1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 114 { 115 int cpu = smp_processor_id(); 116 117 #ifdef CONFIG_NO_HZ_COMMON 118 /* 119 * Check if the do_timer duty was dropped. We don't care about 120 * concurrency: This happens only when the CPU in charge went 121 * into a long sleep. If two CPUs happen to assign themselves to 122 * this duty, then the jiffies update is still serialized by 123 * jiffies_lock. 124 */ 125 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 126 && !tick_nohz_full_cpu(cpu)) 127 tick_do_timer_cpu = cpu; 128 #endif 129 130 /* Check, if the jiffies need an update */ 131 if (tick_do_timer_cpu == cpu) 132 tick_do_update_jiffies64(now); 133 134 if (ts->inidle) 135 ts->got_idle_tick = 1; 136 } 137 138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 139 { 140 #ifdef CONFIG_NO_HZ_COMMON 141 /* 142 * When we are idle and the tick is stopped, we have to touch 143 * the watchdog as we might not schedule for a really long 144 * time. This happens on complete idle SMP systems while 145 * waiting on the login prompt. We also increment the "start of 146 * idle" jiffy stamp so the idle accounting adjustment we do 147 * when we go busy again does not account too much ticks. 148 */ 149 if (ts->tick_stopped) { 150 touch_softlockup_watchdog_sched(); 151 if (is_idle_task(current)) 152 ts->idle_jiffies++; 153 /* 154 * In case the current tick fired too early past its expected 155 * expiration, make sure we don't bypass the next clock reprogramming 156 * to the same deadline. 157 */ 158 ts->next_tick = 0; 159 } 160 #endif 161 update_process_times(user_mode(regs)); 162 profile_tick(CPU_PROFILING); 163 } 164 #endif 165 166 #ifdef CONFIG_NO_HZ_FULL 167 cpumask_var_t tick_nohz_full_mask; 168 bool tick_nohz_full_running; 169 static atomic_t tick_dep_mask; 170 171 static bool check_tick_dependency(atomic_t *dep) 172 { 173 int val = atomic_read(dep); 174 175 if (val & TICK_DEP_MASK_POSIX_TIMER) { 176 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 177 return true; 178 } 179 180 if (val & TICK_DEP_MASK_PERF_EVENTS) { 181 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 182 return true; 183 } 184 185 if (val & TICK_DEP_MASK_SCHED) { 186 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 187 return true; 188 } 189 190 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 191 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 192 return true; 193 } 194 195 return false; 196 } 197 198 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 199 { 200 lockdep_assert_irqs_disabled(); 201 202 if (unlikely(!cpu_online(cpu))) 203 return false; 204 205 if (check_tick_dependency(&tick_dep_mask)) 206 return false; 207 208 if (check_tick_dependency(&ts->tick_dep_mask)) 209 return false; 210 211 if (check_tick_dependency(¤t->tick_dep_mask)) 212 return false; 213 214 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 215 return false; 216 217 return true; 218 } 219 220 static void nohz_full_kick_func(struct irq_work *work) 221 { 222 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 223 } 224 225 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 226 .func = nohz_full_kick_func, 227 }; 228 229 /* 230 * Kick this CPU if it's full dynticks in order to force it to 231 * re-evaluate its dependency on the tick and restart it if necessary. 232 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 233 * is NMI safe. 234 */ 235 static void tick_nohz_full_kick(void) 236 { 237 if (!tick_nohz_full_cpu(smp_processor_id())) 238 return; 239 240 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 241 } 242 243 /* 244 * Kick the CPU if it's full dynticks in order to force it to 245 * re-evaluate its dependency on the tick and restart it if necessary. 246 */ 247 void tick_nohz_full_kick_cpu(int cpu) 248 { 249 if (!tick_nohz_full_cpu(cpu)) 250 return; 251 252 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 253 } 254 255 /* 256 * Kick all full dynticks CPUs in order to force these to re-evaluate 257 * their dependency on the tick and restart it if necessary. 258 */ 259 static void tick_nohz_full_kick_all(void) 260 { 261 int cpu; 262 263 if (!tick_nohz_full_running) 264 return; 265 266 preempt_disable(); 267 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 268 tick_nohz_full_kick_cpu(cpu); 269 preempt_enable(); 270 } 271 272 static void tick_nohz_dep_set_all(atomic_t *dep, 273 enum tick_dep_bits bit) 274 { 275 int prev; 276 277 prev = atomic_fetch_or(BIT(bit), dep); 278 if (!prev) 279 tick_nohz_full_kick_all(); 280 } 281 282 /* 283 * Set a global tick dependency. Used by perf events that rely on freq and 284 * by unstable clock. 