as we want.
586 		 */
587 		if (cpu == tick_do_timer_cpu) {
588 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
589 			ts->do_timer_last = 1;
590 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
591 			time_delta = KTIME_MAX;
592 			ts->do_timer_last = 0;
593 		} else if (!ts->do_timer_last) {
594 			time_delta = KTIME_MAX;
595 		}
596 
597 #ifdef CONFIG_NO_HZ_FULL
598 		if (!ts->inidle) {
599 			time_delta = min(time_delta,
600 					 scheduler_tick_max_deferment());
601 		}
602 #endif
603 
604 		/*
605 		 * calculate the expiry time for the next timer wheel
606 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
607 		 * that there is no timer pending or at least extremely
608 		 * far into the future (12 days for HZ=1000). In this
609 		 * case we set the expiry to the end of time.
610 		 */
611 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
612 			/*
613 			 * Calculate the time delta for the next timer event.
614 			 * If the time delta exceeds the maximum time delta
615 			 * permitted by the current clocksource then adjust
616 			 * the time delta accordingly to ensure the
617 			 * clocksource does not wrap.
618 			 */
619 			time_delta = min_t(u64, time_delta,
620 					   tick_period.tv64 * delta_jiffies);
621 		}
622 
623 		if (time_delta < KTIME_MAX)
624 			expires = ktime_add_ns(last_update, time_delta);
625 		else
626 			expires.tv64 = KTIME_MAX;
627 
628 		/* Skip reprogram of event if its not changed */
629 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
630 			goto out;
631 
632 		ret = expires;
633 
634 		/*
635 		 * nohz_stop_sched_tick can be called several times before
636 		 * the nohz_restart_sched_tick is called. This happens when
637 		 * interrupts arrive which do not cause a reschedule. In the
638 		 * first call we save the current tick time, so we can restart
639 		 * the scheduler tick in nohz_restart_sched_tick.
640 		 */
641 		if (!ts->tick_stopped) {
642 			nohz_balance_enter_idle(cpu);
643 			calc_load_enter_idle();
644 
645 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
646 			ts->tick_stopped = 1;
647 			trace_tick_stop(1, " ");
648 		}
649 
650 		/*
651 		 * If the expiration time == KTIME_MAX, then
652 		 * in this case we simply stop the tick timer.
653 		 */
654 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
655 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
656 				hrtimer_cancel(&ts->sched_timer);
657 			goto out;
658 		}
659 
660 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
661 			hrtimer_start(&ts->sched_timer, expires,
662 				      HRTIMER_MODE_ABS_PINNED);
663 			/* Check, if the timer was already in the past */
664 			if (hrtimer_active(&ts->sched_timer))
665 				goto out;
666 		} else if (!tick_program_event(expires, 0))
667 				goto out;
668 		/*
669 		 * We are past the event already. So we crossed a
670 		 * jiffie boundary. Update jiffies and raise the
671 		 * softirq.
672 		 */
673 		tick_do_update_jiffies64(ktime_get());
674 	}
675 	raise_softirq_irqoff(TIMER_SOFTIRQ);
676 out:
677 	ts->next_jiffies = next_jiffies;
678 	ts->last_jiffies = last_jiffies;
679 	ts->sleep_length = ktime_sub(dev->next_event, now);
680 
681 	return ret;
682 }
683 
684 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
685 {
686 #ifdef CONFIG_NO_HZ_FULL
687 	int cpu = smp_processor_id();
688 
689 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
690 		return;
691 
692 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
693 		return;
694 
695 	if (!can_stop_full_tick())
696 		return;
697 
698 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
699 #endif
700 }
701 
702 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
703 {
704 	/*
705 	 * If this cpu is offline and it is the one which updates
706 	 * jiffies, then give up the assignment and let it be taken by
707 	 * the cpu which runs the tick timer next. If we don't drop
708 	 * this here the jiffies might be stale and do_timer() never
709 	 * invoked.
