1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 31 #include <asm/irq_regs.h> 32 33 #include "tick-internal.h" 34 35 #include <trace/events/timer.h> 36 37 /* 38 * Per-CPU nohz control structure 39 */ 40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 41 42 struct tick_sched *tick_get_tick_sched(int cpu) 43 { 44 return &per_cpu(tick_cpu_sched, cpu); 45 } 46 47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 48 /* 49 * The time, when the last jiffy update happened. Protected by jiffies_lock. 50 */ 51 static ktime_t last_jiffies_update; 52 53 /* 54 * Must be called with interrupts disabled ! 55 */ 56 static void tick_do_update_jiffies64(ktime_t now) 57 { 58 unsigned long ticks = 0; 59 ktime_t delta; 60 61 /* 62 * Do a quick check without holding jiffies_lock: 63 */ 64 delta = ktime_sub(now, last_jiffies_update); 65 if (delta < tick_period) 66 return; 67 68 /* Reevaluate with jiffies_lock held */ 69 write_seqlock(&jiffies_lock); 70 71 delta = ktime_sub(now, last_jiffies_update); 72 if (delta >= tick_period) { 73 74 delta = ktime_sub(delta, tick_period); 75 last_jiffies_update = ktime_add(last_jiffies_update, 76 tick_period); 77 78 /* Slow path for long timeouts */ 79 if (unlikely(delta >= tick_period)) { 80 s64 incr = ktime_to_ns(tick_period); 81 82 ticks = ktime_divns(delta, incr); 83 84 last_jiffies_update = ktime_add_ns(last_jiffies_update, 85 incr * ticks); 86 } 87 do_timer(++ticks); 88 89 /* Keep the tick_next_period variable up to date */ 90 tick_next_period = ktime_add(last_jiffies_update, tick_period); 91 } else { 92 write_sequnlock(&jiffies_lock); 93 return; 94 } 95 write_sequnlock(&jiffies_lock); 96 update_wall_time(); 97 } 98 99 /* 100 * Initialize and return retrieve the jiffies update. 101 */ 102 static ktime_t tick_init_jiffy_update(void) 103 { 104 ktime_t period; 105 106 write_seqlock(&jiffies_lock); 107 /* Did we start the jiffies update yet ? */ 108 if (last_jiffies_update == 0) 109 last_jiffies_update = tick_next_period; 110 period = last_jiffies_update; 111 write_sequnlock(&jiffies_lock); 112 return period; 113 } 114 115 116 static void tick_sched_do_timer(ktime_t now) 117 { 118 int cpu = smp_processor_id(); 119 120 #ifdef CONFIG_NO_HZ_COMMON 121 /* 122 * Check if the do_timer duty was dropped. We don't care about 123 * concurrency: This happens only when the CPU in charge went 124 * into a long sleep. If two CPUs happen to assign themselves to 125 * this duty, then the jiffies update is still serialized by 126 * jiffies_lock. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 129 && !tick_nohz_full_cpu(cpu)) 130 tick_do_timer_cpu = cpu; 131 #endif 132 133 /* Check, if the jiffies need an update */ 134 if (tick_do_timer_cpu == cpu) 135 tick_do_update_jiffies64(now); 136 } 137 138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 139 { 140 #ifdef CONFIG_NO_HZ_COMMON 141 /* 142 * When we are idle and the tick is stopped, we have to touch 143 * the watchdog as we might not schedule for a really long 144 * time. This happens on complete idle SMP systems while 145 * waiting on the login prompt. We also increment the "start of 146 * idle" jiffy stamp so the idle accounting adjustment we do 147 * when we go busy again does not account too much ticks. 148 */ 149 if (ts->tick_stopped) { 150 touch_softlockup_watchdog_sched(); 151 if (is_idle_task(current)) 152 ts->idle_jiffies++; 153 } 154 #endif 155 update_process_times(user_mode(regs)); 156 profile_tick(CPU_PROFILING); 157 } 158 #endif 159 160 #ifdef CONFIG_NO_HZ_FULL 161 cpumask_var_t tick_nohz_full_mask; 162 cpumask_var_t housekeeping_mask; 163 bool tick_nohz_full_running; 164 static atomic_t tick_dep_mask; 165 166 static bool check_tick_dependency(atomic_t *dep) 167 { 168 int val = atomic_read(dep); 169 170 if (val & TICK_DEP_MASK_POSIX_TIMER) { 171 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 172 return true; 173 } 174 175 if (val & TICK_DEP_MASK_PERF_EVENTS) { 176 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 177 return true; 178 } 179 180 if (val & TICK_DEP_MASK_SCHED) { 181 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 182 return true; 183 } 184 185 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 186 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 187 return true; 188 } 189 190 return false; 191 } 192 193 