xref: /openbmc/linux/kernel/time/tick-sched.c (revision 27630532)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 bool tick_nohz_full_running;
158 
159 static bool can_stop_full_tick(void)
160 {
161 	WARN_ON_ONCE(!irqs_disabled());
162 
163 	if (!sched_can_stop_tick()) {
164 		trace_tick_stop(0, "more than 1 task in runqueue\n");
165 		return false;
166 	}
167 
168 	if (!posix_cpu_timers_can_stop_tick(current)) {
169 		trace_tick_stop(0, "posix timers running\n");
170 		return false;
171 	}
172 
173 	if (!perf_event_can_stop_tick()) {
174 		trace_tick_stop(0, "perf events running\n");
175 		return false;
176 	}
177 
178 	/* sched_clock_tick() needs us? */
179 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
180 	/*
181 	 * TODO: kick full dynticks CPUs when
182 	 * sched_clock_stable is set.
183 	 */
184 	if (!sched_clock_stable()) {
185 		trace_tick_stop(0, "unstable sched clock\n");
186 		/*
187 		 * Don't allow the user to think they can get
188 		 * full NO_HZ with this machine.
189 		 */
190 		WARN_ONCE(tick_nohz_full_running,
191 			  "NO_HZ FULL will not work with unstable sched clock");
192 		return false;
193 	}
194 #endif
195 
196 	return true;
197 }
198 
199 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
200 
201 /*
202  * Re-evaluate the need for the tick on the current CPU
203  * and restart it if necessary.
204  */
205 void __tick_nohz_full_check(void)
206 {
207 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
208 
209 	if (tick_nohz_full_cpu(smp_processor_id())) {
210 		if (ts->tick_stopped && !is_idle_task(current)) {
211 			if (!can_stop_full_tick())
212 				tick_nohz_restart_sched_tick(ts, ktime_get());
213 		}
214 	}
215 }
216 
217 static void nohz_full_kick_work_func(struct irq_work *work)
218 {
219 	__tick_nohz_full_check();
220 }
221 
222 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
223 	.func = nohz_full_kick_work_func,
224 };
225 
226 /*
227  * Kick the current CPU if it's full dynticks in order to force it to
228  * re-evaluate its dependency on the tick and restart it if necessary.
229  */
230 void tick_nohz_full_kick(void)
231 {
232 	if (tick_nohz_full_cpu(smp_processor_id()))
233 		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
234 }
235 
236 static void nohz_full_kick_ipi(void *info)
237 {
238 	__tick_nohz_full_check();
239 }
240 
241 /*
242  * Kick all full dynticks CPUs in order to force these to re-evaluate
243  * their dependency on the tick and restart it if necessary.
244  */
245 void tick_nohz_full_kick_all(void)
246 {
247 	if (!tick_nohz_full_running)
248 		return;
249 
250 	preempt_disable();
251 	smp_call_function_many(tick_nohz_full_mask,
252 			       nohz_full_kick_ipi, NULL, false);
253 	tick_nohz_full_kick();
254 	preempt_enable();
255 }
256 
257 /*
258  * Re-evaluate the need for the tick as we switch the current task.
259  * It might need the tick due to per task/process properties:
260  * perf events, posix cpu timers, ...
261  */
262 void __tick_nohz_task_switch(struct task_struct *tsk)
263 {
264 	unsigned long flags;
265 
266 	local_irq_save(flags);
267 
268 	if (!tick_nohz_full_cpu(smp_processor_id()))
269 		goto out;
270 
271 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
272 		tick_nohz_full_kick();
273 
274 out:
275 	local_irq_restore(flags);
276 }
277 
278 /* Parse the boot-time nohz CPU list from the kernel parameters. */
279 static int __init tick_nohz_full_setup(char *str)
280 {
281 	int cpu;
282 
283 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
284 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
285 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
286 		return 1;
287 	}
288 
289 	cpu = smp_processor_id();
290 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
291 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
292 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
293 	}
294 	tick_nohz_full_running = true;
295 
296 	return 1;
297 }
298 __setup("nohz_full=", tick_nohz_full_setup);
299 
300 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
301 						 unsigned long action,
302 						 void *hcpu)
303 {
304 	unsigned int cpu = (unsigned long)hcpu;
305 
306 	switch (action & ~CPU_TASKS_FROZEN) {
307 	case CPU_DOWN_PREPARE:
308 		/*
309 		 * If we handle the timekeeping duty for full dynticks CPUs,
310 		 * we can't safely shutdown that CPU.