285 */ 286 void tick_nohz_dep_set(enum tick_dep_bits bit) 287 { 288 tick_nohz_dep_set_all(&tick_dep_mask, bit); 289 } 290 291 void tick_nohz_dep_clear(enum tick_dep_bits bit) 292 { 293 atomic_andnot(BIT(bit), &tick_dep_mask); 294 } 295 296 /* 297 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 298 * manage events throttling. 299 */ 300 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 301 { 302 int prev; 303 struct tick_sched *ts; 304 305 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 306 307 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 308 if (!prev) { 309 preempt_disable(); 310 /* Perf needs local kick that is NMI safe */ 311 if (cpu == smp_processor_id()) { 312 tick_nohz_full_kick(); 313 } else { 314 /* Remote irq work not NMI-safe */ 315 if (!WARN_ON_ONCE(in_nmi())) 316 tick_nohz_full_kick_cpu(cpu); 317 } 318 preempt_enable(); 319 } 320 } 321 322 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 323 { 324 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 325 326 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 327 } 328 329 /* 330 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 331 * per task timers. 332 */ 333 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 334 { 335 /* 336 * We could optimize this with just kicking the target running the task 337 * if that noise matters for nohz full users. 338 */ 339 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 340 } 341 342 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 343 { 344 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 345 } 346 347 /* 348 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 349 * per process timers. 350 */ 351 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 352 { 353 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 354 } 355 356 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 357 { 358 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 359 } 360 361 /* 362 * Re-evaluate the need for the tick as we switch the current task. 363 * It might need the tick due to per task/process properties: 364 * perf events, posix CPU timers, ... 365 */ 366 void __tick_nohz_task_switch(void) 367 { 368 unsigned long flags; 369 struct tick_sched *ts; 370 371 local_irq_save(flags); 372 373 if (!tick_nohz_full_cpu(smp_processor_id())) 374 goto out; 375 376 ts = this_cpu_ptr(&tick_cpu_sched); 377 378 if (ts->tick_stopped) { 379 if (atomic_read(¤t->tick_dep_mask) || 380 atomic_read(¤t->signal->tick_dep_mask)) 381 tick_nohz_full_kick(); 382 } 383 out: 384 local_irq_restore(flags); 385 } 386 387 /* Get the boot-time nohz CPU list from the kernel parameters. */ 388 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 389 { 390 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 391 cpumask_copy(tick_nohz_full_mask, cpumask); 392 tick_nohz_full_running = true; 393 } 394 395 static int tick_nohz_cpu_down(unsigned int cpu) 396 { 397 /* 398 * The boot CPU handles housekeeping duty (unbound timers, 399 * workqueues, timekeeping, ...) on behalf of full dynticks 400 * CPUs. It must remain online when nohz full is enabled. 401 */ 402 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 403 return -EBUSY; 404 return 0; 405 } 406 407 void __init tick_nohz_init(void) 408 { 409 int cpu, ret; 410 411 if (!tick_nohz_full_running) 412 return; 413 414 /* 415 * Full dynticks uses irq work to drive the tick rescheduling on safe 416 * locking contexts. But then we need irq work to raise its own 417 * interrupts to avoid circular dependency on the tick 418 */ 419 if (!arch_irq_work_has_interrupt()) { 420 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 421 cpumask_clear(tick_nohz_full_mask); 422 tick_nohz_full_running = false; 423 return; 424 } 425 426 cpu = smp_processor_id(); 427 428 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 429 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 430 cpu); 431 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 432 } 433 434 for_each_cpu(cpu, tick_nohz_full_mask) 435 context_tracking_cpu_set(cpu); 436 437 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 438 "kernel/nohz:predown", NULL, 439 tick_nohz_cpu_down); 440 WARN_ON(ret < 0); 441 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 442 cpumask_pr_args(tick_nohz_full_mask)); 443 } 444 #endif 445 446 /* 447 * NOHZ - aka dynamic tick functionality 448 */ 449 #ifdef CONFIG_NO_HZ_COMMON 450 /* 451 * NO HZ enabled ? 