1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 #include <linux/mm.h> 31 32 #include <asm/irq_regs.h> 33 34 #include "tick-internal.h" 35 36 #include <trace/events/timer.h> 37 38 /* 39 * Per-CPU nohz control structure 40 */ 41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 49 /* 50 * The time, when the last jiffy update happened. Protected by jiffies_lock. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Called after resume. Make sure that jiffies are not fast forwarded due to 56 * clock monotonic being forwarded by the suspended time. 57 */ 58 void tick_sched_forward_next_period(void) 59 { 60 last_jiffies_update = tick_next_period; 61 } 62 63 /* 64 * Must be called with interrupts disabled ! 65 */ 66 static void tick_do_update_jiffies64(ktime_t now) 67 { 68 unsigned long ticks = 0; 69 ktime_t delta; 70 71 /* 72 * Do a quick check without holding jiffies_lock: 73 */ 74 delta = ktime_sub(now, last_jiffies_update); 75 if (delta < tick_period) 76 return; 77 78 /* Reevaluate with jiffies_lock held */ 79 write_seqlock(&jiffies_lock); 80 81 delta = ktime_sub(now, last_jiffies_update); 82 if (delta >= tick_period) { 83 84 delta = ktime_sub(delta, tick_period); 85 last_jiffies_update = ktime_add(last_jiffies_update, 86 tick_period); 87 88 /* Slow path for long timeouts */ 89 if (unlikely(delta >= tick_period)) { 90 s64 incr = ktime_to_ns(tick_period); 91 92 ticks = ktime_divns(delta, incr); 93 94 last_jiffies_update = ktime_add_ns(last_jiffies_update, 95 incr * ticks); 96 } 97 do_timer(++ticks); 98 99 /* Keep the tick_next_period variable up to date */ 100 tick_next_period = ktime_add(last_jiffies_update, tick_period); 101 } else { 102 write_sequnlock(&jiffies_lock); 103 return; 104 } 105 write_sequnlock(&jiffies_lock); 106 update_wall_time(); 107 } 108 109 /* 110 * Initialize and return retrieve the jiffies update. 111 */ 112 static ktime_t tick_init_jiffy_update(void) 113 { 114 ktime_t period; 115 116 write_seqlock(&jiffies_lock); 117 /* Did we start the jiffies update yet ? */ 118 if (last_jiffies_update == 0) 119 last_jiffies_update = tick_next_period; 120 period = last_jiffies_update; 121 write_sequnlock(&jiffies_lock); 122 return period; 123 } 124 125 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 126 { 127 int cpu = smp_processor_id(); 128 129 #ifdef CONFIG_NO_HZ_COMMON 130 /* 131 * Check if the do_timer duty was dropped. We don't care about 132 * concurrency: This happens only when the CPU in charge went 133 * into a long sleep. If two CPUs happen to assign themselves to 134 * this duty, then the jiffies update is still serialized by 135 * jiffies_lock. 136 */ 137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 138 && !tick_nohz_full_cpu(cpu)) 139 tick_do_timer_cpu = cpu; 140 #endif 141 142 /* Check, if the jiffies need an update */ 143 if (tick_do_timer_cpu == cpu) 144 tick_do_update_jiffies64(now); 145 146 if (ts->inidle) 147 ts->got_idle_tick = 1; 148 } 149 150 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 151 { 152 #ifdef CONFIG_NO_HZ_COMMON 153 /* 154 * When we are idle and the tick is stopped, we have to touch 155 * the watchdog as we might not schedule for a really long 156 * time. This happens on complete idle SMP systems while 157 * waiting on the login prompt. We also increment the "start of 158 * idle" jiffy stamp so the idle accounting adjustment we do 159 * when we go busy again does not account too much ticks. 160 */ 161 if (ts->tick_stopped) { 162 touch_softlockup_watchdog_sched(); 163 if (is_idle_task(current)) 164 ts->idle_jiffies++; 165 /* 166 * In case the current tick fired too early past its expected 167 * expiration, make sure we don't bypass the next clock reprogramming 168 * to the same deadline. 