311 		 */
312 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
313 			return NOTIFY_BAD;
314 		break;
315 	}
316 	return NOTIFY_OK;
317 }
318 
319 /*
320  * Worst case string length in chunks of CPU range seems 2 steps
321  * separations: 0,2,4,6,...
322  * This is NR_CPUS + sizeof('\0')
323  */
324 static char __initdata nohz_full_buf[NR_CPUS + 1];
325 
326 static int tick_nohz_init_all(void)
327 {
328 	int err = -1;
329 
330 #ifdef CONFIG_NO_HZ_FULL_ALL
331 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
332 		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
333 		return err;
334 	}
335 	err = 0;
336 	cpumask_setall(tick_nohz_full_mask);
337 	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
338 	tick_nohz_full_running = true;
339 #endif
340 	return err;
341 }
342 
343 void __init tick_nohz_init(void)
344 {
345 	int cpu;
346 
347 	if (!tick_nohz_full_running) {
348 		if (tick_nohz_init_all() < 0)
349 			return;
350 	}
351 
352 	for_each_cpu(cpu, tick_nohz_full_mask)
353 		context_tracking_cpu_set(cpu);
354 
355 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
356 	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
357 	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
358 }
359 #endif
360 
361 /*
362  * NOHZ - aka dynamic tick functionality
363  */
364 #ifdef CONFIG_NO_HZ_COMMON
365 /*
366  * NO HZ enabled ?
367  */
368 static int tick_nohz_enabled __read_mostly  = 1;
369 int tick_nohz_active  __read_mostly;
370 /*
371  * Enable / Disable tickless mode
372  */
373 static int __init setup_tick_nohz(char *str)
374 {
375 	if (!strcmp(str, "off"))
376 		tick_nohz_enabled = 0;
377 	else if (!strcmp(str, "on"))
378 		tick_nohz_enabled = 1;
379 	else
380 		return 0;
381 	return 1;
382 }
383 
384 __setup("nohz=", setup_tick_nohz);
385 
386 /**
387  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
388  *
389  * Called from interrupt entry when the CPU was idle
390  *
391  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392  * must be updated. Otherwise an interrupt handler could use a stale jiffy
393  * value. We do this unconditionally on any cpu, as we don't know whether the
394  * cpu, which has the update task assigned is in a long sleep.
395  */
396 static void tick_nohz_update_jiffies(ktime_t now)
397 {
398 	unsigned long flags;
399 
400 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
401 
402 	local_irq_save(flags);
403 	tick_do_update_jiffies64(now);
404 	local_irq_restore(flags);
405 
406 	touch_softlockup_watchdog();
407 }
408 
409 /*
410  * Updates the per cpu time idle statistics counters
411  */
412 static void
413 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
414 {
415 	ktime_t delta;
416 
417 	if (ts->idle_active) {
418 		delta = ktime_sub(now, ts->idle_entrytime);
419 		if (nr_iowait_cpu(cpu) > 0)
420 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
421 		else
422 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
423 		ts->idle_entrytime = now;
424 	}
425 
426 	if (last_update_time)
427 		*last_update_time = ktime_to_us(now);
428 
429 }
430 
431 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
432 {
433 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
434 	ts->idle_active = 0;
435 
436 	sched_clock_idle_wakeup_event(0);
437 }
438 
439 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
440 {
441 	ktime_t now = ktime_get();
442 
443 	ts->idle_entrytime = now;
444 	ts->idle_active = 1;
445 	sched_clock_idle_sleep_event();
446 	return now;
447 }
448 
449 /**
450  * get_cpu_idle_time_us - get the total idle time of a cpu
451  * @cpu: CPU number to query
452  * @last_update_time: variable to store update time in. Do not update
453  * counters if NULL.