452 */ 453 bool tick_nohz_enabled __read_mostly = true; 454 unsigned long tick_nohz_active __read_mostly; 455 /* 456 * Enable / Disable tickless mode 457 */ 458 static int __init setup_tick_nohz(char *str) 459 { 460 return (kstrtobool(str, &tick_nohz_enabled) == 0); 461 } 462 463 __setup("nohz=", setup_tick_nohz); 464 465 bool tick_nohz_tick_stopped(void) 466 { 467 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 468 469 return ts->tick_stopped; 470 } 471 472 bool tick_nohz_tick_stopped_cpu(int cpu) 473 { 474 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 475 476 return ts->tick_stopped; 477 } 478 479 /** 480 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 481 * 482 * Called from interrupt entry when the CPU was idle 483 * 484 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 485 * must be updated. Otherwise an interrupt handler could use a stale jiffy 486 * value. We do this unconditionally on any CPU, as we don't know whether the 487 * CPU, which has the update task assigned is in a long sleep. 488 */ 489 static void tick_nohz_update_jiffies(ktime_t now) 490 { 491 unsigned long flags; 492 493 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 494 495 local_irq_save(flags); 496 tick_do_update_jiffies64(now); 497 local_irq_restore(flags); 498 499 touch_softlockup_watchdog_sched(); 500 } 501 502 /* 503 * Updates the per-CPU time idle statistics counters 504 */ 505 static void 506 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 507 { 508 ktime_t delta; 509 510 if (ts->idle_active) { 511 delta = ktime_sub(now, ts->idle_entrytime); 512 if (nr_iowait_cpu(cpu) > 0) 513 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 514 else 515 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 516 ts->idle_entrytime = now; 517 } 518 519 if (last_update_time) 520 *last_update_time = ktime_to_us(now); 521 522 } 523 524 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 525 { 526 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 527 ts->idle_active = 0; 528 529 sched_clock_idle_wakeup_event(); 530 } 531 532 static void tick_nohz_start_idle(struct tick_sched *ts) 533 { 534 ts->idle_entrytime = ktime_get(); 535 ts->idle_active = 1; 536 sched_clock_idle_sleep_event(); 537 } 538 539 /** 540 * get_cpu_idle_time_us - get the total idle time of a CPU 541 * @cpu: CPU number to query 542 * @last_update_time: variable to store update time in. Do not update 543 * counters if NULL. 544 * 545 * Return the cumulative idle time (since boot) for a given 546 * CPU, in microseconds. 547 * 548 * This time is measured via accounting rather than sampling, 549 * and is as accurate as ktime_get() is. 550 * 551 * This function returns -1 if NOHZ is not enabled. 552 */ 553 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 554 { 555 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 556 ktime_t now, idle; 557 558 if (!tick_nohz_active) 559 return -1; 560 561 now = ktime_get(); 562 if (last_update_time) { 563 update_ts_time_stats(cpu, ts, now, last_update_time); 564 idle = ts->idle_sleeptime; 565 } else { 566 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 567 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 568 569 idle = ktime_add(ts->idle_sleeptime, delta); 570 } else { 571 idle = ts->idle_sleeptime; 572 } 573 } 574 575 return ktime_to_us(idle); 576 577 } 578 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 579 580 /** 581 * get_cpu_iowait_time_us - get the total iowait time of a CPU 582 * @cpu: CPU number to query 583 * @last_update_time: variable to store update time in. Do not update 584 * counters if NULL. 585 * 586 * Return the cumulative iowait time (since boot) for a given 587 * CPU, in microseconds. 588 * 589 * This time is measured via accounting rather than sampling, 590 * and is as accurate as ktime_get() is. 591 * 592 * This function returns -1 if NOHZ is not enabled. 