169 */ 170 ts->next_tick = 0; 171 } 172 #endif 173 update_process_times(user_mode(regs)); 174 profile_tick(CPU_PROFILING); 175 } 176 #endif 177 178 #ifdef CONFIG_NO_HZ_FULL 179 cpumask_var_t tick_nohz_full_mask; 180 bool tick_nohz_full_running; 181 static atomic_t tick_dep_mask; 182 183 static bool check_tick_dependency(atomic_t *dep) 184 { 185 int val = atomic_read(dep); 186 187 if (val & TICK_DEP_MASK_POSIX_TIMER) { 188 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 189 return true; 190 } 191 192 if (val & TICK_DEP_MASK_PERF_EVENTS) { 193 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 194 return true; 195 } 196 197 if (val & TICK_DEP_MASK_SCHED) { 198 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 199 return true; 200 } 201 202 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 203 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 204 return true; 205 } 206 207 return false; 208 } 209 210 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 211 { 212 lockdep_assert_irqs_disabled(); 213 214 if (unlikely(!cpu_online(cpu))) 215 return false; 216 217 if (check_tick_dependency(&tick_dep_mask)) 218 return false; 219 220 if (check_tick_dependency(&ts->tick_dep_mask)) 221 return false; 222 223 if (check_tick_dependency(¤t->tick_dep_mask)) 224 return false; 225 226 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 227 return false; 228 229 return true; 230 } 231 232 static void nohz_full_kick_func(struct irq_work *work) 233 { 234 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 235 } 236 237 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 238 .func = nohz_full_kick_func, 239 }; 240 241 /* 242 * Kick this CPU if it's full dynticks in order to force it to 243 * re-evaluate its dependency on the tick and restart it if necessary. 244 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 245 * is NMI safe. 246 */ 247 static void tick_nohz_full_kick(void) 248 { 249 if (!tick_nohz_full_cpu(smp_processor_id())) 250 return; 251 252 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 253 } 254 255 /* 256 * Kick the CPU if it's full dynticks in order to force it to 257 * re-evaluate its dependency on the tick and restart it if necessary. 258 */ 259 void tick_nohz_full_kick_cpu(int cpu) 260 { 261 if (!tick_nohz_full_cpu(cpu)) 262 return; 263 264 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 265 } 266 267 /* 268 * Kick all full dynticks CPUs in order to force these to re-evaluate 269 * their dependency on the tick and restart it if necessary. 270 */ 271 static void tick_nohz_full_kick_all(void) 272 { 273 int cpu; 274 275 if (!tick_nohz_full_running) 276 return; 277 278 preempt_disable(); 279 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 280 tick_nohz_full_kick_cpu(cpu); 281 preempt_enable(); 282 } 283 284 static void tick_nohz_dep_set_all(atomic_t *dep, 285 enum tick_dep_bits bit) 286 { 287 int prev; 288 289 prev = atomic_fetch_or(BIT(bit), dep); 290 if (!prev) 291 tick_nohz_full_kick_all(); 292 } 293 294 /* 295 * Set a global tick dependency. Used by perf events that rely on freq and 296 * by unstable clock. 297 */ 298 void tick_nohz_dep_set(enum tick_dep_bits bit) 299 { 300 tick_nohz_dep_set_all(&tick_dep_mask, bit); 301 } 302 303 void tick_nohz_dep_clear(enum tick_dep_bits bit) 304 { 305 atomic_andnot(BIT(bit), &tick_dep_mask); 306 } 307 308 /* 309 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 310 * manage events throttling. 311 */ 312 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 313 { 314 int prev; 315 struct tick_sched *ts; 316 317 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 318 319 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 320 if (!prev) { 321 preempt_disable(); 322 /* Perf needs local kick that is NMI safe */ 323 if (cpu == smp_processor_id()) { 324 tick_nohz_full_kick(); 325 } else { 326 /* Remote irq work not NMI-safe */ 327 if (!WARN_ON_ONCE(in_nmi())) 328 tick_nohz_full_kick_cpu(cpu); 329 } 330 preempt_enable(); 331 } 332 } 333 334 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 335 { 336 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 337 338 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 339 } 340 341 /* 342 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 343 * per task timers. 344 */ 345 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 346 { 347 /* 348 * We could optimize this with just kicking the target running the task 349 * if that noise matters for nohz full users. 