454  *
455  * Return the cummulative idle time (since boot) for a given
456  * CPU, in microseconds.
457  *
458  * This time is measured via accounting rather than sampling,
459  * and is as accurate as ktime_get() is.
460  *
461  * This function returns -1 if NOHZ is not enabled.
462  */
463 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
464 {
465 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
466 	ktime_t now, idle;
467 
468 	if (!tick_nohz_active)
469 		return -1;
470 
471 	now = ktime_get();
472 	if (last_update_time) {
473 		update_ts_time_stats(cpu, ts, now, last_update_time);
474 		idle = ts->idle_sleeptime;
475 	} else {
476 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
477 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
478 
479 			idle = ktime_add(ts->idle_sleeptime, delta);
480 		} else {
481 			idle = ts->idle_sleeptime;
482 		}
483 	}
484 
485 	return ktime_to_us(idle);
486 
487 }
488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
489 
490 /**
491  * get_cpu_iowait_time_us - get the total iowait time of a cpu
492  * @cpu: CPU number to query
493  * @last_update_time: variable to store update time in. Do not update
494  * counters if NULL.
495  *
496  * Return the cummulative iowait time (since boot) for a given
497  * CPU, in microseconds.
498  *
499  * This time is measured via accounting rather than sampling,
500  * and is as accurate as ktime_get() is.
501  *
502  * This function returns -1 if NOHZ is not enabled.
503  */
504 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
505 {
506 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
507 	ktime_t now, iowait;
508 
509 	if (!tick_nohz_active)
510 		return -1;
511 
512 	now = ktime_get();
513 	if (last_update_time) {
514 		update_ts_time_stats(cpu, ts, now, last_update_time);
515 		iowait = ts->iowait_sleeptime;
516 	} else {
517 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
518 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
519 
520 			iowait = ktime_add(ts->iowait_sleeptime, delta);
521 		} else {
522 			iowait = ts->iowait_sleeptime;
523 		}
524 	}
525 
526 	return ktime_to_us(iowait);
527 }
528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
529 
530 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
531 					 ktime_t now, int cpu)
532 {
533 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
534 	ktime_t last_update, expires, ret = { .tv64 = 0 };
535 	unsigned long rcu_delta_jiffies;
536 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
537 	u64 time_delta;
538 
539 	time_delta = timekeeping_max_deferment();
540 
541 	/* Read jiffies and the time when jiffies were updated last */
542 	do {
543 		seq = read_seqbegin(&jiffies_lock);
544 		last_update = last_jiffies_update;
545 		last_jiffies = jiffies;
546 	} while (read_seqretry(&jiffies_lock, seq));
547 
548 	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
549 	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
550 		next_jiffies = last_jiffies + 1;
551 		delta_jiffies = 1;
552 	} else {
553 		/* Get the next timer wheel timer */
554 		next_jiffies = get_next_timer_interrupt(last_jiffies);
555 		delta_jiffies = next_jiffies - last_jiffies;
556 		if (rcu_delta_jiffies < delta_jiffies) {
557 			next_jiffies = last_jiffies + rcu_delta_jiffies;
558 			delta_jiffies = rcu_delta_jiffies;
559 		}
560 	}
561 
562 	/*
563 	 * Do not stop the tick, if we are only one off (or less)
564 	 * or if the cpu is required for RCU:
565 	 */
566 	if (!ts->tick_stopped && delta_jiffies <= 1)
567 		goto out;
568 
569 	/* Schedule the tick, if we are at least one jiffie off */
570 	if ((long)delta_jiffies >= 1) {
571 
572 		/*
573 		 * If this cpu is the one which updates jiffies, then
574 		 * give up the assignment and let it be taken by the
575 		 * cpu which runs the tick timer next, which might be
576 		 * this cpu as well. If we don't drop this here the
577 		 * jiffies might be stale and do_timer() never
578 		 * invoked. Keep track of the fact that it was the one
579 		 * which had the do_timer() duty last. If this cpu is
580 		 * the one which had the do_timer() duty last, we
581 		 * limit the sleep time to the timekeeping
582 		 * max_deferement value which we retrieved
583 		 * above. Otherwise we can sleep as long as we want.