593 */ 594 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 595 { 596 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 597 ktime_t now, iowait; 598 599 if (!tick_nohz_active) 600 return -1; 601 602 now = ktime_get(); 603 if (last_update_time) { 604 update_ts_time_stats(cpu, ts, now, last_update_time); 605 iowait = ts->iowait_sleeptime; 606 } else { 607 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 608 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 609 610 iowait = ktime_add(ts->iowait_sleeptime, delta); 611 } else { 612 iowait = ts->iowait_sleeptime; 613 } 614 } 615 616 return ktime_to_us(iowait); 617 } 618 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 619 620 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 621 { 622 hrtimer_cancel(&ts->sched_timer); 623 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 624 625 /* Forward the time to expire in the future */ 626 hrtimer_forward(&ts->sched_timer, now, tick_period); 627 628 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 629 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 630 else 631 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 632 633 /* 634 * Reset to make sure next tick stop doesn't get fooled by past 635 * cached clock deadline. 636 */ 637 ts->next_tick = 0; 638 } 639 640 static inline bool local_timer_softirq_pending(void) 641 { 642 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 643 } 644 645 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 646 { 647 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 648 unsigned long seq, basejiff; 649 650 /* Read jiffies and the time when jiffies were updated last */ 651 do { 652 seq = read_seqbegin(&jiffies_lock); 653 basemono = last_jiffies_update; 654 basejiff = jiffies; 655 } while (read_seqretry(&jiffies_lock, seq)); 656 ts->last_jiffies = basejiff; 657 ts->timer_expires_base = basemono; 658 659 /* 660 * Keep the periodic tick, when RCU, architecture or irq_work 661 * requests it. 662 * Aside of that check whether the local timer softirq is 663 * pending. If so its a bad idea to call get_next_timer_interrupt() 664 * because there is an already expired timer, so it will request 665 * immeditate expiry, which rearms the hardware timer with a 666 * minimal delta which brings us back to this place 667 * immediately. Lather, rinse and repeat... 668 */ 669 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 670 irq_work_needs_cpu() || local_timer_softirq_pending()) { 671 next_tick = basemono + TICK_NSEC; 672 } else { 673 /* 674 * Get the next pending timer. If high resolution 675 * timers are enabled this only takes the timer wheel 676 * timers into account. If high resolution timers are 677 * disabled this also looks at the next expiring 678 * hrtimer. 679 */ 680 next_tmr = get_next_timer_interrupt(basejiff, basemono); 681 ts->next_timer = next_tmr; 682 /* Take the next rcu event into account */ 683 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 684 } 685 686 /* 687 * If the tick is due in the next period, keep it ticking or 688 * force prod the timer. 689 */ 690 delta = next_tick - basemono; 691 if (delta <= (u64)TICK_NSEC) { 692 /* 693 * Tell the timer code that the base is not idle, i.e. undo 694 * the effect of get_next_timer_interrupt(): 695 */ 696 timer_clear_idle(); 697 /* 698 * We've not stopped the tick yet, and there's a timer in the 699 * next period, so no point in stopping it either, bail. 700 */ 701 if (!ts->tick_stopped) { 702 ts->timer_expires = 0; 703 goto out; 704 } 705 } 706 707 /* 708 * If this CPU is the one which had the do_timer() duty last, we limit 709 * the sleep time to the timekeeping max_deferment value. 710 * Otherwise we can sleep as long as we want. 711 */ 712 delta = timekeeping_max_deferment(); 713 if (cpu != tick_do_timer_cpu && 714 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 715 delta = KTIME_MAX; 716 717 /* Calculate the next expiry time */ 718 if (delta < (KTIME_MAX - basemono)) 719 expires = basemono + delta; 720 else 721 expires = KTIME_MAX; 722 723 ts->timer_expires = min_t(u64, expires, next_tick); 724 725 out: 726 return ts->timer_expires; 727 } 728 729 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 730 { 731 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 732 u64 basemono = ts->timer_expires_base; 733 u64 expires = ts->timer_expires; 734 ktime_t tick = expires; 735 736 /* Make sure we won't be trying to stop it twice in a row. */ 737 ts->timer_expires_base = 0; 738 739 /* 740 * If this CPU is the one which updates jiffies, then give up 741 * the assignment and