1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/profile.h> 21 #include <linux/sched.h> 22 #include <linux/module.h> 23 #include <linux/irq_work.h> 24 #include <linux/posix-timers.h> 25 #include <linux/perf_event.h> 26 #include <linux/context_tracking.h> 27 28 #include <asm/irq_regs.h> 29 30 #include "tick-internal.h" 31 32 #include <trace/events/timer.h> 33 34 /* 35 * Per cpu nohz control structure 36 */ 37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 38 39 /* 40 * The time, when the last jiffy update happened. Protected by jiffies_lock. 41 */ 42 static ktime_t last_jiffies_update; 43 44 struct tick_sched *tick_get_tick_sched(int cpu) 45 { 46 return &per_cpu(tick_cpu_sched, cpu); 47 } 48 49 /* 50 * Must be called with interrupts disabled ! 51 */ 52 static void tick_do_update_jiffies64(ktime_t now) 53 { 54 unsigned long ticks = 0; 55 ktime_t delta; 56 57 /* 58 * Do a quick check without holding jiffies_lock: 59 */ 60 delta = ktime_sub(now, last_jiffies_update); 61 if (delta.tv64 < tick_period.tv64) 62 return; 63 64 /* Reevalute with jiffies_lock held */ 65 write_seqlock(&jiffies_lock); 66 67 delta = ktime_sub(now, last_jiffies_update); 68 if (delta.tv64 >= tick_period.tv64) { 69 70 delta = ktime_sub(delta, tick_period); 71 last_jiffies_update = ktime_add(last_jiffies_update, 72 tick_period); 73 74 /* Slow path for long timeouts */ 75 if (unlikely(delta.tv64 >= tick_period.tv64)) { 76 s64 incr = ktime_to_ns(tick_period); 77 78 ticks = ktime_divns(delta, incr); 79 80 last_jiffies_update = ktime_add_ns(last_jiffies_update, 81 incr * ticks); 82 } 83 do_timer(++ticks); 84 85 /* Keep the tick_next_period variable up to date */ 86 tick_next_period = ktime_add(last_jiffies_update, tick_period); 87 } else { 88 write_sequnlock(&jiffies_lock); 89 return; 90 } 91 write_sequnlock(&jiffies_lock); 92 update_wall_time(); 93 } 94 95 /* 96 * Initialize and return retrieve the jiffies update. 97 */ 98 static ktime_t tick_init_jiffy_update(void) 99 { 100 ktime_t period; 101 102 write_seqlock(&jiffies_lock); 103 /* Did we start the jiffies update yet ? */ 104 if (last_jiffies_update.tv64 == 0) 105 last_jiffies_update = tick_next_period; 106 period = last_jiffies_update; 107 write_sequnlock(&jiffies_lock); 108 return period; 109 } 110 111 112 static void tick_sched_do_timer(ktime_t now) 113 { 114 int cpu = smp_processor_id(); 115 116 #ifdef CONFIG_NO_HZ_COMMON 117 /* 118 * Check if the do_timer duty was dropped. We don't care about 119 * concurrency: This happens only when the cpu in charge went 120 * into a long sleep. If two cpus happen to assign themself to 121 * this duty, then the jiffies update is still serialized by 122 * jiffies_lock. 123 */ 124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 125 && !tick_nohz_full_cpu(cpu)) 126 tick_do_timer_cpu = cpu; 127 #endif 128 129 /* Check, if the jiffies need an update */ 130 if (tick_do_timer_cpu == cpu) 131 tick_do_update_jiffies64(now); 132 } 133 134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 135 { 136 #ifdef CONFIG_NO_HZ_COMMON 137 /* 138 * When we are idle and the tick is stopped, we have to touch 139 * the watchdog as we might not schedule for a really long 140 * time. This happens on complete idle SMP systems while 141 * waiting on the login prompt. We also increment the "start of 142 * idle" jiffy stamp so the idle accounting adjustment we do 143 * when we go busy again does not account too much ticks. 144 */ 145 if (ts->tick_stopped) { 146 touch_softlockup_watchdog(); 147 if (is_idle_task(current)) 148 ts->idle_jiffies++; 149 } 150 #endif 151 update_process_times(user_mode(regs)); 152 profile_tick(CPU_PROFILING); 153 } 154 155 #ifdef CONFIG_NO_HZ_FULL 156 cpumask_var_t tick_nohz_full_mask; 157 cpumask_var_t housekeeping_mask; 158 bool tick_nohz_full_running; 159 160 static bool can_stop_full_tick(void) 161 { 162 WARN_ON_ONCE(!irqs_disabled()); 163 164 if (!sched_can_stop_tick()) { 165 trace_tick_stop(0, "more than 1 task in runqueue\n"); 166 return false; 167 } 168 169 if (!posix_cpu_timers_can_stop_tick(current)) { 170 trace_tick_stop(0, "posix timers running\n"); 171 return false; 172 } 173 174 if (!perf_event_can_stop_tick()) { 175 trace_tick_stop(0, "perf events running\n"); 176 return false; 177 } 178 179 /* sched_clock_tick() needs us? */ 180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 181 /* 182 * TODO: kick full dynticks CPUs when 183 * sched_clock_stable is set. 184 */ 185 if (!sched_clock_stable()) { 186 trace_tick_stop(0, "unstable sched clock\n"); 187 /* 188 * Don't allow the user to think they can get 189 * full NO_HZ with this machine. 