584 		 */
585 		if (cpu == tick_do_timer_cpu) {
586 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
587 			ts->do_timer_last = 1;
588 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
589 			time_delta = KTIME_MAX;
590 			ts->do_timer_last = 0;
591 		} else if (!ts->do_timer_last) {
592 			time_delta = KTIME_MAX;
593 		}
594 
595 #ifdef CONFIG_NO_HZ_FULL
596 		if (!ts->inidle) {
597 			time_delta = min(time_delta,
598 					 scheduler_tick_max_deferment());
599 		}
600 #endif
601 
602 		/*
603 		 * calculate the expiry time for the next timer wheel
604 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
605 		 * that there is no timer pending or at least extremely
606 		 * far into the future (12 days for HZ=1000). In this
607 		 * case we set the expiry to the end of time.
608 		 */
609 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
610 			/*
611 			 * Calculate the time delta for the next timer event.
612 			 * If the time delta exceeds the maximum time delta
613 			 * permitted by the current clocksource then adjust
614 			 * the time delta accordingly to ensure the
615 			 * clocksource does not wrap.
616 			 */
617 			time_delta = min_t(u64, time_delta,
618 					   tick_period.tv64 * delta_jiffies);
619 		}
620 
621 		if (time_delta < KTIME_MAX)
622 			expires = ktime_add_ns(last_update, time_delta);
623 		else
624 			expires.tv64 = KTIME_MAX;
625 
626 		/* Skip reprogram of event if its not changed */
627 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
628 			goto out;
629 
630 		ret = expires;
631 
632 		/*
633 		 * nohz_stop_sched_tick can be called several times before
634 		 * the nohz_restart_sched_tick is called. This happens when
635 		 * interrupts arrive which do not cause a reschedule. In the
636 		 * first call we save the current tick time, so we can restart
637 		 * the scheduler tick in nohz_restart_sched_tick.
638 		 */
639 		if (!ts->tick_stopped) {
640 			nohz_balance_enter_idle(cpu);
641 			calc_load_enter_idle();
642 
643 			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
644 			ts->tick_stopped = 1;
645 			trace_tick_stop(1, " ");
646 		}
647 
648 		/*
649 		 * If the expiration time == KTIME_MAX, then
650 		 * in this case we simply stop the tick timer.
651 		 */
652 		 if (unlikely(expires.tv64 == KTIME_MAX)) {
653 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
654 				hrtimer_cancel(&ts->sched_timer);
655 			goto out;
656 		}
657 
658 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
659 			hrtimer_start(&ts->sched_timer, expires,
660 				      HRTIMER_MODE_ABS_PINNED);
661 			/* Check, if the timer was already in the past */
662 			if (hrtimer_active(&ts->sched_timer))
663 				goto out;
664 		} else if (!tick_program_event(expires, 0))
665 				goto out;
666 		/*
667 		 * We are past the event already. So we crossed a
668 		 * jiffie boundary. Update jiffies and raise the
669 		 * softirq.
