1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 47 /* 48 * The time, when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64bit can do a quick check without holding jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32bit cannot do that because the store of tick_next_period 68 * consists of two 32bit stores and the first store could move it 69 * to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on jiffies_lock and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Reevaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the jiffies_seq protected job */ 118 jiffies_64 += ticks; 119 120 /* 121 * Keep the tick_next_period variable up to date. 122 */ 123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 124 125 if (IS_ENABLED(CONFIG_64BIT)) { 126 /* 127 * Pairs with smp_load_acquire() in the lockless quick 128 * check above and ensures that the update to jiffies_64 is 129 * not reordered vs. the store to tick_next_period, neither 130 * by the compiler nor by the CPU. 131 */ 132 smp_store_release(&tick_next_period, nextp); 133 } else { 134 /* 135 * A plain store is good enough on 32bit as the quick check 136 * above is protected by the sequence count. 137 */ 138 tick_next_period = nextp; 139 } 140 141 /* 142 * Release the sequence count. calc_global_load() below is not 143 * protected by it, but jiffies_lock needs to be held to prevent 144 * concurrent invocations. 145 */ 146 write_seqcount_end(&jiffies_seq); 147 148 calc_global_load(); 149 150 raw_spin_unlock(&jiffies_lock); 151 update_wall_time(); 152 } 153 154 /* 155 * Initialize and return retrieve the jiffies update. 156 */ 157 static ktime_t tick_init_jiffy_update(void) 158 { 159 ktime_t period; 160 161 raw_spin_lock(&jiffies_lock); 162 write_seqcount_begin(&jiffies_seq); 163 /* Did we start the jiffies update yet ? */ 164 if (last_jiffies_update == 0) 165 last_jiffies_update = tick_next_period; 166 period = last_jiffies_update; 167 write_seqcount_end(&jiffies_seq); 168 raw_spin_unlock(&jiffies_lock); 169 return period; 170 } 171 172 #define MAX_STALLED_JIFFIES 5 173 174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 175 { 176 int cpu = smp_processor_id(); 177 178 #ifdef CONFIG_NO_HZ_COMMON 179 /* 180 * Check if the do_timer duty was dropped. We don't care about 181 * concurrency: This happens only when the CPU in charge went 182 * into a long sleep. If two CPUs happen to assign themselves to 183 * this duty, then the jiffies update is still serialized by 184 * jiffies_lock. 185 * 186 * If nohz_full is enabled, this should not happen because the 187 * tick_do_timer_cpu never relinquishes. 188 */ 189 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 190 #ifdef CONFIG_NO_HZ_FULL 191 WARN_ON_ONCE(tick_nohz_full_running); 192 #endif 193 tick_do_timer_cpu = cpu; 194 } 195 #endif 196 197 /* Check, if the jiffies need an update */ 198 if (tick_do_timer_cpu == cpu) 199 tick_do_update_jiffies64(now); 200 201 /* 202 * If jiffies update stalled for too long (timekeeper in stop_machine() 203 * or VMEXIT'ed for several msecs), force an update. 204 */ 205 if (ts->last_tick_jiffies != jiffies) { 206 ts->stalled_jiffies = 0; 207 ts->last_tick_jiffies = READ_ONCE(jiffies); 208 } else { 209 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { 210 tick_do_update_jiffies64(now); 211 ts->stalled_jiffies = 0; 212 ts->last_tick_jiffies = READ_ONCE(jiffies); 213 } 214 } 215 216 if (ts->inidle) 217 ts->got_idle_tick = 1; 218 } 219 220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 221 { 222 #ifdef CONFIG_NO_HZ_COMMON 223 /* 224 * When we are idle and the tick is stopped, we have to touch 225 * the watchdog as we might not schedule for a really long 226 * time. This happens on complete idle SMP systems while 227 * waiting on the login prompt. We also increment the "start of 228 * idle" jiffy stamp so the idle accounting adjustment we do 229 * when we go busy again does not account too much ticks. 230 */ 231 if (ts->tick_stopped) { 232 touch_softlockup_watchdog_sched(); 233 if (is_idle_task(current)) 234 ts->idle_jiffies++; 235 /* 236 * In case the current tick fired too early past its expected 237 * expiration, make sure we don't bypass the next clock reprogramming 238 * to the same deadline. 239 */ 240 ts->next_tick = 0; 241 } 242 #endif 243 update_process_times(user_mode(regs)); 244 profile_tick(CPU_PROFILING); 245 } 246 #endif 247 248 #ifdef CONFIG_NO_HZ_FULL 249 cpumask_var_t tick_nohz_full_mask; 250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 251 bool tick_nohz_full_running; 252 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 253 static atomic_t tick_dep_mask; 254 255 static bool check_tick_dependency(atomic_t *dep) 256 { 257 int val = atomic_read(dep); 258 259 if (val & TICK_DEP_MASK_POSIX_TIMER) { 260 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 261 return true; 262 } 263 264 if (val & TICK_DEP_MASK_PERF_EVENTS) { 265 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 266 return true; 267 } 268 269 if (val & TICK_DEP_MASK_SCHED) { 270 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 271 return true; 272 } 273 274 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 275 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 