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 194 { 195 WARN_ON_ONCE(!irqs_disabled()); 196 197 if (unlikely(!cpu_online(cpu))) 198 return false; 199 200 if (check_tick_dependency(&tick_dep_mask)) 201 return false; 202 203 if (check_tick_dependency(&ts->tick_dep_mask)) 204 return false; 205 206 if (check_tick_dependency(¤t->tick_dep_mask)) 207 return false; 208 209 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 210 return false; 211 212 return true; 213 } 214 215 static void nohz_full_kick_func(struct irq_work *work) 216 { 217 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 218 } 219 220 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 221 .func = nohz_full_kick_func, 222 }; 223 224 /* 225 * Kick this CPU if it's full dynticks in order to force it to 226 * re-evaluate its dependency on the tick and restart it if necessary. 227 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 228 * is NMI safe. 229 */ 230 static void tick_nohz_full_kick(void) 231 { 232 if (!tick_nohz_full_cpu(smp_processor_id())) 233 return; 234 235 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 236 } 237 238 /* 239 * Kick the CPU if it's full dynticks in order to force it to 240 * re-evaluate its dependency on the tick and restart it if necessary. 241 */ 242 void tick_nohz_full_kick_cpu(int cpu) 243 { 244 if (!tick_nohz_full_cpu(cpu)) 245 return; 246 247 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 248 } 249 250 /* 251 * Kick all full dynticks CPUs in order to force these to re-evaluate 252 * their dependency on the tick and restart it if necessary. 253 */ 254 static void tick_nohz_full_kick_all(void) 255 { 256 int cpu; 257 258 if (!tick_nohz_full_running) 259 return; 260 261 preempt_disable(); 262 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 263 tick_nohz_full_kick_cpu(cpu); 264 preempt_enable(); 265 } 266 267 static void tick_nohz_dep_set_all(atomic_t *dep, 268 enum tick_dep_bits bit) 269 { 270 int prev; 271 272 prev = atomic_fetch_or(BIT(bit), dep); 273 if (!prev) 274 tick_nohz_full_kick_all(); 275 } 276 277 /* 278 * Set a global tick dependency. Used by perf events that rely on freq and 279 * by unstable clock. 280 */ 281 void tick_nohz_dep_set(enum tick_dep_bits bit) 282 { 283 tick_nohz_dep_set_all(&tick_dep_mask, bit); 284 } 285 286 void tick_nohz_dep_clear(enum tick_dep_bits bit) 287 { 288 atomic_andnot(BIT(bit), &tick_dep_mask); 289 } 290 291 /* 292 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 293 * manage events throttling. 294 */ 295 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 296 { 297 int prev; 298 struct tick_sched *ts; 299 300 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 301 302 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 303 if (!prev) { 304 preempt_disable(); 305 /* Perf needs local kick that is NMI safe */ 306 if (cpu == smp_processor_id()) { 307 tick_nohz_full_kick(); 308 } else { 309 /* Remote irq work not NMI-safe */ 310 if (!WARN_ON_ONCE(in_nmi())) 311 tick_nohz_full_kick_cpu(cpu); 312 } 313 preempt_enable(); 314 } 315 } 316 317 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 318 { 319 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 320 321 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 322 } 323 324 /* 325 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 326 * per task timers. 327 */ 328 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 329 { 330 /* 331 * We could optimize this with just kicking the target running the task 332 * if that noise matters for nohz full users. 333 */ 334 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 335 } 336 337 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 338 { 339 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 340 } 341 342 /* 343 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 344 * per process timers. 345 */ 346 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 347 { 348 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 349 } 350 351 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 352 { 353 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 354 } 355 356 /* 357 * Re-evaluate the need for the tick as we switch the current task. 358 * It might need the tick due to per task/process properties: 359 * perf events, posix CPU timers, ... 