670 		 */
671 		tick_do_update_jiffies64(ktime_get());
672 	}
673 	raise_softirq_irqoff(TIMER_SOFTIRQ);
674 out:
675 	ts->next_jiffies = next_jiffies;
676 	ts->last_jiffies = last_jiffies;
677 	ts->sleep_length = ktime_sub(dev->next_event, now);
678 
679 	return ret;
680 }
681 
682 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
683 {
684 #ifdef CONFIG_NO_HZ_FULL
685 	int cpu = smp_processor_id();
686 
687 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
688 		return;
689 
690 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
691 		return;
692 
693 	if (!can_stop_full_tick())
694 		return;
695 
696 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
697 #endif
698 }
699 
700 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
701 {
702 	/*
703 	 * If this cpu is offline and it is the one which updates
704 	 * jiffies, then give up the assignment and let it be taken by
705 	 * the cpu which runs the tick timer next. If we don't drop
706 	 * this here the jiffies might be stale and do_timer() never
707 	 * invoked.
708 	 */
709 	if (unlikely(!cpu_online(cpu))) {
710 		if (cpu == tick_do_timer_cpu)
711 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
712 		return false;
713 	}
714 
715 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
716 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
717 		return false;
718 	}
719 
720 	if (need_resched())
721 		return false;
722 
723 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
724 		static int ratelimit;
725 
726 		if (ratelimit < 10 &&
727 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
728 			pr_warn("NOHZ: local_softirq_pending %02x\n",
729 				(unsigned int) local_softirq_pending());
730 			ratelimit++;
731 		}
732 		return false;
733 	}
734 
735 	if (tick_nohz_full_enabled()) {
736 		/*
737 		 * Keep the tick alive to guarantee timekeeping progression
738 		 * if there are full dynticks CPUs around
739 		 */
740 		if (tick_do_timer_cpu == cpu)
741 			return false;
742 		/*
743 		 * Boot safety: make sure the timekeeping duty has been
744 		 * assigned before entering dyntick-idle mode,
745 		 */
746 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
747 			return false;
748 	}
749 
750 	return true;
751 }
752 
753 static void __tick_nohz_idle_enter(struct tick_sched *ts)
754 {
755 	ktime_t now, expires;
756 	int cpu = smp_processor_id();
757 
758 	now = tick_nohz_start_idle(ts);
759 
760 	if (can_stop_idle_tick(cpu, ts)) {
761 		int was_stopped = ts->tick_stopped;
762 
763 		ts->idle_calls++;
764 
765 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
766 		if (expires.tv64 > 0LL) {
767 			ts->idle_sleeps++;
768 			ts->idle_expires = expires;
769 		}
770 
771 		if (!was_stopped && ts->tick_stopped)
772 			ts->idle_jiffies = ts->last_jiffies;
773 	}
774 }
775 
776 /**
777  * tick_nohz_idle_enter - stop the idle tick from the idle task
778  *
779  * When the next event is more than a tick into the future, stop the idle tick
780  * Called when we start the idle loop.
781  *
782  * The arch is responsible of calling:
783  *
784  * - rcu_idle_enter() after its last use of RCU before the CPU is put
785  *  to sleep.
786  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
787  */
788 void tick_nohz_idle_enter(void)
789 {
790 	struct tick_sched *ts;
791 
792 	WARN_ON_ONCE(irqs_disabled());
793 
794 	/*
795  	 * Update the idle state in the scheduler domain hierarchy
796  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
797  	 * State will be updated to busy during the first busy tick after
798  	 * exiting idle.
799  	 */
800 	set_cpu_sd_state_idle();
801 
802 	local_irq_disable();
803 
804 	ts = &__get_cpu_var(tick_cpu_sched);
805 	ts->inidle = 1;
806 	__tick_nohz_idle_enter(ts);
807 
808 	local_irq_enable();
809 }
810 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
811 
812 /**
813  * tick_nohz_irq_exit - update next tick event from interrupt exit
814  *
815  * When an interrupt fires while we are idle and it doesn't cause
816  * a reschedule, it may still add, modify or delete a timer, enqueue
817  * an RCU callback, etc...