710 	 */
711 	if (unlikely(!cpu_online(cpu))) {
712 		if (cpu == tick_do_timer_cpu)
713 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
714 		return false;
715 	}
716 
717 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
718 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
719 		return false;
720 	}
721 
722 	if (need_resched())
723 		return false;
724 
725 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
726 		static int ratelimit;
727 
728 		if (ratelimit < 10 &&
729 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
730 			pr_warn("NOHZ: local_softirq_pending %02x\n",
731 				(unsigned int) local_softirq_pending());
732 			ratelimit++;
733 		}
734 		return false;
735 	}
736 
737 	if (tick_nohz_full_enabled()) {
738 		/*
739 		 * Keep the tick alive to guarantee timekeeping progression
740 		 * if there are full dynticks CPUs around
741 		 */
742 		if (tick_do_timer_cpu == cpu)
743 			return false;
744 		/*
745 		 * Boot safety: make sure the timekeeping duty has been
746 		 * assigned before entering dyntick-idle mode,
747 		 */
748 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
749 			return false;
750 	}
751 
752 	return true;
753 }
754 
755 static void __tick_nohz_idle_enter(struct tick_sched *ts)
756 {
757 	ktime_t now, expires;
758 	int cpu = smp_processor_id();
759 
760 	now = tick_nohz_start_idle(ts);
761 
762 	if (can_stop_idle_tick(cpu, ts)) {
763 		int was_stopped = ts->tick_stopped;
764 
765 		ts->idle_calls++;
766 
767 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
768 		if (expires.tv64 > 0LL) {
769 			ts->idle_sleeps++;
770 			ts->idle_expires = expires;
771 		}
772 
773 		if (!was_stopped && ts->tick_stopped)
774 			ts->idle_jiffies = ts->last_jiffies;
775 	}
776 }
777 
778 /**
779  * tick_nohz_idle_enter - stop the idle tick from the idle task
780  *
781  * When the next event is more than a tick into the future, stop the idle tick
782  * Called when we start the idle loop.
783  *
784  * The arch is responsible of calling:
785  *
786  * - rcu_idle_enter() after its last use of RCU before the CPU is put
787  *  to sleep.
788  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
789  */
790 void tick_nohz_idle_enter(void)
791 {
792 	struct tick_sched *ts;
793 
794 	WARN_ON_ONCE(irqs_disabled());
795 
796 	/*
797  	 * Update the idle state in the scheduler domain hierarchy
798  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
799  	 * State will be updated to busy during the first busy tick after
800  	 * exiting idle.
801  	 */
802 	set_cpu_sd_state_idle();
803 
804 	local_irq_disable();
805 
806 	ts = &__get_cpu_var(tick_cpu_sched);
807 	ts->inidle = 1;
808 	__tick_nohz_idle_enter(ts);
809 
810 	local_irq_enable();
811 }
812 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
813 
814 /**
815  * tick_nohz_irq_exit - update next tick event from interrupt exit
816  *
817  * When an interrupt fires while we are idle and it doesn't cause
818  * a reschedule, it may still add, modify or delete a timer, enqueue
819  * an RCU callback, etc...
820  * So we need to re-calculate and reprogram the next tick event.
821  */
822 void tick_nohz_irq_exit(void)
823 {
824 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
825 
826 	if (ts->inidle)
827 		__tick_nohz_idle_enter(ts);
828 	else
829 		tick_nohz_full_stop_tick(ts);
830 }
831 
832 /**
833  * tick_nohz_get_sleep_length - return the length of the current sleep
834  *
835  * Called from power state control code with interrupts disabled
836  */
837 ktime_t tick_nohz_get_sleep_length(void)
838 {
839 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
840 
841 	return ts->sleep_length;
842 }
843 
844 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
845 {
846 	hrtimer_cancel(&ts->sched_timer);
847 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
848 
849 	while (1) {
850 		/* Forward the time to expire in the future */
851 		hrtimer_forward(&ts->sched_timer, now, tick_period);
852 
853 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
854 			hrtimer_start_expires(&ts->sched_timer,
855 					      HRTIMER_MODE_ABS_PINNED);
856 			/* Check, if the timer was already in the past */
857 			if (hrtimer_active(&ts->sched_timer))
858 				break;
859 		} else {
860 			if (!tick_program_event(
861 				hrtimer_get_expires(&ts->sched_timer), 0))
862 				break;
863 		}
864 		/* Reread time and update jiffies */
865 		now = ktime_get();
866 		tick_do_update_jiffies64(now);
867 	}
868 }
869 
870 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
871 {
872 	/* Update jiffies first */
873 	tick_do_update_jiffies64(now);
874 	update_cpu_load_nohz();
875 
876 	calc_load_exit_idle();
877 	touch_softlockup_watchdog();
878 	/*
879 	 * Cancel the scheduled timer and restore the tick
880 	 */
881 	ts->tick_stopped  = 0;
882 	ts->idle_exittime = now;
883 
884 	tick_nohz_restart(ts, now);
885 }
886 
887 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
888 {
889 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
890 	unsigned long ticks;
891 
892 	if (vtime_accounting_enabled())
893 		return;
894 	/*
895 	 * We stopped the tick in idle. Update process times would miss the
896 	 * time we slept as update_process_times does only a 1 tick
897 	 * accounting. Enforce that this is accounted to idle !