190 */ 191 WARN_ONCE(tick_nohz_full_running, 192 "NO_HZ FULL will not work with unstable sched clock"); 193 return false; 194 } 195 #endif 196 197 return true; 198 } 199 200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now); 201 202 /* 203 * Re-evaluate the need for the tick on the current CPU 204 * and restart it if necessary. 205 */ 206 void __tick_nohz_full_check(void) 207 { 208 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 209 210 if (tick_nohz_full_cpu(smp_processor_id())) { 211 if (ts->tick_stopped && !is_idle_task(current)) { 212 if (!can_stop_full_tick()) 213 tick_nohz_restart_sched_tick(ts, ktime_get()); 214 } 215 } 216 } 217 218 static void nohz_full_kick_work_func(struct irq_work *work) 219 { 220 __tick_nohz_full_check(); 221 } 222 223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 224 .func = nohz_full_kick_work_func, 225 }; 226 227 /* 228 * Kick the CPU if it's full dynticks in order to force it to 229 * re-evaluate its dependency on the tick and restart it if necessary. 230 */ 231 void tick_nohz_full_kick_cpu(int cpu) 232 { 233 if (!tick_nohz_full_cpu(cpu)) 234 return; 235 236 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 237 } 238 239 static void nohz_full_kick_ipi(void *info) 240 { 241 __tick_nohz_full_check(); 242 } 243 244 /* 245 * Kick all full dynticks CPUs in order to force these to re-evaluate 246 * their dependency on the tick and restart it if necessary. 247 */ 248 void tick_nohz_full_kick_all(void) 249 { 250 if (!tick_nohz_full_running) 251 return; 252 253 preempt_disable(); 254 smp_call_function_many(tick_nohz_full_mask, 255 nohz_full_kick_ipi, NULL, false); 256 tick_nohz_full_kick(); 257 preempt_enable(); 258 } 259 260 /* 261 * Re-evaluate the need for the tick as we switch the current task. 262 * It might need the tick due to per task/process properties: 263 * perf events, posix cpu timers, ... 264 */ 265 void __tick_nohz_task_switch(struct task_struct *tsk) 266 { 267 unsigned long flags; 268 269 local_irq_save(flags); 270 271 if (!tick_nohz_full_cpu(smp_processor_id())) 272 goto out; 273 274 if (tick_nohz_tick_stopped() && !can_stop_full_tick()) 275 tick_nohz_full_kick(); 276 277 out: 278 local_irq_restore(flags); 279 } 280 281 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 282 static int __init tick_nohz_full_setup(char *str) 283 { 284 int cpu; 285 286 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 287 alloc_bootmem_cpumask_var(&housekeeping_mask); 288 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 289 pr_warning("NOHZ: Incorrect nohz_full cpumask\n"); 290 return 1; 291 } 292 293 cpu = smp_processor_id(); 294 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 295 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu); 296 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 297 } 298 cpumask_andnot(housekeeping_mask, 299 cpu_possible_mask, tick_nohz_full_mask); 300 tick_nohz_full_running = true; 301 302 return 1; 303 } 304 __setup("nohz_full=", tick_nohz_full_setup); 305 306 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb, 307 unsigned long action, 308 void *hcpu) 309 { 310 unsigned int cpu = (unsigned long)hcpu; 311 312 switch (action & ~CPU_TASKS_FROZEN) { 313 case CPU_DOWN_PREPARE: 314 /* 315 * If we handle the timekeeping duty for full dynticks CPUs, 316 * we can't safely shutdown that CPU. 317 */ 318 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 319 return NOTIFY_BAD; 320 break; 321 } 322 return NOTIFY_OK; 323 } 324 325 /* 326 * Worst case string length in chunks of CPU range seems 2 steps 327 * separations: 0,2,4,6,... 