818  * So we need to re-calculate and reprogram the next tick event.
819  */
820 void tick_nohz_irq_exit(void)
821 {
822 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
823 
824 	if (ts->inidle)
825 		__tick_nohz_idle_enter(ts);
826 	else
827 		tick_nohz_full_stop_tick(ts);
828 }
829 
830 /**
831  * tick_nohz_get_sleep_length - return the length of the current sleep
832  *
833  * Called from power state control code with interrupts disabled
834  */
835 ktime_t tick_nohz_get_sleep_length(void)
836 {
837 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
838 
839 	return ts->sleep_length;
840 }
841 
842 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
843 {
844 	hrtimer_cancel(&ts->sched_timer);
845 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
846 
847 	while (1) {
848 		/* Forward the time to expire in the future */
849 		hrtimer_forward(&ts->sched_timer, now, tick_period);
850 
851 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
852 			hrtimer_start_expires(&ts->sched_timer,
853 					      HRTIMER_MODE_ABS_PINNED);
854 			/* Check, if the timer was already in the past */
855 			if (hrtimer_active(&ts->sched_timer))
856 				break;
857 		} else {
858 			if (!tick_program_event(
859 				hrtimer_get_expires(&ts->sched_timer), 0))
860 				break;
861 		}
862 		/* Reread time and update jiffies */
863 		now = ktime_get();
864 		tick_do_update_jiffies64(now);
865 	}
866 }
867 
868 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
869 {
870 	/* Update jiffies first */
871 	tick_do_update_jiffies64(now);
872 	update_cpu_load_nohz();
873 
874 	calc_load_exit_idle();
875 	touch_softlockup_watchdog();
876 	/*
877 	 * Cancel the scheduled timer and restore the tick
878 	 */
879 	ts->tick_stopped  = 0;
880 	ts->idle_exittime = now;
881 
882 	tick_nohz_restart(ts, now);
883 }
884 
885 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
886 {
887 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
888 	unsigned long ticks;
889 
890 	if (vtime_accounting_enabled())
891 		return;
892 	/*
893 	 * We stopped the tick in idle. Update process times would miss the
894 	 * time we slept as update_process_times does only a 1 tick
895 	 * accounting. Enforce that this is accounted to idle !
896 	 */
897 	ticks = jiffies - ts->idle_jiffies;
898 	/*
899 	 * We might be one off. Do not randomly account a huge number of ticks!
900 	 */
901 	if (ticks && ticks < LONG_MAX)
902 		account_idle_ticks(ticks);
903 #endif
904 }
905 
906 /**
907  * tick_nohz_idle_exit - restart the idle tick from the idle task
908  *
909  * Restart the idle tick when the CPU is woken up from idle
910  * This also exit the RCU extended quiescent state. The CPU
911  * can use RCU again after this function is called.