276 return true; 277 } 278 279 if (val & TICK_DEP_MASK_RCU) { 280 trace_tick_stop(0, TICK_DEP_MASK_RCU); 281 return true; 282 } 283 284 return false; 285 } 286 287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 288 { 289 lockdep_assert_irqs_disabled(); 290 291 if (unlikely(!cpu_online(cpu))) 292 return false; 293 294 if (check_tick_dependency(&tick_dep_mask)) 295 return false; 296 297 if (check_tick_dependency(&ts->tick_dep_mask)) 298 return false; 299 300 if (check_tick_dependency(¤t->tick_dep_mask)) 301 return false; 302 303 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 304 return false; 305 306 return true; 307 } 308 309 static void nohz_full_kick_func(struct irq_work *work) 310 { 311 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 312 } 313 314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 315 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 316 317 /* 318 * Kick this CPU if it's full dynticks in order to force it to 319 * re-evaluate its dependency on the tick and restart it if necessary. 320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 321 * is NMI safe. 322 */ 323 static void tick_nohz_full_kick(void) 324 { 325 if (!tick_nohz_full_cpu(smp_processor_id())) 326 return; 327 328 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 329 } 330 331 /* 332 * Kick the CPU if it's full dynticks in order to force it to 333 * re-evaluate its dependency on the tick and restart it if necessary. 334 */ 335 void tick_nohz_full_kick_cpu(int cpu) 336 { 337 if (!tick_nohz_full_cpu(cpu)) 338 return; 339 340 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 341 } 342 343 static void tick_nohz_kick_task(struct task_struct *tsk) 344 { 345 int cpu; 346 347 /* 348 * If the task is not running, run_posix_cpu_timers() 349 * has nothing to elapse, IPI can then be spared. 350 * 351 * activate_task() STORE p->tick_dep_mask 352 * STORE p->on_rq 353 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) 354 * LOCK rq->lock LOAD p->on_rq 355 * smp_mb__after_spin_lock() 356 * tick_nohz_task_switch() 357 * LOAD p->tick_dep_mask 358 */ 359 if (!sched_task_on_rq(tsk)) 360 return; 361 362 /* 363 * If the task concurrently migrates to another CPU, 364 * we guarantee it sees the new tick dependency upon 365 * schedule. 366 * 367 * set_task_cpu(p, cpu); 368 * STORE p->cpu = @cpu 369 * __schedule() (switch to task 'p') 370 * LOCK rq->lock 371 * smp_mb__after_spin_lock() STORE p->tick_dep_mask 372 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) 373 * LOAD p->tick_dep_mask LOAD p->cpu 374 */ 375 cpu = task_cpu(tsk); 376 377 preempt_disable(); 378 if (cpu_online(cpu)) 379 tick_nohz_full_kick_cpu(cpu); 380 preempt_enable(); 381 } 382 383 /* 384 * Kick all full dynticks CPUs in order to force these to re-evaluate 385 * their dependency on the tick and restart it if necessary. 386 */ 387 static void tick_nohz_full_kick_all(void) 388 { 389 int cpu; 390 391 if (!tick_nohz_full_running) 392 return; 393 394 preempt_disable(); 395 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 396 tick_nohz_full_kick_cpu(cpu); 397 preempt_enable(); 398 } 399 400 static void tick_nohz_dep_set_all(atomic_t *dep, 401 enum tick_dep_bits bit) 402 { 403 int prev; 404 405 prev = atomic_fetch_or(BIT(bit), dep); 406 if (!prev) 407 tick_nohz_full_kick_all(); 408 } 409 410 /* 411 * Set a global tick dependency. Used by perf events that rely on freq and 412 * by unstable clock. 413 */ 414 void tick_nohz_dep_set(enum tick_dep_bits bit) 415 { 416 tick_nohz_dep_set_all(&tick_dep_mask, bit); 417 } 418 419 void tick_nohz_dep_clear(enum tick_dep_bits bit) 420 { 421 atomic_andnot(BIT(bit), &tick_dep_mask); 422 } 423 424 /* 425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 426 * manage events throttling. 427 */ 428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 429 { 430 int prev; 431 struct tick_sched *ts; 432 433 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 434 435 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 436 if (!prev) { 437 preempt_disable(); 438 /* Perf needs local kick that is NMI safe */ 439 if (cpu == smp_processor_id()) { 440 tick_nohz_full_kick(); 441 } else { 442 /* Remote irq work not NMI-safe */ 443 if (!WARN_ON_ONCE(in_nmi())) 444 tick_nohz_full_kick_cpu(cpu); 445 } 446 preempt_enable(); 447 } 448 } 449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 450 451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 452 { 453 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 454 455 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 456 } 457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 458 459 /* 460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers 461 * in order to elapse per task timers. 462 */ 463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 464 { 465 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) 466 tick_nohz_kick_task(tsk); 467 } 468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 469 470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 471 { 472 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 473 } 474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 475 476 /* 477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 478 * per process timers. 