360 */ 361 void __tick_nohz_task_switch(void) 362 { 363 unsigned long flags; 364 struct tick_sched *ts; 365 366 local_irq_save(flags); 367 368 if (!tick_nohz_full_cpu(smp_processor_id())) 369 goto out; 370 371 ts = this_cpu_ptr(&tick_cpu_sched); 372 373 if (ts->tick_stopped) { 374 if (atomic_read(¤t->tick_dep_mask) || 375 atomic_read(¤t->signal->tick_dep_mask)) 376 tick_nohz_full_kick(); 377 } 378 out: 379 local_irq_restore(flags); 380 } 381 382 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 383 static int __init tick_nohz_full_setup(char *str) 384 { 385 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 386 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 387 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 388 free_bootmem_cpumask_var(tick_nohz_full_mask); 389 return 1; 390 } 391 tick_nohz_full_running = true; 392 393 return 1; 394 } 395 __setup("nohz_full=", tick_nohz_full_setup); 396 397 static int tick_nohz_cpu_down(unsigned int cpu) 398 { 399 /* 400 * The boot CPU handles housekeeping duty (unbound timers, 401 * workqueues, timekeeping, ...) on behalf of full dynticks 402 * CPUs. It must remain online when nohz full is enabled. 403 */ 404 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 405 return -EBUSY; 406 return 0; 407 } 408 409 static int tick_nohz_init_all(void) 410 { 411 int err = -1; 412 413 #ifdef CONFIG_NO_HZ_FULL_ALL 414 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 415 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 416 return err; 417 } 418 err = 0; 419 cpumask_setall(tick_nohz_full_mask); 420 tick_nohz_full_running = true; 421 #endif 422 return err; 423 } 424 425 void __init tick_nohz_init(void) 426 { 427 int cpu, ret; 428 429 if (!tick_nohz_full_running) { 430 if (tick_nohz_init_all() < 0) 431 return; 432 } 433 434 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 435 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 436 cpumask_clear(tick_nohz_full_mask); 437 tick_nohz_full_running = false; 438 return; 439 } 440 441 /* 442 * Full dynticks uses irq work to drive the tick rescheduling on safe 443 * locking contexts. But then we need irq work to raise its own 444 * interrupts to avoid circular dependency on the tick 445 */ 446 if (!arch_irq_work_has_interrupt()) { 447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 448 cpumask_clear(tick_nohz_full_mask); 449 cpumask_copy(housekeeping_mask, cpu_possible_mask); 450 tick_nohz_full_running = false; 451 return; 452 } 453 454 cpu = smp_processor_id(); 455 456 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 457 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 458 cpu); 459 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 460 } 461 462 cpumask_andnot(housekeeping_mask, 463 cpu_possible_mask, tick_nohz_full_mask); 464 465 for_each_cpu(cpu, tick_nohz_full_mask) 466 context_tracking_cpu_set(cpu); 467 468 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 469 "kernel/nohz:predown", NULL, 470 tick_nohz_cpu_down); 471 WARN_ON(ret < 0); 472 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 473 cpumask_pr_args(tick_nohz_full_mask)); 474 475 /* 476 * We need at least one CPU to handle housekeeping work such 477 * as timekeeping, unbound timers, workqueues, ... 478 */ 479 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 480 } 481 #endif 482 483 /* 484 * NOHZ - aka dynamic tick functionality 485 */ 486 #ifdef CONFIG_NO_HZ_COMMON 487 /* 488 * NO HZ enabled ? 489 */ 490 bool tick_nohz_enabled __read_mostly = true; 491 unsigned long tick_nohz_active __read_mostly; 492 /* 493 * Enable / Disable tickless mode 494 */ 495 static int __init setup_tick_nohz(char *str) 496 { 497 return (kstrtobool(str, &tick_nohz_enabled) == 0); 498 } 499 500 __setup("nohz=", setup_tick_nohz); 501 502 int tick_nohz_tick_stopped(void) 503 { 504 return __this_cpu_read(tick_cpu_sched.tick_stopped); 505 } 506 507 /** 508 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 509 * 510 * Called from interrupt entry when the CPU was idle 511 * 512 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 513 * must be updated. Otherwise an interrupt handler could use a stale jiffy 514 * value. We do this unconditionally on any CPU, as we don't know whether the 515 * CPU, which has the update task assigned is in a long sleep. 