328 * This is NR_CPUS + sizeof('\0') 329 */ 330 static char __initdata nohz_full_buf[NR_CPUS + 1]; 331 332 static int tick_nohz_init_all(void) 333 { 334 int err = -1; 335 336 #ifdef CONFIG_NO_HZ_FULL_ALL 337 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 338 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n"); 339 return err; 340 } 341 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 342 pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n"); 343 return err; 344 } 345 err = 0; 346 cpumask_setall(tick_nohz_full_mask); 347 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask); 348 cpumask_clear(housekeeping_mask); 349 cpumask_set_cpu(smp_processor_id(), housekeeping_mask); 350 tick_nohz_full_running = true; 351 #endif 352 return err; 353 } 354 355 void __init tick_nohz_init(void) 356 { 357 int cpu; 358 359 if (!tick_nohz_full_running) { 360 if (tick_nohz_init_all() < 0) 361 return; 362 } 363 364 for_each_cpu(cpu, tick_nohz_full_mask) 365 context_tracking_cpu_set(cpu); 366 367 cpu_notifier(tick_nohz_cpu_down_callback, 0); 368 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask); 369 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf); 370 } 371 #endif 372 373 /* 374 * NOHZ - aka dynamic tick functionality 375 */ 376 #ifdef CONFIG_NO_HZ_COMMON 377 /* 378 * NO HZ enabled ? 379 */ 380 static int tick_nohz_enabled __read_mostly = 1; 381 int tick_nohz_active __read_mostly; 382 /* 383 * Enable / Disable tickless mode 384 */ 385 static int __init setup_tick_nohz(char *str) 386 { 387 if (!strcmp(str, "off")) 388 tick_nohz_enabled = 0; 389 else if (!strcmp(str, "on")) 390 tick_nohz_enabled = 1; 391 else 392 return 0; 393 return 1; 394 } 395 396 __setup("nohz=", setup_tick_nohz); 397 398 /** 399 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 400 * 401 * Called from interrupt entry when the CPU was idle 402 * 403 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 404 * must be updated. Otherwise an interrupt handler could use a stale jiffy 405 * value. We do this unconditionally on any cpu, as we don't know whether the 406 * cpu, which has the update task assigned is in a long sleep. 407 */ 408 static void tick_nohz_update_jiffies(ktime_t now) 409 { 410 unsigned long flags; 411 412 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 413 414 local_irq_save(flags); 415 tick_do_update_jiffies64(now); 416 local_irq_restore(flags); 417 418 touch_softlockup_watchdog(); 419 } 420 421 /* 422 * Updates the per cpu time idle statistics counters 423 */ 424 static void 425 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 426 { 427 ktime_t delta; 428 429 if (ts->idle_active) { 430 delta = ktime_sub(now, ts->idle_entrytime); 431 if (nr_iowait_cpu(cpu) > 0) 432 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 433 else 434 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 435 ts->idle_entrytime = now; 436 } 437 438 if (last_update_time) 439 *last_update_time = ktime_to_us(now); 440 441 } 442 443 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 444 { 445 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 446 ts->idle_active = 0; 447 448 sched_clock_idle_wakeup_event(0); 449 } 450 451 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 452 { 453 ktime_t now = ktime_get(); 454 455 ts->idle_entrytime = now; 456 ts->idle_active = 1; 457 sched_clock_idle_sleep_event(); 458 return now; 459 } 460 461 /** 462 * get_cpu_idle_time_us - get the total idle time of a cpu 463 * @cpu: CPU number to query 464 * @last_update_time: variable to store update time in. Do not update 465 * counters if NULL. 466 * 467 * Return the cummulative idle time (since boot) for a given 468 * CPU, in microseconds. 469 * 470 * This time is measured via accounting rather than sampling, 471 * and is as accurate as ktime_get() is. 472 * 473 * This function returns -1 if NOHZ is not enabled. 