479 */ 480 void tick_nohz_dep_set_signal(struct task_struct *tsk, 481 enum tick_dep_bits bit) 482 { 483 int prev; 484 struct signal_struct *sig = tsk->signal; 485 486 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); 487 if (!prev) { 488 struct task_struct *t; 489 490 lockdep_assert_held(&tsk->sighand->siglock); 491 __for_each_thread(sig, t) 492 tick_nohz_kick_task(t); 493 } 494 } 495 496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 497 { 498 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 499 } 500 501 /* 502 * Re-evaluate the need for the tick as we switch the current task. 503 * It might need the tick due to per task/process properties: 504 * perf events, posix CPU timers, ... 505 */ 506 void __tick_nohz_task_switch(void) 507 { 508 struct tick_sched *ts; 509 510 if (!tick_nohz_full_cpu(smp_processor_id())) 511 return; 512 513 ts = this_cpu_ptr(&tick_cpu_sched); 514 515 if (ts->tick_stopped) { 516 if (atomic_read(¤t->tick_dep_mask) || 517 atomic_read(¤t->signal->tick_dep_mask)) 518 tick_nohz_full_kick(); 519 } 520 } 521 522 /* Get the boot-time nohz CPU list from the kernel parameters. */ 523 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 524 { 525 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 526 cpumask_copy(tick_nohz_full_mask, cpumask); 527 tick_nohz_full_running = true; 528 } 529 530 static int tick_nohz_cpu_down(unsigned int cpu) 531 { 532 /* 533 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 534 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 535 * CPUs. It must remain online when nohz full is enabled. 536 */ 537 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 538 return -EBUSY; 539 return 0; 540 } 541 542 void __init tick_nohz_init(void) 543 { 544 int cpu, ret; 545 546 if (!tick_nohz_full_running) 547 return; 548 549 /* 550 * Full dynticks uses irq work to drive the tick rescheduling on safe 551 * locking contexts. But then we need irq work to raise its own 552 * interrupts to avoid circular dependency on the tick 553 */ 554 if (!arch_irq_work_has_interrupt()) { 555 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 556 cpumask_clear(tick_nohz_full_mask); 557 tick_nohz_full_running = false; 558 return; 559 } 560 561 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 562 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 563 cpu = smp_processor_id(); 564 565 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 566 pr_warn("NO_HZ: Clearing %d from nohz_full range " 567 "for timekeeping\n", cpu); 568 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 569 } 570 } 571 572 for_each_cpu(cpu, tick_nohz_full_mask) 573 ct_cpu_track_user(cpu); 574 575 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 576 "kernel/nohz:predown", NULL, 577 tick_nohz_cpu_down); 578 WARN_ON(ret < 0); 579 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 580 cpumask_pr_args(tick_nohz_full_mask)); 581 } 582 #endif 583 584 /* 585 * NOHZ - aka dynamic tick functionality 586 */ 587 #ifdef CONFIG_NO_HZ_COMMON 588 /* 589 * NO HZ enabled ? 590 */ 591 bool tick_nohz_enabled __read_mostly = true; 592 unsigned long tick_nohz_active __read_mostly; 593 /* 594 * Enable / Disable tickless mode 595 */ 596 static int __init setup_tick_nohz(char *str) 597 { 598 return (kstrtobool(str, &tick_nohz_enabled) == 0); 599 } 600 601 __setup("nohz=", setup_tick_nohz); 602 603 bool tick_nohz_tick_stopped(void) 604 { 605 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 606 607 return ts->tick_stopped; 608 } 609 610 bool tick_nohz_tick_stopped_cpu(int cpu) 611 { 612 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 613 614 return ts->tick_stopped; 615 } 616 617 /** 618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 619 * 620 * Called from interrupt entry when the CPU was idle 621 * 622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 623 * must be updated. Otherwise an interrupt handler could use a stale jiffy 624 * value. We do this unconditionally on any CPU, as we don't know whether the 625 * CPU, which has the update task assigned is in a long sleep. 626 */ 627 static void tick_nohz_update_jiffies(ktime_t now) 628 { 629 unsigned long flags; 630 631 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 632 633 local_irq_save(flags); 634 tick_do_update_jiffies64(now); 635 local_irq_restore(flags); 636 637 touch_softlockup_watchdog_sched(); 638 } 639 640 /* 641 * Updates the per-CPU time idle statistics counters 642 */ 643 static void 644 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 645 { 646 ktime_t delta; 647 648 if (ts->idle_active) { 649 delta = ktime_sub(now, ts->idle_entrytime); 650 if (nr_iowait_cpu(cpu) > 0) 651 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 652 else 653 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 654 ts->idle_entrytime = now; 655 } 656 657 if (last_update_time) 658 *last_update_time = ktime_to_us(now); 659 660 } 661 662 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 663 { 664 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 665 ts->idle_active = 0; 666 667 sched_clock_idle_wakeup_event(); 668 } 669 670 static void tick_nohz_start_idle(struct tick_sched *ts) 671 { 672 ts->idle_entrytime = ktime_get(); 673 ts->idle_active = 1; 674 sched_clock_idle_sleep_event(); 675 } 676 677 /** 678 * get_cpu_idle_time_us - get the total idle time of a CPU 679 * @cpu: CPU number to query 680 * @last_update_time: variable to store update time in. Do not update 681 * counters if NULL. 682 * 683 * Return the cumulative idle time (since boot) for a given 684 * CPU, in microseconds. 