516 */ 517 static void tick_nohz_update_jiffies(ktime_t now) 518 { 519 unsigned long flags; 520 521 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 522 523 local_irq_save(flags); 524 tick_do_update_jiffies64(now); 525 local_irq_restore(flags); 526 527 touch_softlockup_watchdog_sched(); 528 } 529 530 /* 531 * Updates the per-CPU time idle statistics counters 532 */ 533 static void 534 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 535 { 536 ktime_t delta; 537 538 if (ts->idle_active) { 539 delta = ktime_sub(now, ts->idle_entrytime); 540 if (nr_iowait_cpu(cpu) > 0) 541 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 542 else 543 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 544 ts->idle_entrytime = now; 545 } 546 547 if (last_update_time) 548 *last_update_time = ktime_to_us(now); 549 550 } 551 552 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 553 { 554 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 555 ts->idle_active = 0; 556 557 sched_clock_idle_wakeup_event(0); 558 } 559 560 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 561 { 562 ktime_t now = ktime_get(); 563 564 ts->idle_entrytime = now; 565 ts->idle_active = 1; 566 sched_clock_idle_sleep_event(); 567 return now; 568 } 569 570 /** 571 * get_cpu_idle_time_us - get the total idle time of a CPU 572 * @cpu: CPU number to query 573 * @last_update_time: variable to store update time in. Do not update 574 * counters if NULL. 575 * 576 * Return the cumulative idle time (since boot) for a given 577 * CPU, in microseconds. 578 * 579 * This time is measured via accounting rather than sampling, 580 * and is as accurate as ktime_get() is. 581 * 582 * This function returns -1 if NOHZ is not enabled. 583 */ 584 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 585 { 586 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 587 ktime_t now, idle; 588 589 if (!tick_nohz_active) 590 return -1; 591 592 now = ktime_get(); 593 if (last_update_time) { 594 update_ts_time_stats(cpu, ts, now, last_update_time); 595 idle = ts->idle_sleeptime; 596 } else { 597 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 598 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 599 600 idle = ktime_add(ts->idle_sleeptime, delta); 601 } else { 602 idle = ts->idle_sleeptime; 603 } 604 } 605 606 return ktime_to_us(idle); 607 608 } 609 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 610 611 /** 612 * get_cpu_iowait_time_us - get the total iowait time of a CPU 613 * @cpu: CPU number to query 614 * @last_update_time: variable to store update time in. Do not update 615 * counters if NULL. 616 * 617 * Return the cumulative iowait time (since boot) for a given 618 * CPU, in microseconds. 619 * 620 * This time is measured via accounting rather than sampling, 621 * and is as accurate as ktime_get() is. 622 * 623 * This function returns -1 if NOHZ is not enabled. 624 */ 625 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 626 { 627 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 628 ktime_t now, iowait; 629 630 if (!tick_nohz_active) 631 return -1; 632 633 now = ktime_get(); 634 if (last_update_time) { 635 update_ts_time_stats(cpu, ts, now, last_update_time); 636 iowait = ts->iowait_sleeptime; 637 } else { 638 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 639 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 640 641 iowait = ktime_add(ts->iowait_sleeptime, delta); 642 } else { 643 iowait = ts->iowait_sleeptime; 644 } 645 } 646 647 return ktime_to_us(iowait); 648 } 649 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 650 651 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 652 { 653 hrtimer_cancel(&ts->sched_timer); 654 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 655 656 /* Forward the time to expire in the future */ 657 hrtimer_forward(&ts->sched_timer, now, tick_period); 658 659 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 660 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 661 else 662 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 663 } 664 665 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 666 ktime_t now, int cpu) 667 { 668 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 669 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 670 unsigned long seq, basejiff; 671 ktime_t tick; 672 673 /* Read jiffies and the time when jiffies were updated last */ 674 do { 675 seq = read_seqbegin(&jiffies_lock); 676 basemono = last_jiffies_update; 677 basejiff = jiffies; 678 } while (read_seqretry(&jiffies_lock, seq)); 679 ts->last_jiffies = basejiff; 680 681 if (rcu_needs_cpu(basemono, &next_rcu) || 682 arch_needs_cpu() || irq_work_needs_cpu()) { 683 next_tick = basemono + TICK_NSEC; 684 } else { 685 /* 686 * Get the next pending timer. If high resolution 687 * timers are enabled this only takes the timer wheel 688 * timers into account. If high resolution timers are 689 * disabled this also looks at the next expiring 690 * hrtimer. 