474 */ 475 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 476 { 477 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 478 ktime_t now, idle; 479 480 if (!tick_nohz_active) 481 return -1; 482 483 now = ktime_get(); 484 if (last_update_time) { 485 update_ts_time_stats(cpu, ts, now, last_update_time); 486 idle = ts->idle_sleeptime; 487 } else { 488 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 489 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 490 491 idle = ktime_add(ts->idle_sleeptime, delta); 492 } else { 493 idle = ts->idle_sleeptime; 494 } 495 } 496 497 return ktime_to_us(idle); 498 499 } 500 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 501 502 /** 503 * get_cpu_iowait_time_us - get the total iowait time of a cpu 504 * @cpu: CPU number to query 505 * @last_update_time: variable to store update time in. Do not update 506 * counters if NULL. 507 * 508 * Return the cummulative iowait time (since boot) for a given 509 * CPU, in microseconds. 510 * 511 * This time is measured via accounting rather than sampling, 512 * and is as accurate as ktime_get() is. 513 * 514 * This function returns -1 if NOHZ is not enabled. 515 */ 516 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 517 { 518 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 519 ktime_t now, iowait; 520 521 if (!tick_nohz_active) 522 return -1; 523 524 now = ktime_get(); 525 if (last_update_time) { 526 update_ts_time_stats(cpu, ts, now, last_update_time); 527 iowait = ts->iowait_sleeptime; 528 } else { 529 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 530 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 531 532 iowait = ktime_add(ts->iowait_sleeptime, delta); 533 } else { 534 iowait = ts->iowait_sleeptime; 535 } 536 } 537 538 return ktime_to_us(iowait); 539 } 540 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 541 542 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 543 ktime_t now, int cpu) 544 { 545 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 546 ktime_t last_update, expires, ret = { .tv64 = 0 }; 547 unsigned long rcu_delta_jiffies; 548 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 549 u64 time_delta; 550 551 time_delta = timekeeping_max_deferment(); 552 553 /* Read jiffies and the time when jiffies were updated last */ 554 do { 555 seq = read_seqbegin(&jiffies_lock); 556 last_update = last_jiffies_update; 557 last_jiffies = jiffies; 558 } while (read_seqretry(&jiffies_lock, seq)); 559 560 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || 561 arch_needs_cpu(cpu) || irq_work_needs_cpu()) { 562 next_jiffies = last_jiffies + 1; 563 delta_jiffies = 1; 564 } else { 565 /* Get the next timer wheel timer */ 566 next_jiffies = get_next_timer_interrupt(last_jiffies); 567 delta_jiffies = next_jiffies - last_jiffies; 568 if (rcu_delta_jiffies < delta_jiffies) { 569 next_jiffies = last_jiffies + rcu_delta_jiffies; 570 delta_jiffies = rcu_delta_jiffies; 571 } 572 } 573 574 /* 575 * Do not stop the tick, if we are only one off (or less) 576 * or if the cpu is required for RCU: 577 */ 578 if (!ts->tick_stopped && delta_jiffies <= 1) 579 goto out; 580 581 /* Schedule the tick, if we are at least one jiffie off */ 582 if ((long)delta_jiffies >= 1) { 583 584 /* 585 * If this cpu is the one which updates jiffies, then 586 * give up the assignment and let it be taken by the 587 * cpu which runs the tick timer next, which might be 588 * this cpu as well. If we don't drop this here the 589 * jiffies might be stale and do_timer() never 590 * invoked. Keep track of the fact that it was the one 591 * which had the do_timer() duty last. If this cpu is 592 * the one which had the do_timer() duty last, we 593 * limit the sleep time to the timekeeping 594 * max_deferement value which we retrieved 595 * above. Otherwise we can sleep as long as we want. 596 */ 597 if (cpu == tick_do_timer_cpu) { 598 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 599 ts->do_timer_last = 1; 600 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 601 time_delta = KTIME_MAX; 602 ts->do_timer_last = 0; 603 } else if (!ts->do_timer_last) { 604 time_delta = KTIME_MAX; 605 } 606 607 #ifdef CONFIG_NO_HZ_FULL 608 if (!ts->inidle) { 609 time_delta = min(time_delta, 610 scheduler_tick_max_deferment()); 611 } 612 #endif 613 614 /* 615 * calculate the expiry time for the next timer wheel 616 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals 617 * that there is no timer pending or at least extremely 618 * far into the future (12 days for HZ=1000). In this 619 * case we set the expiry to the end of time. 620 */ 621 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { 622 /* 623 * Calculate the time delta for the next timer event. 