685 * 686 * This time is measured via accounting rather than sampling, 687 * and is as accurate as ktime_get() is. 688 * 689 * This function returns -1 if NOHZ is not enabled. 690 */ 691 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 692 { 693 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 694 ktime_t now, idle; 695 696 if (!tick_nohz_active) 697 return -1; 698 699 now = ktime_get(); 700 if (last_update_time) { 701 update_ts_time_stats(cpu, ts, now, last_update_time); 702 idle = ts->idle_sleeptime; 703 } else { 704 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 705 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 706 707 idle = ktime_add(ts->idle_sleeptime, delta); 708 } else { 709 idle = ts->idle_sleeptime; 710 } 711 } 712 713 return ktime_to_us(idle); 714 715 } 716 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 717 718 /** 719 * get_cpu_iowait_time_us - get the total iowait time of a CPU 720 * @cpu: CPU number to query 721 * @last_update_time: variable to store update time in. Do not update 722 * counters if NULL. 723 * 724 * Return the cumulative iowait time (since boot) for a given 725 * CPU, in microseconds. 726 * 727 * This time is measured via accounting rather than sampling, 728 * and is as accurate as ktime_get() is. 729 * 730 * This function returns -1 if NOHZ is not enabled. 731 */ 732 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 733 { 734 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 735 ktime_t now, iowait; 736 737 if (!tick_nohz_active) 738 return -1; 739 740 now = ktime_get(); 741 if (last_update_time) { 742 update_ts_time_stats(cpu, ts, now, last_update_time); 743 iowait = ts->iowait_sleeptime; 744 } else { 745 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 746 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 747 748 iowait = ktime_add(ts->iowait_sleeptime, delta); 749 } else { 750 iowait = ts->iowait_sleeptime; 751 } 752 } 753 754 return ktime_to_us(iowait); 755 } 756 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 757 758 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 759 { 760 hrtimer_cancel(&ts->sched_timer); 761 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 762 763 /* Forward the time to expire in the future */ 764 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 765 766 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 767 hrtimer_start_expires(&ts->sched_timer, 768 HRTIMER_MODE_ABS_PINNED_HARD); 769 } else { 770 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 771 } 772 773 /* 774 * Reset to make sure next tick stop doesn't get fooled by past 775 * cached clock deadline. 776 */ 777 ts->next_tick = 0; 778 } 779 780 static inline bool local_timer_softirq_pending(void) 781 { 782 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 783 } 784 785 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 786 { 787 u64 basemono, next_tick, delta, expires; 788 unsigned long basejiff; 789 unsigned int seq; 790 791 /* Read jiffies and the time when jiffies were updated last */ 792 do { 793 seq = read_seqcount_begin(&jiffies_seq); 794 basemono = last_jiffies_update; 795 basejiff = jiffies; 796 } while (read_seqcount_retry(&jiffies_seq, seq)); 797 ts->last_jiffies = basejiff; 798 ts->timer_expires_base = basemono; 799 800 /* 801 * Keep the periodic tick, when RCU, architecture or irq_work 802 * requests it. 803 * Aside of that check whether the local timer softirq is 804 * pending. If so its a bad idea to call get_next_timer_interrupt() 805 * because there is an already expired timer, so it will request 806 * immediate expiry, which rearms the hardware timer with a 807 * minimal delta which brings us back to this place 808 * immediately. Lather, rinse and repeat... 809 */ 810 if (rcu_needs_cpu() || arch_needs_cpu() || 811 irq_work_needs_cpu() || local_timer_softirq_pending()) { 812 next_tick = basemono + TICK_NSEC; 813 } else { 814 /* 815 * Get the next pending timer. If high resolution 816 * timers are enabled this only takes the timer wheel 817 * timers into account. If high resolution timers are 818 * disabled this also looks at the next expiring 819 * hrtimer. 820 */ 821 next_tick = get_next_timer_interrupt(basejiff, basemono); 822 ts->next_timer = next_tick; 823 } 824 825 /* 826 * If the tick is due in the next period, keep it ticking or 827 * force prod the timer. 828 */ 829 delta = next_tick - basemono; 830 if (delta <= (u64)TICK_NSEC) { 831 /* 832 * Tell the timer code that the base is not idle, i.e. undo 833 * the effect of get_next_timer_interrupt(): 834 */ 835 timer_clear_idle(); 836 /* 837 * We've not stopped the tick yet, and there's a timer in the 838 * next period, so no point in stopping it either, bail. 839 */ 840 if (!ts->tick_stopped) { 841 ts->timer_expires = 0; 842 goto out; 843 } 844 } 845 846 /* 847 * If this CPU is the one which had the do_timer() duty last, we limit 848 * the sleep time to the timekeeping max_deferment value. 