let it be taken by the CPU which runs 742 * the tick timer next, which might be this CPU as well. If we 743 * don't drop this here the jiffies might be stale and 744 * do_timer() never invoked. Keep track of the fact that it 745 * was the one which had the do_timer() duty last. 746 */ 747 if (cpu == tick_do_timer_cpu) { 748 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 749 ts->do_timer_last = 1; 750 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 751 ts->do_timer_last = 0; 752 } 753 754 /* Skip reprogram of event if its not changed */ 755 if (ts->tick_stopped && (expires == ts->next_tick)) { 756 /* Sanity check: make sure clockevent is actually programmed */ 757 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 758 return; 759 760 WARN_ON_ONCE(1); 761 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 762 basemono, ts->next_tick, dev->next_event, 763 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 764 } 765 766 /* 767 * nohz_stop_sched_tick can be called several times before 768 * the nohz_restart_sched_tick is called. This happens when 769 * interrupts arrive which do not cause a reschedule. In the 770 * first call we save the current tick time, so we can restart 771 * the scheduler tick in nohz_restart_sched_tick. 772 */ 773 if (!ts->tick_stopped) { 774 calc_load_nohz_start(); 775 cpu_load_update_nohz_start(); 776 quiet_vmstat(); 777 778 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 779 ts->tick_stopped = 1; 780 trace_tick_stop(1, TICK_DEP_MASK_NONE); 781 } 782 783 ts->next_tick = tick; 784 785 /* 786 * If the expiration time == KTIME_MAX, then we simply stop 787 * the tick timer. 788 */ 789 if (unlikely(expires == KTIME_MAX)) { 790 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 791 hrtimer_cancel(&ts->sched_timer); 792 return; 793 } 794 795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 796 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 797 } else { 798 hrtimer_set_expires(&ts->sched_timer, tick); 799 tick_program_event(tick, 1); 800 } 801 } 802 803 static void tick_nohz_retain_tick(struct tick_sched *ts) 804 { 805 ts->timer_expires_base = 0; 806 } 807 808 #ifdef CONFIG_NO_HZ_FULL 809 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 810 { 811 if (tick_nohz_next_event(ts, cpu)) 812 tick_nohz_stop_tick(ts, cpu); 813 else 814 tick_nohz_retain_tick(ts); 815 } 816 #endif /* CONFIG_NO_HZ_FULL */ 817 818 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 819 { 820 /* Update jiffies first */ 821 tick_do_update_jiffies64(now); 822 cpu_load_update_nohz_stop(); 823 824 /* 825 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 826 * the clock forward checks in the enqueue path: 827 */ 828 timer_clear_idle(); 829 830 calc_load_nohz_stop(); 831 touch_softlockup_watchdog_sched(); 832 /* 833 * Cancel the scheduled timer and restore the tick 834 */ 835 ts->tick_stopped = 0; 836 ts->idle_exittime = now; 837 838 tick_nohz_restart(ts, now); 839 } 840 841 static void tick_nohz_full_update_tick(struct tick_sched *ts) 842 { 843 #ifdef CONFIG_NO_HZ_FULL 844 int cpu = smp_processor_id(); 845 846 if (!tick_nohz_full_cpu(cpu)) 847 return; 848 849 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 850 return; 851 852 if (can_stop_full_tick(cpu, ts)) 853 tick_nohz_stop_sched_tick(ts, cpu); 854 else if (ts->tick_stopped) 855 tick_nohz_restart_sched_tick(ts, ktime_get()); 856 #endif 857 } 858 859 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 860 { 861 /* 862 * If this CPU is offline and it is the one which updates 863 * jiffies, then give up the assignment and let it be taken by 864 * the CPU which runs the tick timer next. If we don't drop 865 * this here the jiffies might be stale and do_timer() never 866 * invoked. 867 */ 868 if (unlikely(!cpu_online(cpu))) { 869 if (cpu == tick_do_timer_cpu) 870 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 871 /* 872 * Make sure the CPU doesn't get fooled by obsolete tick 873 * deadline if it comes back online later. 