691 */ 692 next_tmr = get_next_timer_interrupt(basejiff, basemono); 693 ts->next_timer = next_tmr; 694 /* Take the next rcu event into account */ 695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 696 } 697 698 /* 699 * If the tick is due in the next period, keep it ticking or 700 * force prod the timer. 701 */ 702 delta = next_tick - basemono; 703 if (delta <= (u64)TICK_NSEC) { 704 tick = 0; 705 706 /* 707 * Tell the timer code that the base is not idle, i.e. undo 708 * the effect of get_next_timer_interrupt(): 709 */ 710 timer_clear_idle(); 711 /* 712 * We've not stopped the tick yet, and there's a timer in the 713 * next period, so no point in stopping it either, bail. 714 */ 715 if (!ts->tick_stopped) 716 goto out; 717 718 /* 719 * If, OTOH, we did stop it, but there's a pending (expired) 720 * timer reprogram the timer hardware to fire now. 721 * 722 * We will not restart the tick proper, just prod the timer 723 * hardware into firing an interrupt to process the pending 724 * timers. Just like tick_irq_exit() will not restart the tick 725 * for 'normal' interrupts. 726 * 727 * Only once we exit the idle loop will we re-enable the tick, 728 * see tick_nohz_idle_exit(). 729 */ 730 if (delta == 0) { 731 tick_nohz_restart(ts, now); 732 goto out; 733 } 734 } 735 736 /* 737 * If this CPU is the one which updates jiffies, then give up 738 * the assignment and let it be taken by the CPU which runs 739 * the tick timer next, which might be this CPU as well. If we 740 * don't drop this here the jiffies might be stale and 741 * do_timer() never invoked. Keep track of the fact that it 742 * was the one which had the do_timer() duty last. If this CPU 743 * is the one which had the do_timer() duty last, we limit the 744 * sleep time to the timekeeping max_deferment value. 745 * Otherwise we can sleep as long as we want. 746 */ 747 delta = timekeeping_max_deferment(); 748 if (cpu == tick_do_timer_cpu) { 749 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 750 ts->do_timer_last = 1; 751 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 752 delta = KTIME_MAX; 753 ts->do_timer_last = 0; 754 } else if (!ts->do_timer_last) { 755 delta = KTIME_MAX; 756 } 757 758 #ifdef CONFIG_NO_HZ_FULL 759 /* Limit the tick delta to the maximum scheduler deferment */ 760 if (!ts->inidle) 761 delta = min(delta, scheduler_tick_max_deferment()); 762 #endif 763 764 /* Calculate the next expiry time */ 765 if (delta < (KTIME_MAX - basemono)) 766 expires = basemono + delta; 767 else 768 expires = KTIME_MAX; 769 770 expires = min_t(u64, expires, next_tick); 771 tick = expires; 772 773 /* Skip reprogram of event if its not changed */ 774 if (ts->tick_stopped && (expires == dev->next_event)) 775 goto out; 776 777 /* 778 * nohz_stop_sched_tick can be called several times before 779 * the nohz_restart_sched_tick is called. This happens when 780 * interrupts arrive which do not cause a reschedule. In the 781 * first call we save the current tick time, so we can restart 782 * the scheduler tick in nohz_restart_sched_tick. 783 */ 784 if (!ts->tick_stopped) { 785 nohz_balance_enter_idle(cpu); 786 calc_load_enter_idle(); 787 cpu_load_update_nohz_start(); 788 789 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 790 ts->tick_stopped = 1; 791 trace_tick_stop(1, TICK_DEP_MASK_NONE); 792 } 793 794 /* 795 * If the expiration time == KTIME_MAX, then we simply stop 796 * the tick timer. 