624 * If the time delta exceeds the maximum time delta 625 * permitted by the current clocksource then adjust 626 * the time delta accordingly to ensure the 627 * clocksource does not wrap. 628 */ 629 time_delta = min_t(u64, time_delta, 630 tick_period.tv64 * delta_jiffies); 631 } 632 633 if (time_delta < KTIME_MAX) 634 expires = ktime_add_ns(last_update, time_delta); 635 else 636 expires.tv64 = KTIME_MAX; 637 638 /* Skip reprogram of event if its not changed */ 639 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 640 goto out; 641 642 ret = expires; 643 644 /* 645 * nohz_stop_sched_tick can be called several times before 646 * the nohz_restart_sched_tick is called. This happens when 647 * interrupts arrive which do not cause a reschedule. In the 648 * first call we save the current tick time, so we can restart 649 * the scheduler tick in nohz_restart_sched_tick. 650 */ 651 if (!ts->tick_stopped) { 652 nohz_balance_enter_idle(cpu); 653 calc_load_enter_idle(); 654 655 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 656 ts->tick_stopped = 1; 657 trace_tick_stop(1, " "); 658 } 659 660 /* 661 * If the expiration time == KTIME_MAX, then 662 * in this case we simply stop the tick timer. 663 */ 664 if (unlikely(expires.tv64 == KTIME_MAX)) { 665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 666 hrtimer_cancel(&ts->sched_timer); 667 goto out; 668 } 669 670 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 671 hrtimer_start(&ts->sched_timer, expires, 672 HRTIMER_MODE_ABS_PINNED); 673 /* Check, if the timer was already in the past */ 674 if (hrtimer_active(&ts->sched_timer)) 675 goto out; 676 } else if (!tick_program_event(expires, 0)) 677 goto out; 678 /* 679 * We are past the event already. So we crossed a 680 * jiffie boundary. Update jiffies and raise the 681 * softirq. 682 */ 683 tick_do_update_jiffies64(ktime_get()); 684 } 685 raise_softirq_irqoff(TIMER_SOFTIRQ); 686 out: 687 ts->next_jiffies = next_jiffies; 688 ts->last_jiffies = last_jiffies; 689 ts->sleep_length = ktime_sub(dev->next_event, now); 690 691 return ret; 692 } 693 694 static void tick_nohz_full_stop_tick(struct tick_sched *ts) 695 { 696 #ifdef CONFIG_NO_HZ_FULL 697 int cpu = smp_processor_id(); 698 699 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current)) 700 return; 701 702 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 703 return; 704 705 if (!can_stop_full_tick()) 706 return; 707 708 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 709 #endif 710 } 711 712 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 713 { 714 /* 715 * If this cpu is offline and it is the one which updates 716 * jiffies, then give up the assignment and let it be taken by 717 * the cpu which runs the tick timer next. If we don't drop 718 * this here the jiffies might be stale and do_timer() never 719 * invoked. 720 */ 721 if (unlikely(!cpu_online(cpu))) { 722 if (cpu == tick_do_timer_cpu) 723 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 724 return false; 725 } 726 727 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 728 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; 729 return false; 730 } 731 732 if (need_resched()) 733 return false; 734 735 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 736 static int ratelimit; 737 738 if (ratelimit < 10 && 739 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 740 pr_warn("NOHZ: local_softirq_pending %02x\n", 741 (unsigned int) local_softirq_pending()); 742 ratelimit++; 743 } 744 return false; 745 } 746 747 if (tick_nohz_full_enabled()) { 748 /* 749 * Keep the tick alive to guarantee timekeeping progression 750 * if there are full dynticks CPUs around 751 */ 752 if (tick_do_timer_cpu == cpu) 753 return false; 754 /* 755 * Boot safety: make