350 */ 351 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 352 } 353 354 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 355 { 356 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 357 } 358 359 /* 360 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 361 * per process timers. 362 */ 363 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 364 { 365 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 366 } 367 368 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 369 { 370 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 371 } 372 373 /* 374 * Re-evaluate the need for the tick as we switch the current task. 375 * It might need the tick due to per task/process properties: 376 * perf events, posix CPU timers, ... 377 */ 378 void __tick_nohz_task_switch(void) 379 { 380 unsigned long flags; 381 struct tick_sched *ts; 382 383 local_irq_save(flags); 384 385 if (!tick_nohz_full_cpu(smp_processor_id())) 386 goto out; 387 388 ts = this_cpu_ptr(&tick_cpu_sched); 389 390 if (ts->tick_stopped) { 391 if (atomic_read(¤t->tick_dep_mask) || 392 atomic_read(¤t->signal->tick_dep_mask)) 393 tick_nohz_full_kick(); 394 } 395 out: 396 local_irq_restore(flags); 397 } 398 399 /* Get the boot-time nohz CPU list from the kernel parameters. */ 400 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 401 { 402 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 403 cpumask_copy(tick_nohz_full_mask, cpumask); 404 tick_nohz_full_running = true; 405 } 406 407 static int tick_nohz_cpu_down(unsigned int cpu) 408 { 409 /* 410 * The boot CPU handles housekeeping duty (unbound timers, 411 * workqueues, timekeeping, ...) on behalf of full dynticks 412 * CPUs. It must remain online when nohz full is enabled. 413 */ 414 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 415 return -EBUSY; 416 return 0; 417 } 418 419 void __init tick_nohz_init(void) 420 { 421 int cpu, ret; 422 423 if (!tick_nohz_full_running) 424 return; 425 426 /* 427 * Full dynticks uses irq work to drive the tick rescheduling on safe 428 * locking contexts. But then we need irq work to raise its own 429 * interrupts to avoid circular dependency on the tick 430 */ 431 if (!arch_irq_work_has_interrupt()) { 432 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 433 cpumask_clear(tick_nohz_full_mask); 434 tick_nohz_full_running = false; 435 return; 436 } 437 438 cpu = smp_processor_id(); 439 440 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 441 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 442 cpu); 443 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 444 } 445 446 for_each_cpu(cpu, tick_nohz_full_mask) 447 context_tracking_cpu_set(cpu); 448 449 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 450 "kernel/nohz:predown", NULL, 451 tick_nohz_cpu_down); 452 WARN_ON(ret < 0); 453 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 454 cpumask_pr_args(tick_nohz_full_mask)); 455 } 456 #endif 457 458 /* 459 * NOHZ - aka dynamic tick functionality 460 */ 461 #ifdef CONFIG_NO_HZ_COMMON 462 /* 463 * NO HZ enabled ? 464 */ 465 bool tick_nohz_enabled __read_mostly = true; 466 unsigned long tick_nohz_active __read_mostly; 467 /* 468 * Enable / Disable tickless mode 469 */ 470 static int __init setup_tick_nohz(char *str) 471 { 472 return (kstrtobool(str, &tick_nohz_enabled) == 0); 473 } 474 475 __setup("nohz=", setup_tick_nohz); 476 477 bool tick_nohz_tick_stopped(void) 478 { 479 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 480 481 return ts->tick_stopped; 482 } 483 484 bool tick_nohz_tick_stopped_cpu(int cpu) 485 { 486 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 487 488 return ts->tick_stopped; 489 } 490 491 /** 492 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 493 * 494 * Called from interrupt entry when the CPU was idle 495 * 496 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 497 * must be updated. Otherwise an interrupt handler could use a stale jiffy 498 * value. We do this unconditionally on any CPU, as we don't know whether the 499 * CPU, which has the update task assigned is in a long sleep. 