874 */ 875 ts->next_tick = 0; 876 return false; 877 } 878 879 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 880 return false; 881 882 if (need_resched()) 883 return false; 884 885 if (unlikely(local_softirq_pending())) { 886 static int ratelimit; 887 888 if (ratelimit < 10 && 889 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 890 pr_warn("NOHZ: local_softirq_pending %02x\n", 891 (unsigned int) local_softirq_pending()); 892 ratelimit++; 893 } 894 return false; 895 } 896 897 if (tick_nohz_full_enabled()) { 898 /* 899 * Keep the tick alive to guarantee timekeeping progression 900 * if there are full dynticks CPUs around 901 */ 902 if (tick_do_timer_cpu == cpu) 903 return false; 904 /* 905 * Boot safety: make sure the timekeeping duty has been 906 * assigned before entering dyntick-idle mode, 907 */ 908 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 909 return false; 910 } 911 912 return true; 913 } 914 915 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 916 { 917 ktime_t expires; 918 int cpu = smp_processor_id(); 919 920 /* 921 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 922 * tick timer expiration time is known already. 923 */ 924 if (ts->timer_expires_base) 925 expires = ts->timer_expires; 926 else if (can_stop_idle_tick(cpu, ts)) 927 expires = tick_nohz_next_event(ts, cpu); 928 else 929 return; 930 931 ts->idle_calls++; 932 933 if (expires > 0LL) { 934 int was_stopped = ts->tick_stopped; 935 936 tick_nohz_stop_tick(ts, cpu); 937 938 ts->idle_sleeps++; 939 ts->idle_expires = expires; 940 941 if (!was_stopped && ts->tick_stopped) { 942 ts->idle_jiffies = ts->last_jiffies; 943 nohz_balance_enter_idle(cpu); 944 } 945 } else { 946 tick_nohz_retain_tick(ts); 947 } 948 } 949 950 /** 951 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 952 * 953 * When the next event is more than a tick into the future, stop the idle tick 954 */ 955 void tick_nohz_idle_stop_tick(void) 956 { 957 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 958 } 959 960 void tick_nohz_idle_retain_tick(void) 961 { 962 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 963 /* 964 * Undo the effect of get_next_timer_interrupt() called from 965 * tick_nohz_next_event(). 966 */ 967 timer_clear_idle(); 968 } 969 970 /** 971 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 972 * 973 * Called when we start the idle loop. 974 */ 975 void tick_nohz_idle_enter(void) 976 { 977 struct tick_sched *ts; 978 979 lockdep_assert_irqs_enabled(); 980 981 local_irq_disable(); 982 983 ts = this_cpu_ptr(&tick_cpu_sched); 984 985 WARN_ON_ONCE(ts->timer_expires_base); 986 987 ts->inidle = 1; 988 tick_nohz_start_idle(ts); 989 990 local_irq_enable(); 991 } 992 993 /** 994 * tick_nohz_irq_exit - update next tick event from interrupt exit 995 * 996 * When an interrupt fires while we are idle and it doesn't cause 997 * a reschedule, it may still add, modify or delete a timer, enqueue 998 * an RCU callback, etc... 999 * So we need to re-calculate and reprogram the next tick event. 1000 */ 1001 void tick_nohz_irq_exit(void) 1002 { 1003 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1004 1005 if (ts->inidle) 1006 tick_nohz_start_idle(ts); 1007 else 1008 tick_nohz_full_update_tick(ts); 1009 } 1010 1011 /** 1012 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1013 */ 1014 bool tick_nohz_idle_got_tick(void) 1015 { 1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1017 1018 if (ts->got_idle_tick) { 1019 ts->got_idle_tick = 0; 1020 return true; 1021 } 1022 return false; 1023 } 1024 1025 /** 1026 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1027 * @delta_next: duration until the next event if the tick cannot be stopped 1028 * 1029 * Called from power state control code with interrupts disabled 1030 */ 1031 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1032 { 1033 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1035 int cpu = smp_processor_id(); 1036 /* 1037 * The idle entry time is expected to be a sufficient approximation of 1038 * the current time at this point. 1039 */ 1040 ktime_t now = ts->idle_entrytime; 1041 ktime_t next_event; 1042 1043 WARN_ON_ONCE(!ts->inidle); 1044 1045 *delta_next = ktime_sub(dev->next_event, now); 1046 1047 if (!can_stop_idle_tick(cpu, ts)) 1048 return *delta_next; 1049 1050 next_event = tick_nohz_next_event(ts, cpu); 1051 if (!next_event) 1052 return *delta_next; 1053 1054 /* 1055 * If the next highres timer to expire is earlier than next_event, the 1056 * idle governor needs to know that. 1057 */ 1058 next_event = min_t(u64, next_event, 1059 hrtimer_next_event_without(&ts->sched_timer)); 1060 1061 return ktime_sub(next_event, now); 1062 } 1063 1064 /** 1065 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1066 * for a particular CPU. 1067 * 1068 * Called from the schedutil frequency scaling governor in scheduler context. 