898 	 */
899 	ticks = jiffies - ts->idle_jiffies;
900 	/*
901 	 * We might be one off. Do not randomly account a huge number of ticks!
902 	 */
903 	if (ticks && ticks < LONG_MAX)
904 		account_idle_ticks(ticks);
905 #endif
906 }
907 
908 /**
909  * tick_nohz_idle_exit - restart the idle tick from the idle task
910  *
911  * Restart the idle tick when the CPU is woken up from idle
912  * This also exit the RCU extended quiescent state. The CPU
913  * can use RCU again after this function is called.
914  */
915 void tick_nohz_idle_exit(void)
916 {
917 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
918 	ktime_t now;
919 
920 	local_irq_disable();
921 
922 	WARN_ON_ONCE(!ts->inidle);
923 
924 	ts->inidle = 0;
925 
926 	if (ts->idle_active || ts->tick_stopped)
927 		now = ktime_get();
928 
929 	if (ts->idle_active)
930 		tick_nohz_stop_idle(ts, now);
931 
932 	if (ts->tick_stopped) {
933 		tick_nohz_restart_sched_tick(ts, now);
934 		tick_nohz_account_idle_ticks(ts);
935 	}
936 
937 	local_irq_enable();
938 }
939 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
940 
941 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
942 {
943 	hrtimer_forward(&ts->sched_timer, now, tick_period);
944 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
945 }
946 
947 /*
948  * The nohz low res interrupt handler
949  */
950 static void tick_nohz_handler(struct clock_event_device *dev)
951 {
952 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
953 	struct pt_regs *regs = get_irq_regs();
954 	ktime_t now = ktime_get();
955 
956 	dev->next_event.tv64 = KTIME_MAX;
957 
958 	tick_sched_do_timer(now);
959 	tick_sched_handle(ts, regs);
960 
961 	while (tick_nohz_reprogram(ts, now)) {
962 		now = ktime_get();
963 		tick_do_update_jiffies64(now);
964 	}
965 }
966 
967 /**
968  * tick_nohz_switch_to_nohz - switch to nohz mode
969  */
970 static void tick_nohz_switch_to_nohz(void)
971 {
972 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
973 	ktime_t next;
974 
975 	if (!tick_nohz_enabled)
976 		return;
977 
978 	local_irq_disable();
979 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
980 		local_irq_enable();
981 		return;
982 	}
983 	tick_nohz_active = 1;
984 	ts->nohz_mode = NOHZ_MODE_LOWRES;
985 
986 	/*
987 	 * Recycle the hrtimer in ts, so we can share the
988 	 * hrtimer_forward with the highres code.
989 	 */
990 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
991 	/* Get the next period */
992 	next = tick_init_jiffy_update();
993 
994 	for (;;) {
995 		hrtimer_set_expires(&ts->sched_timer, next);
996 		if (!tick_program_event(next, 0))
997 			break;
998 		next = ktime_add(next, tick_period);
999 	}
1000 	local_irq_enable();
1001 }
1002 
1003 /*
1004  * When NOHZ is enabled and the tick is stopped, we need to kick the
1005  * tick timer from irq_enter() so that the jiffies update is kept
1006  * alive during long running softirqs. That's ugly as hell, but
1007  * correctness is key even if we need to fix the offending softirq in
1008  * the first place.
1009  *
1010  * Note, this is different to tick_nohz_restart. We just kick the
1011  * timer and do not touch the other magic bits which need to be done
1012  * when idle is left.
1013  */
1014 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1015 {
1016 #if 0
1017 	/* Switch back to 2.6.27 behaviour */
1018 	ktime_t delta;
1019 
1020 	/*
1021 	 * Do not touch the tick device, when the next expiry is either
1022 	 * already reached or less/equal than the tick period.
1023 	 */
1024 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1025 	if (delta.tv64 <= tick_period.tv64)
1026 		return;
1027 
1028 	tick_nohz_restart(ts, now);
1029 #endif
1030 }
1031 
1032 static inline void tick_nohz_irq_enter(void)
1033 {
1034 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1035 	ktime_t now;
1036 
1037 	if (!ts->idle_active && !ts->tick_stopped)
1038 		return;
1039 	now = ktime_get();
1040 	if (ts->idle_active)
1041 		tick_nohz_stop_idle(ts, now);
1042 	if (ts->tick_stopped) {
1043 		tick_nohz_update_jiffies(now);
1044 		tick_nohz_kick_tick(ts, now);
1045 	}
1046 }
1047 
1048 #else
1049 
1050 static inline void tick_nohz_switch_to_nohz(void) { }
1051 static inline void tick_nohz_irq_enter(void) { }
1052 
1053 #endif /* CONFIG_NO_HZ_COMMON */
1054 
1055 /*
1056  * Called from irq_enter to notify about the possible interruption of idle()
1057  */
1058 void tick_irq_enter(void)
1059 {
1060 	tick_check_oneshot_broadcast_this_cpu();
1061 	tick_nohz_irq_enter();
1062 }
1063 
1064 /*
1065  * High resolution timer specific code
1066  */
1067 #ifdef CONFIG_HIGH_RES_TIMERS
1068 /*
1069  * We rearm the timer until we get disabled by the idle code.