500 */ 501 static void tick_nohz_update_jiffies(ktime_t now) 502 { 503 unsigned long flags; 504 505 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 506 507 local_irq_save(flags); 508 tick_do_update_jiffies64(now); 509 local_irq_restore(flags); 510 511 touch_softlockup_watchdog_sched(); 512 } 513 514 /* 515 * Updates the per-CPU time idle statistics counters 516 */ 517 static void 518 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 519 { 520 ktime_t delta; 521 522 if (ts->idle_active) { 523 delta = ktime_sub(now, ts->idle_entrytime); 524 if (nr_iowait_cpu(cpu) > 0) 525 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 526 else 527 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 528 ts->idle_entrytime = now; 529 } 530 531 if (last_update_time) 532 *last_update_time = ktime_to_us(now); 533 534 } 535 536 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 537 { 538 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 539 ts->idle_active = 0; 540 541 sched_clock_idle_wakeup_event(); 542 } 543 544 static void tick_nohz_start_idle(struct tick_sched *ts) 545 { 546 ts->idle_entrytime = ktime_get(); 547 ts->idle_active = 1; 548 sched_clock_idle_sleep_event(); 549 } 550 551 /** 552 * get_cpu_idle_time_us - get the total idle time of a CPU 553 * @cpu: CPU number to query 554 * @last_update_time: variable to store update time in. Do not update 555 * counters if NULL. 556 * 557 * Return the cumulative idle time (since boot) for a given 558 * CPU, in microseconds. 559 * 560 * This time is measured via accounting rather than sampling, 561 * and is as accurate as ktime_get() is. 562 * 563 * This function returns -1 if NOHZ is not enabled. 564 */ 565 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 566 { 567 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 568 ktime_t now, idle; 569 570 if (!tick_nohz_active) 571 return -1; 572 573 now = ktime_get(); 574 if (last_update_time) { 575 update_ts_time_stats(cpu, ts, now, last_update_time); 576 idle = ts->idle_sleeptime; 577 } else { 578 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 579 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 580 581 idle = ktime_add(ts->idle_sleeptime, delta); 582 } else { 583 idle = ts->idle_sleeptime; 584 } 585 } 586 587 return ktime_to_us(idle); 588 589 } 590 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 591 592 /** 593 * get_cpu_iowait_time_us - get the total iowait time of a CPU 594 * @cpu: CPU number to query 595 * @last_update_time: variable to store update time in. Do not update 596 * counters if NULL. 597 * 598 * Return the cumulative iowait time (since boot) for a given 599 * CPU, in microseconds. 600 * 601 * This time is measured via accounting rather than sampling, 602 * and is as accurate as ktime_get() is. 603 * 604 * This function returns -1 if NOHZ is not enabled. 605 */ 606 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 607 { 608 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 609 ktime_t now, iowait; 610 611 if (!tick_nohz_active) 612 return -1; 613 614 now = ktime_get(); 615 if (last_update_time) { 616 update_ts_time_stats(cpu, ts, now, last_update_time); 617 iowait = ts->iowait_sleeptime; 618 } else { 619 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 620 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 621 622 iowait = ktime_add(ts->iowait_sleeptime, delta); 623 } else { 624 iowait = ts->iowait_sleeptime; 625 } 626 } 627 628 return ktime_to_us(iowait); 629 } 630 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 631 632 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 633 { 634 hrtimer_cancel(&ts->sched_timer); 635 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 636 637 /* Forward the time to expire in the future */ 638 hrtimer_forward(&ts->sched_timer, now, tick_period); 639 640 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 641 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 642 else 643 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 644 645 /* 646 * Reset to make sure next tick stop doesn't get fooled by past 647 * cached clock deadline. 