1069 */ 1070 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1071 { 1072 struct tick_sched *ts = tick_get_tick_sched(cpu); 1073 1074 return ts->idle_calls; 1075 } 1076 1077 /** 1078 * tick_nohz_get_idle_calls - return the current idle calls counter value 1079 * 1080 * Called from the schedutil frequency scaling governor in scheduler context. 1081 */ 1082 unsigned long tick_nohz_get_idle_calls(void) 1083 { 1084 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1085 1086 return ts->idle_calls; 1087 } 1088 1089 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1090 { 1091 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1092 unsigned long ticks; 1093 1094 if (vtime_accounting_cpu_enabled()) 1095 return; 1096 /* 1097 * We stopped the tick in idle. Update process times would miss the 1098 * time we slept as update_process_times does only a 1 tick 1099 * accounting. Enforce that this is accounted to idle ! 1100 */ 1101 ticks = jiffies - ts->idle_jiffies; 1102 /* 1103 * We might be one off. Do not randomly account a huge number of ticks! 1104 */ 1105 if (ticks && ticks < LONG_MAX) 1106 account_idle_ticks(ticks); 1107 #endif 1108 } 1109 1110 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1111 { 1112 tick_nohz_restart_sched_tick(ts, now); 1113 tick_nohz_account_idle_ticks(ts); 1114 } 1115 1116 void tick_nohz_idle_restart_tick(void) 1117 { 1118 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1119 1120 if (ts->tick_stopped) 1121 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1122 } 1123 1124 /** 1125 * tick_nohz_idle_exit - restart the idle tick from the idle task 1126 * 1127 * Restart the idle tick when the CPU is woken up from idle 1128 * This also exit the RCU extended quiescent state. The CPU 1129 * can use RCU again after this function is called. 1130 */ 1131 void tick_nohz_idle_exit(void) 1132 { 1133 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1134 bool idle_active, tick_stopped; 1135 ktime_t now; 1136 1137 local_irq_disable(); 1138 1139 WARN_ON_ONCE(!ts->inidle); 1140 WARN_ON_ONCE(ts->timer_expires_base); 1141 1142 ts->inidle = 0; 1143 idle_active = ts->idle_active; 1144 tick_stopped = ts->tick_stopped; 1145 1146 if (idle_active || tick_stopped) 1147 now = ktime_get(); 1148 1149 if (idle_active) 1150 tick_nohz_stop_idle(ts, now); 1151 1152 if (tick_stopped) 1153 __tick_nohz_idle_restart_tick(ts, now); 1154 1155 local_irq_enable(); 1156 } 1157 1158 /* 1159 * The nohz low res interrupt handler 1160 */ 1161 static void tick_nohz_handler(struct clock_event_device *dev) 1162 { 1163 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1164 struct pt_regs *regs = get_irq_regs(); 1165 ktime_t now = ktime_get(); 1166 1167 dev->next_event = KTIME_MAX; 1168 1169 tick_sched_do_timer(ts, now); 1170 tick_sched_handle(ts, regs); 1171 1172 /* No need to reprogram if we are running tickless */ 1173 if (unlikely(ts->tick_stopped)) 1174 return; 1175 1176 hrtimer_forward(&ts->sched_timer, now, tick_period); 1177 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1178 } 1179 1180 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1181 { 1182 if (!tick_nohz_enabled) 1183 return; 1184 ts->nohz_mode = mode; 1185 /* One update is enough */ 1186 if (!test_and_set_bit(0, &tick_nohz_active)) 1187 timers_update_nohz(); 1188 } 1189 1190 /** 1191 * tick_nohz_switch_to_nohz - switch to nohz mode 1192 */ 1193 static void tick_nohz_switch_to_nohz(void) 1194 { 1195 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1196 ktime_t next; 1197 1198 if (!tick_nohz_enabled) 1199 return; 1200 1201 if (tick_switch_to_oneshot(tick_nohz_handler)) 1202 return; 1203 1204 /* 1205 * Recycle the hrtimer in ts, so we can share the 1206 * hrtimer_forward with the highres code. 1207 */ 1208 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1209 /* Get the next period */ 1210 next = tick_init_jiffy_update(); 1211 1212 hrtimer_set_expires(&ts->sched_timer, next); 1213 hrtimer_forward_now(&ts->sched_timer, tick_period); 1214 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1215 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1216 } 1217 1218 static inline void tick_nohz_irq_enter(void) 1219 { 1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1221 ktime_t now; 1222 1223 if (!ts->idle_active && !ts->tick_stopped) 