sure the timekeeping duty has been 756 * assigned before entering dyntick-idle mode, 757 */ 758 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 759 return false; 760 } 761 762 return true; 763 } 764 765 static void __tick_nohz_idle_enter(struct tick_sched *ts) 766 { 767 ktime_t now, expires; 768 int cpu = smp_processor_id(); 769 770 now = tick_nohz_start_idle(ts); 771 772 if (can_stop_idle_tick(cpu, ts)) { 773 int was_stopped = ts->tick_stopped; 774 775 ts->idle_calls++; 776 777 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 778 if (expires.tv64 > 0LL) { 779 ts->idle_sleeps++; 780 ts->idle_expires = expires; 781 } 782 783 if (!was_stopped && ts->tick_stopped) 784 ts->idle_jiffies = ts->last_jiffies; 785 } 786 } 787 788 /** 789 * tick_nohz_idle_enter - stop the idle tick from the idle task 790 * 791 * When the next event is more than a tick into the future, stop the idle tick 792 * Called when we start the idle loop. 793 * 794 * The arch is responsible of calling: 795 * 796 * - rcu_idle_enter() after its last use of RCU before the CPU is put 797 * to sleep. 798 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 799 */ 800 void tick_nohz_idle_enter(void) 801 { 802 struct tick_sched *ts; 803 804 WARN_ON_ONCE(irqs_disabled()); 805 806 /* 807 * Update the idle state in the scheduler domain hierarchy 808 * when tick_nohz_stop_sched_tick() is called from the idle loop. 809 * State will be updated to busy during the first busy tick after 810 * exiting idle. 811 */ 812 set_cpu_sd_state_idle(); 813 814 local_irq_disable(); 815 816 ts = &__get_cpu_var(tick_cpu_sched); 817 ts->inidle = 1; 818 __tick_nohz_idle_enter(ts); 819 820 local_irq_enable(); 821 } 822 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter); 823 824 /** 825 * tick_nohz_irq_exit - update next tick event from interrupt exit 826 * 827 * When an interrupt fires while we are idle and it doesn't cause 828 * a reschedule, it may still add, modify or delete a timer, enqueue 829 * an RCU callback, etc... 830 * So we need to re-calculate and reprogram the next tick event. 831 */ 832 void tick_nohz_irq_exit(void) 833 { 834 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 835 836 if (ts->inidle) 837 __tick_nohz_idle_enter(ts); 838 else 839 tick_nohz_full_stop_tick(ts); 840 } 841 842 /** 843 * tick_nohz_get_sleep_length - return the length of the current sleep 844 * 845 * Called from power state control code with interrupts disabled 846 */ 847 ktime_t tick_nohz_get_sleep_length(void) 848 { 849 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 850 851 return ts->sleep_length; 852 } 853 854 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 855 { 856 hrtimer_cancel(&ts->sched_timer); 857 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 858 859 while (1) { 860 /* Forward the time to expire in the future */ 861 hrtimer_forward(&ts->sched_timer, now, tick_period); 862 863 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 864 hrtimer_start_expires(&ts->sched_timer, 865 HRTIMER_MODE_ABS_PINNED); 866 /* Check, if the timer was already in the past */ 867 if (hrtimer_active(&ts->sched_timer)) 868 break; 869 } else { 870 if (!tick_program_event( 871 hrtimer_get_expires(&ts->sched_timer), 0)) 872 break; 873 } 874 /* Reread time and update jiffies */ 875 now = ktime_get(); 876 tick_do_update_jiffies64(now); 877 } 878 } 879 880 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 881 { 882 /* Update jiffies first */ 883 tick_do_update_jiffies64(now); 884 update_cpu_load_nohz(); 885 886 calc_load_exit_idle(); 887 touch_softlockup_watchdog(); 888 /* 889 * Cancel the scheduled timer and restore the tick 890 */ 891 ts->tick_stopped = 0; 892 ts->idle_exittime = now; 893 894 tick_nohz_restart(ts, now); 895 } 896 897 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 898 { 899 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 900 unsigned long ticks; 901 902 if (vtime_accounting_enabled()) 903 return; 904 /* 905 * We stopped the tick in idle. Update process times would miss the 906 * time we slept as update_process_times does only a 1 tick 907 * accounting. Enforce that this is accounted to idle ! 