849 * Otherwise we can sleep as long as we want. 850 */ 851 delta = timekeeping_max_deferment(); 852 if (cpu != tick_do_timer_cpu && 853 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 854 delta = KTIME_MAX; 855 856 /* Calculate the next expiry time */ 857 if (delta < (KTIME_MAX - basemono)) 858 expires = basemono + delta; 859 else 860 expires = KTIME_MAX; 861 862 ts->timer_expires = min_t(u64, expires, next_tick); 863 864 out: 865 return ts->timer_expires; 866 } 867 868 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 869 { 870 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 871 u64 basemono = ts->timer_expires_base; 872 u64 expires = ts->timer_expires; 873 ktime_t tick = expires; 874 875 /* Make sure we won't be trying to stop it twice in a row. */ 876 ts->timer_expires_base = 0; 877 878 /* 879 * If this CPU is the one which updates jiffies, then give up 880 * the assignment and let it be taken by the CPU which runs 881 * the tick timer next, which might be this CPU as well. If we 882 * don't drop this here the jiffies might be stale and 883 * do_timer() never invoked. Keep track of the fact that it 884 * was the one which had the do_timer() duty last. 885 */ 886 if (cpu == tick_do_timer_cpu) { 887 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 888 ts->do_timer_last = 1; 889 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 890 ts->do_timer_last = 0; 891 } 892 893 /* Skip reprogram of event if its not changed */ 894 if (ts->tick_stopped && (expires == ts->next_tick)) { 895 /* Sanity check: make sure clockevent is actually programmed */ 896 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 897 return; 898 899 WARN_ON_ONCE(1); 900 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 901 basemono, ts->next_tick, dev->next_event, 902 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 903 } 904 905 /* 906 * nohz_stop_sched_tick can be called several times before 907 * the nohz_restart_sched_tick is called. This happens when 908 * interrupts arrive which do not cause a reschedule. In the 909 * first call we save the current tick time, so we can restart 910 * the scheduler tick in nohz_restart_sched_tick. 911 */ 912 if (!ts->tick_stopped) { 913 calc_load_nohz_start(); 914 quiet_vmstat(); 915 916 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 917 ts->tick_stopped = 1; 918 trace_tick_stop(1, TICK_DEP_MASK_NONE); 919 } 920 921 ts->next_tick = tick; 922 923 /* 924 * If the expiration time == KTIME_MAX, then we simply stop 925 * the tick timer. 926 */ 927 if (unlikely(expires == KTIME_MAX)) { 928 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 929 hrtimer_cancel(&ts->sched_timer); 930 else 931 tick_program_event(KTIME_MAX, 1); 932 return; 933 } 934 935 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 936 hrtimer_start(&ts->sched_timer, tick, 937 HRTIMER_MODE_ABS_PINNED_HARD); 938 } else { 939 hrtimer_set_expires(&ts->sched_timer, tick); 940 tick_program_event(tick, 1); 941 } 942 } 943 944 static void tick_nohz_retain_tick(struct tick_sched *ts) 945 { 946 ts->timer_expires_base = 0; 947 } 948 949 #ifdef CONFIG_NO_HZ_FULL 950 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 951 { 952 if (tick_nohz_next_event(ts, cpu)) 953 tick_nohz_stop_tick(ts, cpu); 954 else 955 tick_nohz_retain_tick(ts); 956 } 957 #endif /* CONFIG_NO_HZ_FULL */ 958 959 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 960 { 961 /* Update jiffies first */ 962 tick_do_update_jiffies64(now); 963 964 /* 965 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 966 * the clock forward checks in the enqueue path: 967 */ 968 timer_clear_idle(); 969 970 calc_load_nohz_stop(); 971 touch_softlockup_watchdog_sched(); 972 /* 973 * Cancel the scheduled timer and restore the tick 974 */ 975 ts->tick_stopped = 0; 976 tick_nohz_restart(ts, now); 977 } 978 979 static void __tick_nohz_full_update_tick(struct tick_sched *ts, 980 ktime_t now) 981 { 982 #ifdef CONFIG_NO_HZ_FULL 983 int cpu = smp_processor_id(); 984 985 if (can_stop_full_tick(cpu, ts)) 986 tick_nohz_stop_sched_tick(ts, cpu); 987 else if (ts->tick_stopped) 988 tick_nohz_restart_sched_tick(ts, now); 989 #endif 990 } 991 992 static void tick_nohz_full_update_tick(struct tick_sched *ts) 993 { 994 if (!tick_nohz_full_cpu(smp_processor_id())) 995 return; 996 997 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 998 return; 999 1000 __tick_nohz_full_update_tick(ts, ktime_get()); 1001 } 1002 1003 /* 1004 * A pending softirq outside an IRQ (or softirq disabled section) context 1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't 1006 * reach here due to the need_resched() early check in can_stop_idle_tick(). 1007 * 1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the 1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, 1010 * triggering the below since wakep_softirqd() is ignored. 