797 */ 798 if (unlikely(expires == KTIME_MAX)) { 799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 800 hrtimer_cancel(&ts->sched_timer); 801 goto out; 802 } 803 804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 806 else 807 tick_program_event(tick, 1); 808 out: 809 /* Update the estimated sleep length */ 810 ts->sleep_length = ktime_sub(dev->next_event, now); 811 return tick; 812 } 813 814 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 815 { 816 /* Update jiffies first */ 817 tick_do_update_jiffies64(now); 818 cpu_load_update_nohz_stop(); 819 820 /* 821 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 822 * the clock forward checks in the enqueue path: 823 */ 824 timer_clear_idle(); 825 826 calc_load_exit_idle(); 827 touch_softlockup_watchdog_sched(); 828 /* 829 * Cancel the scheduled timer and restore the tick 830 */ 831 ts->tick_stopped = 0; 832 ts->idle_exittime = now; 833 834 tick_nohz_restart(ts, now); 835 } 836 837 static void tick_nohz_full_update_tick(struct tick_sched *ts) 838 { 839 #ifdef CONFIG_NO_HZ_FULL 840 int cpu = smp_processor_id(); 841 842 if (!tick_nohz_full_cpu(cpu)) 843 return; 844 845 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 846 return; 847 848 if (can_stop_full_tick(cpu, ts)) 849 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 850 else if (ts->tick_stopped) 851 tick_nohz_restart_sched_tick(ts, ktime_get()); 852 #endif 853 } 854 855 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 856 { 857 /* 858 * If this CPU is offline and it is the one which updates 859 * jiffies, then give up the assignment and let it be taken by 860 * the CPU which runs the tick timer next. If we don't drop 861 * this here the jiffies might be stale and do_timer() never 862 * invoked. 863 */ 864 if (unlikely(!cpu_online(cpu))) { 865 if (cpu == tick_do_timer_cpu) 866 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 867 return false; 868 } 869 870 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 871 ts->sleep_length = NSEC_PER_SEC / HZ; 872 return false; 873 } 874 875 if (need_resched()) 876 return false; 877 878 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 879 static int ratelimit; 880 881 if (ratelimit < 10 && 882 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 883 pr_warn("NOHZ: local_softirq_pending %02x\n", 884 (unsigned int) local_softirq_pending()); 885 ratelimit++; 886 } 887 return false; 888 } 889 890 if (tick_nohz_full_enabled()) { 891 /* 892 * Keep the tick alive to guarantee timekeeping progression 893 * if there are full dynticks CPUs around 894 */ 895 if (tick_do_timer_cpu == cpu) 896 return false; 897 /* 898 * Boot safety: make sure the timekeeping duty has been 899 * assigned before entering dyntick-idle mode, 900 */ 901 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 902 return false; 903 } 904 905 return true; 906 } 907 908 static void __tick_nohz_idle_enter(struct tick_sched *ts) 909 { 910 ktime_t now, expires; 911 int cpu = smp_processor_id(); 912 913 now = tick_nohz_start_idle(ts); 914 915 if (can_stop_idle_tick(cpu, ts)) { 916 int was_stopped = ts->tick_stopped; 917 918 ts->idle_calls++; 919 920 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 921 if (expires > 0LL) { 922 ts->idle_sleeps++; 923 ts->idle_expires = expires; 924 } 925 926 if (!was_stopped && ts->tick_stopped) 927 ts->idle_jiffies = ts->last_jiffies; 928 } 929 } 930 931 /** 932 * tick_nohz_idle_enter - stop the idle tick from the idle task 933 * 934 * When the next event is more than a tick into the future, stop the idle tick 935 * Called when we start the idle loop. 936 * 937 * The arch is responsible of calling: 938 * 939 * - rcu_idle_enter() after its last use of RCU before the CPU is put 940 * to sleep. 941 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 942 */ 943 void tick_nohz_idle_enter(void) 944 { 945 struct tick_sched *ts; 946 947 WARN_ON_ONCE(irqs_disabled()); 948 949 /* 950 * Update the idle state in the scheduler domain hierarchy 951 * when tick_nohz_stop_sched_tick() is called from the idle loop. 952 * State will be updated to busy during the first busy tick after 953 * exiting idle. 954 */ 955 set_cpu_sd_state_idle(); 956 957 local_irq_disable(); 958 959 ts = this_cpu_ptr(&tick_cpu_sched); 960 ts->inidle = 1; 961 __tick_nohz_idle_enter(ts); 962 963 local_irq_enable(); 964 } 965 966 /** 967 * tick_nohz_irq_exit - update next tick event from interrupt exit 968 * 969 * When an interrupt fires while we are idle and it doesn't cause 970 * a reschedule, it may still add, modify or delete a timer, enqueue 971 * an RCU callback, etc... 972 * So we need to re-calculate and reprogram the next tick event. 