648 */ 649 ts->next_tick = 0; 650 } 651 652 static inline bool local_timer_softirq_pending(void) 653 { 654 return local_softirq_pending() & TIMER_SOFTIRQ; 655 } 656 657 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 658 { 659 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 660 unsigned long seq, basejiff; 661 662 /* Read jiffies and the time when jiffies were updated last */ 663 do { 664 seq = read_seqbegin(&jiffies_lock); 665 basemono = last_jiffies_update; 666 basejiff = jiffies; 667 } while (read_seqretry(&jiffies_lock, seq)); 668 ts->last_jiffies = basejiff; 669 ts->timer_expires_base = basemono; 670 671 /* 672 * Keep the periodic tick, when RCU, architecture or irq_work 673 * requests it. 674 * Aside of that check whether the local timer softirq is 675 * pending. If so its a bad idea to call get_next_timer_interrupt() 676 * because there is an already expired timer, so it will request 677 * immeditate expiry, which rearms the hardware timer with a 678 * minimal delta which brings us back to this place 679 * immediately. Lather, rinse and repeat... 680 */ 681 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 682 irq_work_needs_cpu() || local_timer_softirq_pending()) { 683 next_tick = basemono + TICK_NSEC; 684 } else { 685 /* 686 * Get the next pending timer. If high resolution 687 * timers are enabled this only takes the timer wheel 688 * timers into account. If high resolution timers are 689 * disabled this also looks at the next expiring 690 * hrtimer. 691 */ 692 next_tmr = get_next_timer_interrupt(basejiff, basemono); 693 ts->next_timer = next_tmr; 694 /* Take the next rcu event into account */ 695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 696 } 697 698 /* 699 * If the tick is due in the next period, keep it ticking or 700 * force prod the timer. 701 */ 702 delta = next_tick - basemono; 703 if (delta <= (u64)TICK_NSEC) { 704 /* 705 * Tell the timer code that the base is not idle, i.e. undo 706 * the effect of get_next_timer_interrupt(): 707 */ 708 timer_clear_idle(); 709 /* 710 * We've not stopped the tick yet, and there's a timer in the 711 * next period, so no point in stopping it either, bail. 712 */ 713 if (!ts->tick_stopped) { 714 ts->timer_expires = 0; 715 goto out; 716 } 717 } 718 719 /* 720 * If this CPU is the one which had the do_timer() duty last, we limit 721 * the sleep time to the timekeeping max_deferment value. 722 * Otherwise we can sleep as long as we want. 723 */ 724 delta = timekeeping_max_deferment(); 725 if (cpu != tick_do_timer_cpu && 726 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 727 delta = KTIME_MAX; 728 729 /* Calculate the next expiry time */ 730 if (delta < (KTIME_MAX - basemono)) 731 expires = basemono + delta; 732 else 733 expires = KTIME_MAX; 734 735 ts->timer_expires = min_t(u64, expires, next_tick); 736 737 out: 738 return ts->timer_expires; 739 } 740 741 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 742 { 743 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 744 u64 basemono = ts->timer_expires_base; 745 u64 expires = ts->timer_expires; 746 ktime_t tick = expires; 747 748 /* Make sure we won't be trying to stop it twice in a row. */ 749 ts->timer_expires_base = 0; 750 751 /* 752 * If this CPU is the one which updates jiffies, then give up 753 * the assignment and let it be taken by the CPU which runs 754 * the tick timer next, which might be this CPU as well. If we 755 * don't drop this here the jiffies might be stale and 756 * do_timer() never invoked. Keep track of the fact that it 757 * was the one which had the do_timer() duty last. 758 */ 759 if (cpu == tick_do_timer_cpu) { 760 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 761 ts->do_timer_last = 1; 762 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 763 ts->do_timer_last = 0; 764 } 765 766 /* Skip reprogram of event if its not changed */ 767 if (ts->tick_stopped && (expires == ts->next_tick)) { 768 /* Sanity check: make sure clockevent is actually programmed */ 769 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 770 return; 771 772 WARN_ON_ONCE(1); 773 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 