1011 * 1012 */ 1013 static bool report_idle_softirq(void) 1014 { 1015 static int ratelimit; 1016 unsigned int pending = local_softirq_pending(); 1017 1018 if (likely(!pending)) 1019 return false; 1020 1021 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ 1022 if (!cpu_active(smp_processor_id())) { 1023 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; 1024 if (!pending) 1025 return false; 1026 } 1027 1028 if (ratelimit < 10) 1029 return false; 1030 1031 /* On RT, softirqs handling may be waiting on some lock */ 1032 if (!local_bh_blocked()) 1033 return false; 1034 1035 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", 1036 pending); 1037 ratelimit++; 1038 1039 return true; 1040 } 1041 1042 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 1043 { 1044 /* 1045 * If this CPU is offline and it is the one which updates 1046 * jiffies, then give up the assignment and let it be taken by 1047 * the CPU which runs the tick timer next. If we don't drop 1048 * this here the jiffies might be stale and do_timer() never 1049 * invoked. 1050 */ 1051 if (unlikely(!cpu_online(cpu))) { 1052 if (cpu == tick_do_timer_cpu) 1053 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 1054 /* 1055 * Make sure the CPU doesn't get fooled by obsolete tick 1056 * deadline if it comes back online later. 1057 */ 1058 ts->next_tick = 0; 1059 return false; 1060 } 1061 1062 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 1063 return false; 1064 1065 if (need_resched()) 1066 return false; 1067 1068 if (unlikely(report_idle_softirq())) 1069 return false; 1070 1071 if (tick_nohz_full_enabled()) { 1072 /* 1073 * Keep the tick alive to guarantee timekeeping progression 1074 * if there are full dynticks CPUs around 1075 */ 1076 if (tick_do_timer_cpu == cpu) 1077 return false; 1078 1079 /* Should not happen for nohz-full */ 1080 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 1081 return false; 1082 } 1083 1084 return true; 1085 } 1086 1087 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 1088 { 1089 ktime_t expires; 1090 int cpu = smp_processor_id(); 1091 1092 /* 1093 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1094 * tick timer expiration time is known already. 1095 */ 1096 if (ts->timer_expires_base) 1097 expires = ts->timer_expires; 1098 else if (can_stop_idle_tick(cpu, ts)) 1099 expires = tick_nohz_next_event(ts, cpu); 1100 else 1101 return; 1102 1103 ts->idle_calls++; 1104 1105 if (expires > 0LL) { 1106 int was_stopped = ts->tick_stopped; 1107 1108 tick_nohz_stop_tick(ts, cpu); 1109 1110 ts->idle_sleeps++; 1111 ts->idle_expires = expires; 1112 1113 if (!was_stopped && ts->tick_stopped) { 1114 ts->idle_jiffies = ts->last_jiffies; 1115 nohz_balance_enter_idle(cpu); 1116 } 1117 } else { 1118 tick_nohz_retain_tick(ts); 1119 } 1120 } 1121 1122 /** 1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1124 * 1125 * When the next event is more than a tick into the future, stop the idle tick 1126 */ 1127 void tick_nohz_idle_stop_tick(void) 1128 { 1129 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 1130 } 1131 1132 void tick_nohz_idle_retain_tick(void) 1133 { 1134 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1135 /* 1136 * Undo the effect of get_next_timer_interrupt() called from 1137 * tick_nohz_next_event(). 1138 */ 1139 timer_clear_idle(); 1140 } 1141 1142 /** 1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1144 * 1145 * Called when we start the idle loop. 1146 */ 1147 void tick_nohz_idle_enter(void) 1148 { 1149 struct tick_sched *ts; 1150 1151 lockdep_assert_irqs_enabled(); 1152 1153 local_irq_disable(); 1154 1155 ts = this_cpu_ptr(&tick_cpu_sched); 1156 1157 WARN_ON_ONCE(ts->timer_expires_base); 1158 1159 ts->inidle = 1; 1160 tick_nohz_start_idle(ts); 1161 1162 local_irq_enable(); 1163 } 1164 1165 /** 1166 * tick_nohz_irq_exit - update next tick event from interrupt exit 1167 * 1168 * When an interrupt fires while we are idle and it doesn't cause 1169 * a reschedule, it may still add, modify or delete a timer, enqueue 1170 * an RCU callback, etc... 1171 * So we need to re-calculate and reprogram the next tick event. 1172 */ 1173 void tick_nohz_irq_exit(void) 1174 { 1175 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1176 1177 if (ts->inidle) 1178 tick_nohz_start_idle(ts); 1179 else 1180 tick_nohz_full_update_tick(ts); 1181 } 1182 1183 /** 1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1185 */ 1186 bool tick_nohz_idle_got_tick(void) 1187 { 1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1189 1190 if (ts->got_idle_tick) { 1191 ts->got_idle_tick = 0; 1192 return true; 1193 } 1194 return false; 1195 } 1196 1197 /** 1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1199 * or the tick, whatever that expires first. Note that, if the tick has been 1200 * stopped, it returns the next hrtimer. 1201 * 1202 * Called from power state control code with interrupts disabled 1203 */ 1204 ktime_t tick_nohz_get_next_hrtimer(void) 1205 { 1206 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1207 } 1208 1209 /** 1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1211 * @delta_next: duration until the next event if the tick cannot be stopped 1212 * 1213 * Called from power state control code with interrupts disabled. 1214 * 1215 * The return value of this function and/or the value returned by it through the 1216 * @delta_next pointer can be negative which must be taken into account by its 1217 * callers. 