1224 return; 1225 now = ktime_get(); 1226 if (ts->idle_active) 1227 tick_nohz_stop_idle(ts, now); 1228 if (ts->tick_stopped) 1229 tick_nohz_update_jiffies(now); 1230 } 1231 1232 #else 1233 1234 static inline void tick_nohz_switch_to_nohz(void) { } 1235 static inline void tick_nohz_irq_enter(void) { } 1236 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1237 1238 #endif /* CONFIG_NO_HZ_COMMON */ 1239 1240 /* 1241 * Called from irq_enter to notify about the possible interruption of idle() 1242 */ 1243 void tick_irq_enter(void) 1244 { 1245 tick_check_oneshot_broadcast_this_cpu(); 1246 tick_nohz_irq_enter(); 1247 } 1248 1249 /* 1250 * High resolution timer specific code 1251 */ 1252 #ifdef CONFIG_HIGH_RES_TIMERS 1253 /* 1254 * We rearm the timer until we get disabled by the idle code. 1255 * Called with interrupts disabled. 1256 */ 1257 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1258 { 1259 struct tick_sched *ts = 1260 container_of(timer, struct tick_sched, sched_timer); 1261 struct pt_regs *regs = get_irq_regs(); 1262 ktime_t now = ktime_get(); 1263 1264 tick_sched_do_timer(ts, now); 1265 1266 /* 1267 * Do not call, when we are not in irq context and have 1268 * no valid regs pointer 1269 */ 1270 if (regs) 1271 tick_sched_handle(ts, regs); 1272 else 1273 ts->next_tick = 0; 1274 1275 /* No need to reprogram if we are in idle or full dynticks mode */ 1276 if (unlikely(ts->tick_stopped)) 1277 return HRTIMER_NORESTART; 1278 1279 hrtimer_forward(timer, now, tick_period); 1280 1281 return HRTIMER_RESTART; 1282 } 1283 1284 static int sched_skew_tick; 1285 1286 static int __init skew_tick(char *str) 1287 { 1288 get_option(&str, &sched_skew_tick); 1289 1290 return 0; 1291 } 1292 early_param("skew_tick", skew_tick); 1293 1294 /** 1295 * tick_setup_sched_timer - setup the tick emulation timer 1296 */ 1297 void tick_setup_sched_timer(void) 1298 { 1299 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1300 ktime_t now = ktime_get(); 1301 1302 /* 1303 * Emulate tick processing via per-CPU hrtimers: 1304 */ 1305 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1306 ts->sched_timer.function = tick_sched_timer; 1307 1308 /* Get the next period (per-CPU) */ 1309 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1310 1311 /* Offset the tick to avert jiffies_lock contention. */ 1312 if (sched_skew_tick) { 1313 u64 offset = ktime_to_ns(tick_period) >> 1; 1314 do_div(offset, num_possible_cpus()); 1315 offset *= smp_processor_id(); 1316 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1317 } 1318 1319 hrtimer_forward(&ts->sched_timer, now, tick_period); 1320 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1321 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1322 } 1323 #endif /* HIGH_RES_TIMERS */ 1324 1325 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1326 void tick_cancel_sched_timer(int cpu) 1327 { 1328 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1329 1330 # ifdef CONFIG_HIGH_RES_TIMERS 1331 if (ts->sched_timer.base) 1332 hrtimer_cancel(&ts->sched_timer); 1333 # endif 1334 1335 memset(ts, 0, sizeof(*ts)); 1336 } 1337 #endif 1338 1339 /** 1340 * Async notification about clocksource changes 1341 */ 1342 void tick_clock_notify(void) 1343 { 1344 int cpu; 1345 1346 for_each_possible_cpu(cpu) 1347 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1348 } 1349 1350 /* 1351 * Async notification about clock event changes 1352 */ 1353 void tick_oneshot_notify(void) 1354 { 1355 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1356 1357 set_bit(0, &ts->check_clocks); 1358 } 1359 1360 /** 1361 * Check, if a change happened, which makes oneshot possible. 1362 * 1363 * Called cyclic from the hrtimer softirq (driven by the timer 1364 * softirq) allow_nohz signals, that we can switch into low-res nohz 1365 * mode, because high resolution timers are disabled (either compile 1366 * or runtime). Called with interrupts disabled. 1367 */ 1368 int tick_check_oneshot_change(int allow_nohz) 1369 { 1370 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1371 1372 if (!test_and_clear_bit(0, &ts->check_clocks)) 1373 return 0; 1374 1375 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1376 return 0; 1377 1378 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1379 return 0; 1380 1381 if (!allow_nohz) 1382 return 1; 1383 1384 tick_nohz_switch_to_nohz(); 1385 return 0; 1386 } 1387