774 basemono, ts->next_tick, dev->next_event, 775 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 776 } 777 778 /* 779 * nohz_stop_sched_tick can be called several times before 780 * the nohz_restart_sched_tick is called. This happens when 781 * interrupts arrive which do not cause a reschedule. In the 782 * first call we save the current tick time, so we can restart 783 * the scheduler tick in nohz_restart_sched_tick. 784 */ 785 if (!ts->tick_stopped) { 786 calc_load_nohz_start(); 787 cpu_load_update_nohz_start(); 788 quiet_vmstat(); 789 790 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 791 ts->tick_stopped = 1; 792 trace_tick_stop(1, TICK_DEP_MASK_NONE); 793 } 794 795 ts->next_tick = tick; 796 797 /* 798 * If the expiration time == KTIME_MAX, then we simply stop 799 * the tick timer. 800 */ 801 if (unlikely(expires == KTIME_MAX)) { 802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 803 hrtimer_cancel(&ts->sched_timer); 804 return; 805 } 806 807 hrtimer_set_expires(&ts->sched_timer, tick); 808 809 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 810 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 811 else 812 tick_program_event(tick, 1); 813 } 814 815 static void tick_nohz_retain_tick(struct tick_sched *ts) 816 { 817 ts->timer_expires_base = 0; 818 } 819 820 #ifdef CONFIG_NO_HZ_FULL 821 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 822 { 823 if (tick_nohz_next_event(ts, cpu)) 824 tick_nohz_stop_tick(ts, cpu); 825 else 826 tick_nohz_retain_tick(ts); 827 } 828 #endif /* CONFIG_NO_HZ_FULL */ 829 830 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 831 { 832 /* Update jiffies first */ 833 tick_do_update_jiffies64(now); 834 cpu_load_update_nohz_stop(); 835 836 /* 837 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 838 * the clock forward checks in the enqueue path: 839 */ 840 timer_clear_idle(); 841 842 calc_load_nohz_stop(); 843 touch_softlockup_watchdog_sched(); 844 /* 845 * Cancel the scheduled timer and restore the tick 846 */ 847 ts->tick_stopped = 0; 848 ts->idle_exittime = now; 849 850 tick_nohz_restart(ts, now); 851 } 852 853 static void tick_nohz_full_update_tick(struct tick_sched *ts) 854 { 855 #ifdef CONFIG_NO_HZ_FULL 856 int cpu = smp_processor_id(); 857 858 if (!tick_nohz_full_cpu(cpu)) 859 return; 860 861 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 862 return; 863 864 if (can_stop_full_tick(cpu, ts)) 865 tick_nohz_stop_sched_tick(ts, cpu); 866 else if (ts->tick_stopped) 867 tick_nohz_restart_sched_tick(ts, ktime_get()); 868 #endif 869 } 870 871 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 872 { 873 /* 874 * If this CPU is offline and it is the one which updates 875 * jiffies, then give up the assignment and let it be taken by 876 * the CPU which runs the tick timer next. If we don't drop 877 * this here the jiffies might be stale and do_timer() never 878 * invoked. 879 */ 880 if (unlikely(!cpu_online(cpu))) { 881 if (cpu == tick_do_timer_cpu) 882 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 883 /* 884 * Make sure the CPU doesn't get fooled by obsolete tick 885 * deadline if it comes back online later. 886 */ 887 ts->next_tick = 0; 888 return false; 889 } 890 891 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 892 return false; 893 894 if (need_resched()) 895 return false; 896 897 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 898 static int ratelimit; 899 900 if (ratelimit < 10 && 901 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 902 pr_warn("NOHZ: local_softirq_pending %02x\n", 903 (unsigned int) local_softirq_pending()); 904 ratelimit++; 905 } 906 return false; 907 } 908 909 if (tick_nohz_full_enabled()) { 910 /* 911 * Keep the tick alive to guarantee timekeeping progression 912 * if there are full dynticks CPUs around 913 */ 914 if (tick_do_timer_cpu == cpu) 915 return false; 916 /* 917 * Boot safety: make sure the timekeeping duty has been 918 * assigned before entering dyntick-idle mode, 919 */ 920 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 921 return false; 922 } 923 924 return true; 925 } 926 927 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 928 { 929 ktime_t expires; 930 int cpu = smp_processor_id(); 931 932 /* 933 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 934 * tick timer expiration time is known already. 