1218 */ 1219 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1220 { 1221 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1222 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1223 int cpu = smp_processor_id(); 1224 /* 1225 * The idle entry time is expected to be a sufficient approximation of 1226 * the current time at this point. 1227 */ 1228 ktime_t now = ts->idle_entrytime; 1229 ktime_t next_event; 1230 1231 WARN_ON_ONCE(!ts->inidle); 1232 1233 *delta_next = ktime_sub(dev->next_event, now); 1234 1235 if (!can_stop_idle_tick(cpu, ts)) 1236 return *delta_next; 1237 1238 next_event = tick_nohz_next_event(ts, cpu); 1239 if (!next_event) 1240 return *delta_next; 1241 1242 /* 1243 * If the next highres timer to expire is earlier than next_event, the 1244 * idle governor needs to know that. 1245 */ 1246 next_event = min_t(u64, next_event, 1247 hrtimer_next_event_without(&ts->sched_timer)); 1248 1249 return ktime_sub(next_event, now); 1250 } 1251 1252 /** 1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1254 * for a particular CPU. 1255 * 1256 * Called from the schedutil frequency scaling governor in scheduler context. 1257 */ 1258 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1259 { 1260 struct tick_sched *ts = tick_get_tick_sched(cpu); 1261 1262 return ts->idle_calls; 1263 } 1264 1265 /** 1266 * tick_nohz_get_idle_calls - return the current idle calls counter value 1267 * 1268 * Called from the schedutil frequency scaling governor in scheduler context. 1269 */ 1270 unsigned long tick_nohz_get_idle_calls(void) 1271 { 1272 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1273 1274 return ts->idle_calls; 1275 } 1276 1277 static void tick_nohz_account_idle_time(struct tick_sched *ts, 1278 ktime_t now) 1279 { 1280 unsigned long ticks; 1281 1282 ts->idle_exittime = now; 1283 1284 if (vtime_accounting_enabled_this_cpu()) 1285 return; 1286 /* 1287 * We stopped the tick in idle. Update process times would miss the 1288 * time we slept as update_process_times does only a 1 tick 1289 * accounting. Enforce that this is accounted to idle ! 1290 */ 1291 ticks = jiffies - ts->idle_jiffies; 1292 /* 1293 * We might be one off. Do not randomly account a huge number of ticks! 1294 */ 1295 if (ticks && ticks < LONG_MAX) 1296 account_idle_ticks(ticks); 1297 } 1298 1299 void tick_nohz_idle_restart_tick(void) 1300 { 1301 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1302 1303 if (ts->tick_stopped) { 1304 ktime_t now = ktime_get(); 1305 tick_nohz_restart_sched_tick(ts, now); 1306 tick_nohz_account_idle_time(ts, now); 1307 } 1308 } 1309 1310 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) 1311 { 1312 if (tick_nohz_full_cpu(smp_processor_id())) 1313 __tick_nohz_full_update_tick(ts, now); 1314 else 1315 tick_nohz_restart_sched_tick(ts, now); 1316 1317 tick_nohz_account_idle_time(ts, now); 1318 } 1319 1320 /** 1321 * tick_nohz_idle_exit - restart the idle tick from the idle task 1322 * 1323 * Restart the idle tick when the CPU is woken up from idle 1324 * This also exit the RCU extended quiescent state. The CPU 1325 * can use RCU again after this function is called. 1326 */ 1327 void tick_nohz_idle_exit(void) 1328 { 1329 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1330 bool idle_active, tick_stopped; 1331 ktime_t now; 1332 1333 local_irq_disable(); 1334 1335 WARN_ON_ONCE(!ts->inidle); 1336 WARN_ON_ONCE(ts->timer_expires_base); 1337 1338 ts->inidle = 0; 1339 idle_active = ts->idle_active; 1340 tick_stopped = ts->tick_stopped; 1341 1342 if (idle_active || tick_stopped) 1343 now = ktime_get(); 1344 1345 if (idle_active) 1346 tick_nohz_stop_idle(ts, now); 1347 1348 if (tick_stopped) 1349 tick_nohz_idle_update_tick(ts, now); 1350 1351 local_irq_enable(); 1352 } 1353 1354 /* 1355 * The nohz low res interrupt handler 1356 */ 1357 static void tick_nohz_handler(struct clock_event_device *dev) 1358 { 1359 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1360 struct pt_regs *regs = get_irq_regs(); 1361 ktime_t now = ktime_get(); 1362 1363 dev->next_event = KTIME_MAX; 1364 1365 tick_sched_do_timer(ts, now); 1366 tick_sched_handle(ts, regs); 1367 1368 if (unlikely(ts->tick_stopped)) { 1369 /* 1370 * The clockevent device is not reprogrammed, so change the 1371 * clock event device to ONESHOT_STOPPED to avoid spurious 1372 * interrupts on devices which might not be truly one shot. 1373 */ 1374 tick_program_event(KTIME_MAX, 1); 1375 return; 1376 } 1377 1378 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1379 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1380 } 1381 1382 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1383 { 1384 if (!tick_nohz_enabled) 1385 return; 1386 ts->nohz_mode = mode; 1387 /* One update is enough */ 1388 if (!test_and_set_bit(0, &tick_nohz_active)) 1389 timers_update_nohz(); 1390 } 1391 1392 /** 1393 * tick_nohz_switch_to_nohz - switch to nohz mode 1394 */ 1395 static void tick_nohz_switch_to_nohz(void) 1396 { 1397 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1398 ktime_t next; 1399 1400 if (!tick_nohz_enabled) 1401 return; 1402 1403 if (tick_switch_to_oneshot(tick_nohz_handler)) 1404 return; 1405 1406 /* 1407 * Recycle the hrtimer in ts, so we can share the 1408 * hrtimer_forward with the highres code. 1409 */ 1410 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1411 /* Get the next period */ 1412 next = tick_init_jiffy_update(); 1413 1414 hrtimer_set_expires(&ts->sched_timer, next); 1415 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1416 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1417 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1418 } 1419 1420 static inline void tick_nohz_irq_enter(void) 1421 { 1422 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1423 ktime_t now; 1424 1425 if (!ts->idle_active && !ts->tick_stopped) 1426 return; 1427 now = ktime_get(); 1428 if (ts->idle_active) 1429 tick_nohz_stop_idle(ts, now); 1430 /* 1431 * If all CPUs are idle. We may need to update a stale jiffies value. 