1070  * Called with interrupts disabled.
1071  */
1072 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1073 {
1074 	struct tick_sched *ts =
1075 		container_of(timer, struct tick_sched, sched_timer);
1076 	struct pt_regs *regs = get_irq_regs();
1077 	ktime_t now = ktime_get();
1078 
1079 	tick_sched_do_timer(now);
1080 
1081 	/*
1082 	 * Do not call, when we are not in irq context and have
1083 	 * no valid regs pointer
1084 	 */
1085 	if (regs)
1086 		tick_sched_handle(ts, regs);
1087 
1088 	hrtimer_forward(timer, now, tick_period);
1089 
1090 	return HRTIMER_RESTART;
1091 }
1092 
1093 static int sched_skew_tick;
1094 
1095 static int __init skew_tick(char *str)
1096 {
1097 	get_option(&str, &sched_skew_tick);
1098 
1099 	return 0;
1100 }
1101 early_param("skew_tick", skew_tick);
1102 
1103 /**
1104  * tick_setup_sched_timer - setup the tick emulation timer
1105  */
1106 void tick_setup_sched_timer(void)
1107 {
1108 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1109 	ktime_t now = ktime_get();
1110 
1111 	/*
1112 	 * Emulate tick processing via per-CPU hrtimers:
1113 	 */
1114 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1115 	ts->sched_timer.function = tick_sched_timer;
1116 
1117 	/* Get the next period (per cpu) */
1118 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1119 
1120 	/* Offset the tick to avert jiffies_lock contention. */
1121 	if (sched_skew_tick) {
1122 		u64 offset = ktime_to_ns(tick_period) >> 1;
1123 		do_div(offset, num_possible_cpus());
1124 		offset *= smp_processor_id();
1125 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1126 	}
1127 
1128 	for (;;) {
1129 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1130 		hrtimer_start_expires(&ts->sched_timer,
1131 				      HRTIMER_MODE_ABS_PINNED);
1132 		/* Check, if the timer was already in the past */
1133 		if (hrtimer_active(&ts->sched_timer))
1134 			break;
1135 		now = ktime_get();
1136 	}
1137 
1138 #ifdef CONFIG_NO_HZ_COMMON
1139 	if (tick_nohz_enabled) {
1140 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1141 		tick_nohz_active = 1;
1142 	}
1143 #endif
1144 }
1145 #endif /* HIGH_RES_TIMERS */
1146 
1147 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1148 void tick_cancel_sched_timer(int cpu)
1149 {
1150 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1151 
1152 # ifdef CONFIG_HIGH_RES_TIMERS
1153 	if (ts->sched_timer.base)
1154 		hrtimer_cancel(&ts->sched_timer);
1155 # endif
1156 
1157 	memset(ts, 0, sizeof(*ts));
1158 }
1159 #endif
1160 
1161 /**
1162  * Async notification about clocksource changes
1163  */
1164 void tick_clock_notify(void)
1165 {
1166 	int cpu;
1167 
1168 	for_each_possible_cpu(cpu)
1169 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1170 }
1171 
1172 /*
1173  * Async notification about clock event changes
1174  */
1175 void tick_oneshot_notify(void)
1176 {
1177 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1178 
1179 	set_bit(0, &ts->check_clocks);
1180 }
1181 
1182 /**
1183  * Check, if a change happened, which makes oneshot possible.
1184  *
1185  * Called cyclic from the hrtimer softirq (driven by the timer
1186  * softirq) allow_nohz signals, that we can switch into low-res nohz
1187  * mode, because high resolution timers are disabled (either compile
1188  * or runtime).
1189  */
1190 int tick_check_oneshot_change(int allow_nohz)
1191 {
1192 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1193 
1194 	if (!test_and_clear_bit(0, &ts->check_clocks))
1195 		return 0;
1196 
1197 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1198 		return 0;
1199 
1200 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1201 		return 0;
1202 
1203 	if (!allow_nohz)
1204 		return 1;
1205 
1206 	tick_nohz_switch_to_nohz();
1207 	return 0;
1208 }
1209