908 */ 909 ticks = jiffies - ts->idle_jiffies; 910 /* 911 * We might be one off. Do not randomly account a huge number of ticks! 912 */ 913 if (ticks && ticks < LONG_MAX) 914 account_idle_ticks(ticks); 915 #endif 916 } 917 918 /** 919 * tick_nohz_idle_exit - restart the idle tick from the idle task 920 * 921 * Restart the idle tick when the CPU is woken up from idle 922 * This also exit the RCU extended quiescent state. The CPU 923 * can use RCU again after this function is called. 924 */ 925 void tick_nohz_idle_exit(void) 926 { 927 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 928 ktime_t now; 929 930 local_irq_disable(); 931 932 WARN_ON_ONCE(!ts->inidle); 933 934 ts->inidle = 0; 935 936 if (ts->idle_active || ts->tick_stopped) 937 now = ktime_get(); 938 939 if (ts->idle_active) 940 tick_nohz_stop_idle(ts, now); 941 942 if (ts->tick_stopped) { 943 tick_nohz_restart_sched_tick(ts, now); 944 tick_nohz_account_idle_ticks(ts); 945 } 946 947 local_irq_enable(); 948 } 949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit); 950 951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) 952 { 953 hrtimer_forward(&ts->sched_timer, now, tick_period); 954 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); 955 } 956 957 /* 958 * The nohz low res interrupt handler 959 */ 960 static void tick_nohz_handler(struct clock_event_device *dev) 961 { 962 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 963 struct pt_regs *regs = get_irq_regs(); 964 ktime_t now = ktime_get(); 965 966 dev->next_event.tv64 = KTIME_MAX; 967 968 tick_sched_do_timer(now); 969 tick_sched_handle(ts, regs); 970 971 while (tick_nohz_reprogram(ts, now)) { 972 now = ktime_get(); 973 tick_do_update_jiffies64(now); 974 } 975 } 976 977 /** 978 * tick_nohz_switch_to_nohz - switch to nohz mode 979 */ 980 static void tick_nohz_switch_to_nohz(void) 981 { 982 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 983 ktime_t next; 984 985 if (!tick_nohz_enabled) 986 return; 987 988 local_irq_disable(); 989 if (tick_switch_to_oneshot(tick_nohz_handler)) { 990 local_irq_enable(); 991 return; 992 } 993 tick_nohz_active = 1; 994 ts->nohz_mode = NOHZ_MODE_LOWRES; 995 996 /* 997 * Recycle the hrtimer in ts, so we can share the 998 * hrtimer_forward with the highres code. 999 */ 1000 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1001 /* Get the next period */ 1002 next = tick_init_jiffy_update(); 1003 1004 for (;;) { 1005 hrtimer_set_expires(&ts->sched_timer, next); 1006 if (!tick_program_event(next, 0)) 1007 break; 1008 next = ktime_add(next, tick_period); 1009 } 1010 local_irq_enable(); 1011 } 1012 1013 /* 1014 * When NOHZ is enabled and the tick is stopped, we need to kick the 1015 * tick timer from irq_enter() so that the jiffies update is kept 1016 * alive during long running softirqs. That's ugly as hell, but 1017 * correctness is key even if we need to fix the offending softirq in 1018 * the first place. 1019 * 1020 * Note, this is different to tick_nohz_restart. We just kick the 1021 * timer and do not touch the other magic bits which need to be done 1022 * when idle is left. 1023 */ 1024 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now) 1025 { 1026 #if 0 1027 /* Switch back to 2.6.27 behaviour */ 1028 ktime_t delta; 1029 1030 /* 1031 * Do not touch the tick device, when the next expiry is either 1032 * already reached or less/equal than the tick period. 1033 */ 1034 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); 1035 if (delta.tv64 <= tick_period.tv64) 1036 return; 1037 1038 tick_nohz_restart(ts, now); 1039 #endif 1040 } 1041 1042 static inline void tick_nohz_irq_enter(void) 1043 { 1044 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1045 ktime_t now; 1046 1047 if (!ts->idle_active && !ts->tick_stopped) 1048 return; 1049 now = ktime_get(); 1050 if (ts->idle_active) 1051 tick_nohz_stop_idle(ts, now); 1052 if (ts->tick_stopped) { 1053 tick_nohz_update_jiffies(now); 1054 tick_nohz_kick_tick(ts, now); 1055 } 1056 } 1057 1058 #else 1059 1060 static inline void tick_nohz_switch_to_nohz(void) { } 1061 static inline void tick_nohz_irq_enter(void) { } 1062 1063 #endif /* CONFIG_NO_HZ_COMMON */ 1064 1065 /* 1066 * Called from irq_enter to notify about the possible interruption of idle() 1067 */ 1068 void tick_irq_enter(void) 1069 { 1070 tick_check_oneshot_broadcast_this_cpu(); 1071 tick_nohz_irq_enter(); 1072 } 1073 1074 /* 1075 * High resolution timer specific code 1076 */ 1077 #ifdef CONFIG_HIGH_RES_TIMERS 1078 /* 1079 * We rearm the timer until we get disabled by the idle code. 1080 * Called with interrupts disabled. 