973 */ 974 void tick_nohz_irq_exit(void) 975 { 976 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 977 978 if (ts->inidle) 979 __tick_nohz_idle_enter(ts); 980 else 981 tick_nohz_full_update_tick(ts); 982 } 983 984 /** 985 * tick_nohz_get_sleep_length - return the length of the current sleep 986 * 987 * Called from power state control code with interrupts disabled 988 */ 989 ktime_t tick_nohz_get_sleep_length(void) 990 { 991 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 992 993 return ts->sleep_length; 994 } 995 996 /** 997 * tick_nohz_get_idle_calls - return the current idle calls counter value 998 * 999 * Called from the schedutil frequency scaling governor in scheduler context. 1000 */ 1001 unsigned long tick_nohz_get_idle_calls(void) 1002 { 1003 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1004 1005 return ts->idle_calls; 1006 } 1007 1008 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1009 { 1010 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1011 unsigned long ticks; 1012 1013 if (vtime_accounting_cpu_enabled()) 1014 return; 1015 /* 1016 * We stopped the tick in idle. Update process times would miss the 1017 * time we slept as update_process_times does only a 1 tick 1018 * accounting. Enforce that this is accounted to idle ! 1019 */ 1020 ticks = jiffies - ts->idle_jiffies; 1021 /* 1022 * We might be one off. Do not randomly account a huge number of ticks! 1023 */ 1024 if (ticks && ticks < LONG_MAX) 1025 account_idle_ticks(ticks); 1026 #endif 1027 } 1028 1029 /** 1030 * tick_nohz_idle_exit - restart the idle tick from the idle task 1031 * 1032 * Restart the idle tick when the CPU is woken up from idle 1033 * This also exit the RCU extended quiescent state. The CPU 1034 * can use RCU again after this function is called. 1035 */ 1036 void tick_nohz_idle_exit(void) 1037 { 1038 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1039 ktime_t now; 1040 1041 local_irq_disable(); 1042 1043 WARN_ON_ONCE(!ts->inidle); 1044 1045 ts->inidle = 0; 1046 1047 if (ts->idle_active || ts->tick_stopped) 1048 now = ktime_get(); 1049 1050 if (ts->idle_active) 1051 tick_nohz_stop_idle(ts, now); 1052 1053 if (ts->tick_stopped) { 1054 tick_nohz_restart_sched_tick(ts, now); 1055 tick_nohz_account_idle_ticks(ts); 1056 } 1057 1058 local_irq_enable(); 1059 } 1060 1061 /* 1062 * The nohz low res interrupt handler 1063 */ 1064 static void tick_nohz_handler(struct clock_event_device *dev) 1065 { 1066 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1067 struct pt_regs *regs = get_irq_regs(); 1068 ktime_t now = ktime_get(); 1069 1070 dev->next_event = KTIME_MAX; 1071 1072 tick_sched_do_timer(now); 1073 tick_sched_handle(ts, regs); 1074 1075 /* No need to reprogram if we are running tickless */ 1076 if (unlikely(ts->tick_stopped)) 1077 return; 1078 1079 hrtimer_forward(&ts->sched_timer, now, tick_period); 1080 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1081 } 1082 1083 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1084 { 1085 if (!tick_nohz_enabled) 1086 return; 1087 ts->nohz_mode = mode; 1088 /* One update is enough */ 1089 if (!test_and_set_bit(0, &tick_nohz_active)) 1090 timers_update_migration(true); 1091 } 1092 1093 /** 1094 * tick_nohz_switch_to_nohz - switch to nohz mode 1095 */ 1096 static void tick_nohz_switch_to_nohz(void) 1097 { 1098 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1099 ktime_t next; 1100 1101 if (!tick_nohz_enabled) 1102 return; 1103 1104 if (tick_switch_to_oneshot(tick_nohz_handler)) 1105 return; 1106 1107 /* 1108 * Recycle the hrtimer in ts, so we can share the 1109 * hrtimer_forward with the highres code. 1110 */ 1111 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1112 /* Get the next period */ 1113 next = tick_init_jiffy_update(); 1114 1115 hrtimer_set_expires(&ts->sched_timer, next); 1116 hrtimer_forward_now(&ts->sched_timer, tick_period); 1117 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1118 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1119 } 1120 1121 static inline void tick_nohz_irq_enter(void) 1122 { 1123 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1124 ktime_t now; 1125 1126 if (!ts->idle_active && !ts->tick_stopped) 1127 return; 1128 now = ktime_get(); 