1432 * Note nohz_full is a special case: a timekeeper is guaranteed to stay 1433 * alive but it might be busy looping with interrupts disabled in some 1434 * rare case (typically stop machine). So we must make sure we have a 1435 * last resort. 1436 */ 1437 if (ts->tick_stopped) 1438 tick_nohz_update_jiffies(now); 1439 } 1440 1441 #else 1442 1443 static inline void tick_nohz_switch_to_nohz(void) { } 1444 static inline void tick_nohz_irq_enter(void) { } 1445 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1446 1447 #endif /* CONFIG_NO_HZ_COMMON */ 1448 1449 /* 1450 * Called from irq_enter to notify about the possible interruption of idle() 1451 */ 1452 void tick_irq_enter(void) 1453 { 1454 tick_check_oneshot_broadcast_this_cpu(); 1455 tick_nohz_irq_enter(); 1456 } 1457 1458 /* 1459 * High resolution timer specific code 1460 */ 1461 #ifdef CONFIG_HIGH_RES_TIMERS 1462 /* 1463 * We rearm the timer until we get disabled by the idle code. 1464 * Called with interrupts disabled. 1465 */ 1466 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1467 { 1468 struct tick_sched *ts = 1469 container_of(timer, struct tick_sched, sched_timer); 1470 struct pt_regs *regs = get_irq_regs(); 1471 ktime_t now = ktime_get(); 1472 1473 tick_sched_do_timer(ts, now); 1474 1475 /* 1476 * Do not call, when we are not in irq context and have 1477 * no valid regs pointer 1478 */ 1479 if (regs) 1480 tick_sched_handle(ts, regs); 1481 else 1482 ts->next_tick = 0; 1483 1484 /* No need to reprogram if we are in idle or full dynticks mode */ 1485 if (unlikely(ts->tick_stopped)) 1486 return HRTIMER_NORESTART; 1487 1488 hrtimer_forward(timer, now, TICK_NSEC); 1489 1490 return HRTIMER_RESTART; 1491 } 1492 1493 static int sched_skew_tick; 1494 1495 static int __init skew_tick(char *str) 1496 { 1497 get_option(&str, &sched_skew_tick); 1498 1499 return 0; 1500 } 1501 early_param("skew_tick", skew_tick); 1502 1503 /** 1504 * tick_setup_sched_timer - setup the tick emulation timer 1505 */ 1506 void tick_setup_sched_timer(void) 1507 { 1508 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1509 ktime_t now = ktime_get(); 1510 1511 /* 1512 * Emulate tick processing via per-CPU hrtimers: 1513 */ 1514 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1515 ts->sched_timer.function = tick_sched_timer; 1516 1517 /* Get the next period (per-CPU) */ 1518 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1519 1520 /* Offset the tick to avert jiffies_lock contention. */ 1521 if (sched_skew_tick) { 1522 u64 offset = TICK_NSEC >> 1; 1523 do_div(offset, num_possible_cpus()); 1524 offset *= smp_processor_id(); 1525 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1526 } 1527 1528 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1529 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1530 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1531 } 1532 #endif /* HIGH_RES_TIMERS */ 1533 1534 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1535 void tick_cancel_sched_timer(int cpu) 1536 { 1537 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1538 1539 # ifdef CONFIG_HIGH_RES_TIMERS 1540 if (ts->sched_timer.base) 1541 hrtimer_cancel(&ts->sched_timer); 1542 # endif 1543 1544 memset(ts, 0, sizeof(*ts)); 1545 } 1546 #endif 1547 1548 /* 1549 * Async notification about clocksource changes 1550 */ 1551 void tick_clock_notify(void) 1552 { 1553 int cpu; 1554 1555 for_each_possible_cpu(cpu) 1556 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1557 } 1558 1559 /* 1560 * Async notification about clock event changes 1561 */ 1562 void tick_oneshot_notify(void) 1563 { 1564 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1565 1566 set_bit(0, &ts->check_clocks); 1567 } 1568 1569 /* 1570 * Check, if a change happened, which makes oneshot possible. 1571 * 1572 * Called cyclic from the hrtimer softirq (driven by the timer 1573 * softirq) allow_nohz signals, that we can switch into low-res nohz 1574 * mode, because high resolution timers are disabled (either compile 1575 * or runtime). Called with interrupts disabled. 1576 */ 1577 int tick_check_oneshot_change(int allow_nohz) 1578 { 1579 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1580 1581 if (!test_and_clear_bit(0, &ts->check_clocks)) 1582 return 0; 1583 1584 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1585 return 0; 1586 1587 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1588 return 0; 1589 1590 if (!allow_nohz) 1591 return 1; 1592 1593 tick_nohz_switch_to_nohz(); 1594 return 0; 1595 } 1596