912  */
913 void tick_nohz_idle_exit(void)
914 {
915 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
916 	ktime_t now;
917 
918 	local_irq_disable();
919 
920 	WARN_ON_ONCE(!ts->inidle);
921 
922 	ts->inidle = 0;
923 
924 	if (ts->idle_active || ts->tick_stopped)
925 		now = ktime_get();
926 
927 	if (ts->idle_active)
928 		tick_nohz_stop_idle(ts, now);
929 
930 	if (ts->tick_stopped) {
931 		tick_nohz_restart_sched_tick(ts, now);
932 		tick_nohz_account_idle_ticks(ts);
933 	}
934 
935 	local_irq_enable();
936 }
937 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
938 
939 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
940 {
941 	hrtimer_forward(&ts->sched_timer, now, tick_period);
942 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
943 }
944 
945 /*
946  * The nohz low res interrupt handler
947  */
948 static void tick_nohz_handler(struct clock_event_device *dev)
949 {
950 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
951 	struct pt_regs *regs = get_irq_regs();
952 	ktime_t now = ktime_get();
953 
954 	dev->next_event.tv64 = KTIME_MAX;
955 
956 	tick_sched_do_timer(now);
957 	tick_sched_handle(ts, regs);
958 
959 	while (tick_nohz_reprogram(ts, now)) {
960 		now = ktime_get();
961 		tick_do_update_jiffies64(now);
962 	}
963 }
964 
965 /**
966  * tick_nohz_switch_to_nohz - switch to nohz mode
967  */
968 static void tick_nohz_switch_to_nohz(void)
969 {
970 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
971 	ktime_t next;
972 
973 	if (!tick_nohz_enabled)
974 		return;
975 
976 	local_irq_disable();
977 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
978 		local_irq_enable();
979 		return;
980 	}
981 	tick_nohz_active = 1;
982 	ts->nohz_mode = NOHZ_MODE_LOWRES;
983 
984 	/*
985 	 * Recycle the hrtimer in ts, so we can share the
986 	 * hrtimer_forward with the highres code.
987 	 */
988 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
989 	/* Get the next period */
990 	next = tick_init_jiffy_update();
991 
992 	for (;;) {
993 		hrtimer_set_expires(&ts->sched_timer, next);
994 		if (!tick_program_event(next, 0))
995 			break;
996 		next = ktime_add(next, tick_period);
997 	}
998 	local_irq_enable();
999 }
1000 
1001 /*
1002  * When NOHZ is enabled and the tick is stopped, we need to kick the
1003  * tick timer from irq_enter() so that the jiffies update is kept
1004  * alive during long running softirqs. That's ugly as hell, but
1005  * correctness is key even if we need to fix the offending softirq in
1006  * the first place.
1007  *
1008  * Note, this is different to tick_nohz_restart. We just kick the
1009  * timer and do not touch the other magic bits which need to be done
1010  * when idle is left.
1011  */
1012 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1013 {
1014 #if 0
1015 	/* Switch back to 2.6.27 behaviour */
1016 	ktime_t delta;
1017 
1018 	/*
1019 	 * Do not touch the tick device, when the next expiry is either
1020 	 * already reached or less/equal than the tick period.
1021 	 */
1022 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1023 	if (delta.tv64 <= tick_period.tv64)
1024 		return;
1025 
1026 	tick_nohz_restart(ts, now);
1027 #endif
1028 }
1029 
1030 static inline void tick_nohz_irq_enter(void)
1031 {
1032 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1033 	ktime_t now;
1034 
1035 	if (!ts->idle_active && !ts->tick_stopped)
1036 		return;
1037 	now = ktime_get();
1038 	if (ts->idle_active)
1039 		tick_nohz_stop_idle(ts, now);
1040 	if (ts->tick_stopped) {
1041 		tick_nohz_update_jiffies(now);
1042 		tick_nohz_kick_tick(ts, now);
1043 	}
1044 }
1045 
1046 #else
1047 
1048 static inline void tick_nohz_switch_to_nohz(void) { }
1049 static inline void tick_nohz_irq_enter(void) { }
1050 
1051 #endif /* CONFIG_NO_HZ_COMMON */
1052 
1053 /*
1054  * Called from irq_enter to notify about the possible interruption of idle()
1055  */
1056 void tick_irq_enter(void)
1057 {
1058 	tick_check_oneshot_broadcast_this_cpu();
1059 	tick_nohz_irq_enter();
1060 }
1061 
1062 /*
1063  * High resolution timer specific code
1064  */
1065 #ifdef CONFIG_HIGH_RES_TIMERS
1066 /*
1067  * We rearm the timer until we get disabled by the idle code.
1068  * Called with interrupts disabled.