1129 if (ts->idle_active) 1130 tick_nohz_stop_idle(ts, now); 1131 if (ts->tick_stopped) 1132 tick_nohz_update_jiffies(now); 1133 } 1134 1135 #else 1136 1137 static inline void tick_nohz_switch_to_nohz(void) { } 1138 static inline void tick_nohz_irq_enter(void) { } 1139 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1140 1141 #endif /* CONFIG_NO_HZ_COMMON */ 1142 1143 /* 1144 * Called from irq_enter to notify about the possible interruption of idle() 1145 */ 1146 void tick_irq_enter(void) 1147 { 1148 tick_check_oneshot_broadcast_this_cpu(); 1149 tick_nohz_irq_enter(); 1150 } 1151 1152 /* 1153 * High resolution timer specific code 1154 */ 1155 #ifdef CONFIG_HIGH_RES_TIMERS 1156 /* 1157 * We rearm the timer until we get disabled by the idle code. 1158 * Called with interrupts disabled. 1159 */ 1160 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1161 { 1162 struct tick_sched *ts = 1163 container_of(timer, struct tick_sched, sched_timer); 1164 struct pt_regs *regs = get_irq_regs(); 1165 ktime_t now = ktime_get(); 1166 1167 tick_sched_do_timer(now); 1168 1169 /* 1170 * Do not call, when we are not in irq context and have 1171 * no valid regs pointer 1172 */ 1173 if (regs) 1174 tick_sched_handle(ts, regs); 1175 1176 /* No need to reprogram if we are in idle or full dynticks mode */ 1177 if (unlikely(ts->tick_stopped)) 1178 return HRTIMER_NORESTART; 1179 1180 hrtimer_forward(timer, now, tick_period); 1181 1182 return HRTIMER_RESTART; 1183 } 1184 1185 static int sched_skew_tick; 1186 1187 static int __init skew_tick(char *str) 1188 { 1189 get_option(&str, &sched_skew_tick); 1190 1191 return 0; 1192 } 1193 early_param("skew_tick", skew_tick); 1194 1195 /** 1196 * tick_setup_sched_timer - setup the tick emulation timer 1197 */ 1198 void tick_setup_sched_timer(void) 1199 { 1200 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1201 ktime_t now = ktime_get(); 1202 1203 /* 1204 * Emulate tick processing via per-CPU hrtimers: 1205 */ 1206 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1207 ts->sched_timer.function = tick_sched_timer; 1208 1209 /* Get the next period (per-CPU) */ 1210 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1211 1212 /* Offset the tick to avert jiffies_lock contention. */ 1213 if (sched_skew_tick) { 1214 u64 offset = ktime_to_ns(tick_period) >> 1; 1215 do_div(offset, num_possible_cpus()); 1216 offset *= smp_processor_id(); 1217 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1218 } 1219 1220 hrtimer_forward(&ts->sched_timer, now, tick_period); 1221 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1222 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1223 } 1224 #endif /* HIGH_RES_TIMERS */ 1225 1226 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1227 void tick_cancel_sched_timer(int cpu) 1228 { 1229 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1230 1231 # ifdef CONFIG_HIGH_RES_TIMERS 1232 if (ts->sched_timer.base) 1233 hrtimer_cancel(&ts->sched_timer); 1234 # endif 1235 1236 memset(ts, 0, sizeof(*ts)); 1237 } 1238 #endif 1239 1240 /** 1241 * Async notification about clocksource changes 1242 */ 1243 void tick_clock_notify(void) 1244 { 1245 int cpu; 1246 1247 for_each_possible_cpu(cpu) 1248 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1249 } 1250 1251 /* 1252 * Async notification about clock event changes 1253 */ 1254 void tick_oneshot_notify(void) 1255 { 1256 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1257 1258 set_bit(0, &ts->check_clocks); 1259 } 1260 1261 /** 1262 * Check, if a change happened, which makes oneshot possible. 1263 * 1264 * Called cyclic from the hrtimer softirq (driven by the timer 1265 * softirq) allow_nohz signals, that we can switch into low-res nohz 1266 * mode, because high resolution timers are disabled (either compile 1267 * or runtime). Called with interrupts disabled. 1268 */ 1269 int tick_check_oneshot_change(int allow_nohz) 1270 { 1271 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1272 1273 if (!test_and_clear_bit(0, &ts->check_clocks)) 1274 return 0; 1275 1276 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1277 return 0; 1278 1279 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1280 return 0; 1281 1282 if (!allow_nohz) 1283 return 1; 1284 1285 tick_nohz_switch_to_nohz(); 1286 return 0; 1287 } 1288