935 */ 936 if (ts->timer_expires_base) 937 expires = ts->timer_expires; 938 else if (can_stop_idle_tick(cpu, ts)) 939 expires = tick_nohz_next_event(ts, cpu); 940 else 941 return; 942 943 ts->idle_calls++; 944 945 if (expires > 0LL) { 946 int was_stopped = ts->tick_stopped; 947 948 tick_nohz_stop_tick(ts, cpu); 949 950 ts->idle_sleeps++; 951 ts->idle_expires = expires; 952 953 if (!was_stopped && ts->tick_stopped) { 954 ts->idle_jiffies = ts->last_jiffies; 955 nohz_balance_enter_idle(cpu); 956 } 957 } else { 958 tick_nohz_retain_tick(ts); 959 } 960 } 961 962 /** 963 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 964 * 965 * When the next event is more than a tick into the future, stop the idle tick 966 */ 967 void tick_nohz_idle_stop_tick(void) 968 { 969 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 970 } 971 972 void tick_nohz_idle_retain_tick(void) 973 { 974 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 975 /* 976 * Undo the effect of get_next_timer_interrupt() called from 977 * tick_nohz_next_event(). 978 */ 979 timer_clear_idle(); 980 } 981 982 /** 983 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 984 * 985 * Called when we start the idle loop. 986 */ 987 void tick_nohz_idle_enter(void) 988 { 989 struct tick_sched *ts; 990 991 lockdep_assert_irqs_enabled(); 992 993 local_irq_disable(); 994 995 ts = this_cpu_ptr(&tick_cpu_sched); 996 997 WARN_ON_ONCE(ts->timer_expires_base); 998 999 ts->inidle = 1; 1000 tick_nohz_start_idle(ts); 1001 1002 local_irq_enable(); 1003 } 1004 1005 /** 1006 * tick_nohz_irq_exit - update next tick event from interrupt exit 1007 * 1008 * When an interrupt fires while we are idle and it doesn't cause 1009 * a reschedule, it may still add, modify or delete a timer, enqueue 1010 * an RCU callback, etc... 1011 * So we need to re-calculate and reprogram the next tick event. 1012 */ 1013 void tick_nohz_irq_exit(void) 1014 { 1015 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1016 1017 if (ts->inidle) 1018 tick_nohz_start_idle(ts); 1019 else 1020 tick_nohz_full_update_tick(ts); 1021 } 1022 1023 /** 1024 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1025 */ 1026 bool tick_nohz_idle_got_tick(void) 1027 { 1028 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1029 1030 if (ts->got_idle_tick) { 1031 ts->got_idle_tick = 0; 1032 return true; 1033 } 1034 return false; 1035 } 1036 1037 /** 1038 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1039 * @delta_next: duration until the next event if the tick cannot be stopped 1040 * 1041 * Called from power state control code with interrupts disabled 1042 */ 1043 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1044 { 1045 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1046 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1047 int cpu = smp_processor_id(); 1048 /* 1049 * The idle entry time is expected to be a sufficient approximation of 1050 * the current time at this point. 1051 */ 1052 ktime_t now = ts->idle_entrytime; 1053 ktime_t next_event; 1054 1055 WARN_ON_ONCE(!ts->inidle); 1056 1057 *delta_next = ktime_sub(dev->next_event, now); 1058 1059 if (!can_stop_idle_tick(cpu, ts)) 1060 return *delta_next; 1061 1062 next_event = tick_nohz_next_event(ts, cpu); 1063 if (!next_event) 1064 return *delta_next; 1065 1066 /* 1067 * If the next highres timer to expire is earlier than next_event, the 1068 * idle governor needs to know that. 1069 */ 1070 next_event = min_t(u64, next_event, 1071 hrtimer_next_event_without(&ts->sched_timer)); 1072 1073 return ktime_sub(next_event, now); 1074 } 1075 1076 /** 1077 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1078 * for a particular CPU. 1079 * 1080 * Called from the schedutil frequency scaling governor in scheduler context. 