1069  */
1070 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1071 {
1072 	struct tick_sched *ts =
1073 		container_of(timer, struct tick_sched, sched_timer);
1074 	struct pt_regs *regs = get_irq_regs();
1075 	ktime_t now = ktime_get();
1076 
1077 	tick_sched_do_timer(now);
1078 
1079 	/*
1080 	 * Do not call, when we are not in irq context and have
1081 	 * no valid regs pointer
1082 	 */
1083 	if (regs)
1084 		tick_sched_handle(ts, regs);
1085 
1086 	hrtimer_forward(timer, now, tick_period);
1087 
1088 	return HRTIMER_RESTART;
1089 }
1090 
1091 static int sched_skew_tick;
1092 
1093 static int __init skew_tick(char *str)
1094 {
1095 	get_option(&str, &sched_skew_tick);
1096 
1097 	return 0;
1098 }
1099 early_param("skew_tick", skew_tick);
1100 
1101 /**
1102  * tick_setup_sched_timer - setup the tick emulation timer
1103  */
1104 void tick_setup_sched_timer(void)
1105 {
1106 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1107 	ktime_t now = ktime_get();
1108 
1109 	/*
1110 	 * Emulate tick processing via per-CPU hrtimers:
1111 	 */
1112 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1113 	ts->sched_timer.function = tick_sched_timer;
1114 
1115 	/* Get the next period (per cpu) */
1116 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1117 
1118 	/* Offset the tick to avert jiffies_lock contention. */
1119 	if (sched_skew_tick) {
1120 		u64 offset = ktime_to_ns(tick_period) >> 1;
1121 		do_div(offset, num_possible_cpus());
1122 		offset *= smp_processor_id();
1123 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1124 	}
1125 
1126 	for (;;) {
1127 		hrtimer_forward(&ts->sched_timer, now, tick_period);
1128 		hrtimer_start_expires(&ts->sched_timer,
1129 				      HRTIMER_MODE_ABS_PINNED);
1130 		/* Check, if the timer was already in the past */
1131 		if (hrtimer_active(&ts->sched_timer))
1132 			break;
1133 		now = ktime_get();
1134 	}
1135 
1136 #ifdef CONFIG_NO_HZ_COMMON
1137 	if (tick_nohz_enabled) {
1138 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1139 		tick_nohz_active = 1;
1140 	}
1141 #endif
1142 }
1143 #endif /* HIGH_RES_TIMERS */
1144 
1145 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1146 void tick_cancel_sched_timer(int cpu)
1147 {
1148 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1149 
1150 # ifdef CONFIG_HIGH_RES_TIMERS
1151 	if (ts->sched_timer.base)
1152 		hrtimer_cancel(&ts->sched_timer);
1153 # endif
1154 
1155 	memset(ts, 0, sizeof(*ts));
1156 }
1157 #endif
1158 
1159 /**
1160  * Async notification about clocksource changes
1161  */
1162 void tick_clock_notify(void)
1163 {
1164 	int cpu;
1165 
1166 	for_each_possible_cpu(cpu)
1167 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1168 }
1169 
1170 /*
1171  * Async notification about clock event changes
1172  */
1173 void tick_oneshot_notify(void)
1174 {
1175 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1176 
1177 	set_bit(0, &ts->check_clocks);
1178 }
1179 
1180 /**
1181  * Check, if a change happened, which makes oneshot possible.
1182  *
1183  * Called cyclic from the hrtimer softirq (driven by the timer
1184  * softirq) allow_nohz signals, that we can switch into low-res nohz
1185  * mode, because high resolution timers are disabled (either compile
1186  * or runtime).
1187  */
1188 int tick_check_oneshot_change(int allow_nohz)
1189 {
1190 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1191 
1192 	if (!test_and_clear_bit(0, &ts->check_clocks))
1193 		return 0;
1194 
1195 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1196 		return 0;
1197 
1198 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1199 		return 0;
1200 
1201 	if (!allow_nohz)
1202 		return 1;
1203 
1204 	tick_nohz_switch_to_nohz();
1205 	return 0;
1206 }
1207