1081 */ 1082 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1083 { 1084 struct tick_sched *ts = 1085 container_of(timer, struct tick_sched, sched_timer); 1086 struct pt_regs *regs = get_irq_regs(); 1087 ktime_t now = ktime_get(); 1088 1089 tick_sched_do_timer(now); 1090 1091 /* 1092 * Do not call, when we are not in irq context and have 1093 * no valid regs pointer 1094 */ 1095 if (regs) 1096 tick_sched_handle(ts, regs); 1097 1098 hrtimer_forward(timer, now, tick_period); 1099 1100 return HRTIMER_RESTART; 1101 } 1102 1103 static int sched_skew_tick; 1104 1105 static int __init skew_tick(char *str) 1106 { 1107 get_option(&str, &sched_skew_tick); 1108 1109 return 0; 1110 } 1111 early_param("skew_tick", skew_tick); 1112 1113 /** 1114 * tick_setup_sched_timer - setup the tick emulation timer 1115 */ 1116 void tick_setup_sched_timer(void) 1117 { 1118 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1119 ktime_t now = ktime_get(); 1120 1121 /* 1122 * Emulate tick processing via per-CPU hrtimers: 1123 */ 1124 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1125 ts->sched_timer.function = tick_sched_timer; 1126 1127 /* Get the next period (per cpu) */ 1128 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1129 1130 /* Offset the tick to avert jiffies_lock contention. */ 1131 if (sched_skew_tick) { 1132 u64 offset = ktime_to_ns(tick_period) >> 1; 1133 do_div(offset, num_possible_cpus()); 1134 offset *= smp_processor_id(); 1135 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1136 } 1137 1138 for (;;) { 1139 hrtimer_forward(&ts->sched_timer, now, tick_period); 1140 hrtimer_start_expires(&ts->sched_timer, 1141 HRTIMER_MODE_ABS_PINNED); 1142 /* Check, if the timer was already in the past */ 1143 if (hrtimer_active(&ts->sched_timer)) 1144 break; 1145 now = ktime_get(); 1146 } 1147 1148 #ifdef CONFIG_NO_HZ_COMMON 1149 if (tick_nohz_enabled) { 1150 ts->nohz_mode = NOHZ_MODE_HIGHRES; 1151 tick_nohz_active = 1; 1152 } 1153 #endif 1154 } 1155 #endif /* HIGH_RES_TIMERS */ 1156 1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1158 void tick_cancel_sched_timer(int cpu) 1159 { 1160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1161 1162 # ifdef CONFIG_HIGH_RES_TIMERS 1163 if (ts->sched_timer.base) 1164 hrtimer_cancel(&ts->sched_timer); 1165 # endif 1166 1167 memset(ts, 0, sizeof(*ts)); 1168 } 1169 #endif 1170 1171 /** 1172 * Async notification about clocksource changes 1173 */ 1174 void tick_clock_notify(void) 1175 { 1176 int cpu; 1177 1178 for_each_possible_cpu(cpu) 1179 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1180 } 1181 1182 /* 1183 * Async notification about clock event changes 1184 */ 1185 void tick_oneshot_notify(void) 1186 { 1187 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1188 1189 set_bit(0, &ts->check_clocks); 1190 } 1191 1192 /** 1193 * Check, if a change happened, which makes oneshot possible. 1194 * 1195 * Called cyclic from the hrtimer softirq (driven by the timer 1196 * softirq) allow_nohz signals, that we can switch into low-res nohz 1197 * mode, because high resolution timers are disabled (either compile 1198 * or runtime). 1199 */ 1200 int tick_check_oneshot_change(int allow_nohz) 1201 { 1202 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 1203 1204 if (!test_and_clear_bit(0, &ts->check_clocks)) 1205 return 0; 1206 1207 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1208 return 0; 1209 1210 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1211 return 0; 1212 1213 if (!allow_nohz) 1214 return 1; 1215 1216 tick_nohz_switch_to_nohz(); 1217 return 0; 1218 } 1219