1081 */ 1082 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1083 { 1084 struct tick_sched *ts = tick_get_tick_sched(cpu); 1085 1086 return ts->idle_calls; 1087 } 1088 1089 /** 1090 * tick_nohz_get_idle_calls - return the current idle calls counter value 1091 * 1092 * Called from the schedutil frequency scaling governor in scheduler context. 1093 */ 1094 unsigned long tick_nohz_get_idle_calls(void) 1095 { 1096 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1097 1098 return ts->idle_calls; 1099 } 1100 1101 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1102 { 1103 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1104 unsigned long ticks; 1105 1106 if (vtime_accounting_cpu_enabled()) 1107 return; 1108 /* 1109 * We stopped the tick in idle. Update process times would miss the 1110 * time we slept as update_process_times does only a 1 tick 1111 * accounting. Enforce that this is accounted to idle ! 1112 */ 1113 ticks = jiffies - ts->idle_jiffies; 1114 /* 1115 * We might be one off. Do not randomly account a huge number of ticks! 1116 */ 1117 if (ticks && ticks < LONG_MAX) 1118 account_idle_ticks(ticks); 1119 #endif 1120 } 1121 1122 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1123 { 1124 tick_nohz_restart_sched_tick(ts, now); 1125 tick_nohz_account_idle_ticks(ts); 1126 } 1127 1128 void tick_nohz_idle_restart_tick(void) 1129 { 1130 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1131 1132 if (ts->tick_stopped) 1133 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1134 } 1135 1136 /** 1137 * tick_nohz_idle_exit - restart the idle tick from the idle task 1138 * 1139 * Restart the idle tick when the CPU is woken up from idle 1140 * This also exit the RCU extended quiescent state. The CPU 1141 * can use RCU again after this function is called. 1142 */ 1143 void tick_nohz_idle_exit(void) 1144 { 1145 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1146 bool idle_active, tick_stopped; 1147 ktime_t now; 1148 1149 local_irq_disable(); 1150 1151 WARN_ON_ONCE(!ts->inidle); 1152 WARN_ON_ONCE(ts->timer_expires_base); 1153 1154 ts->inidle = 0; 1155 idle_active = ts->idle_active; 1156 tick_stopped = ts->tick_stopped; 1157 1158 if (idle_active || tick_stopped) 1159 now = ktime_get(); 1160 1161 if (idle_active) 1162 tick_nohz_stop_idle(ts, now); 1163 1164 if (tick_stopped) 1165 __tick_nohz_idle_restart_tick(ts, now); 1166 1167 local_irq_enable(); 1168 } 1169 1170 /* 1171 * The nohz low res interrupt handler 1172 */ 1173 static void tick_nohz_handler(struct clock_event_device *dev) 1174 { 1175 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1176 struct pt_regs *regs = get_irq_regs(); 1177 ktime_t now = ktime_get(); 1178 1179 dev->next_event = KTIME_MAX; 1180 1181 tick_sched_do_timer(ts, now); 1182 tick_sched_handle(ts, regs); 1183 1184 /* No need to reprogram if we are running tickless */ 1185 if (unlikely(ts->tick_stopped)) 1186 return; 1187 1188 hrtimer_forward(&ts->sched_timer, now, tick_period); 1189 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1190 } 1191 1192 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1193 { 1194 if (!tick_nohz_enabled) 1195 return; 1196 ts->nohz_mode = mode; 1197 /* One update is enough */ 1198 if (!test_and_set_bit(0, &tick_nohz_active)) 1199 timers_update_nohz(); 1200 } 1201 1202 /** 1203 * tick_nohz_switch_to_nohz - switch to nohz mode 1204 */ 1205 static void tick_nohz_switch_to_nohz(void) 1206 { 1207 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1208 ktime_t next; 1209 1210 if (!tick_nohz_enabled) 1211 return; 1212 1213 if (tick_switch_to_oneshot(tick_nohz_handler)) 1214 return; 1215 1216 /* 1217 * Recycle the hrtimer in ts, so we can share the 1218 * hrtimer_forward with the highres code. 1219 */ 1220 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1221 /* Get the next period */ 1222 next = tick_init_jiffy_update(); 1223 1224 hrtimer_set_expires(&ts->sched_timer, next); 1225 hrtimer_forward_now(&ts->sched_timer, tick_period); 1226 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1227 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1228 } 1229 1230 static inline void tick_nohz_irq_enter(void) 1231 { 1232 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1233 ktime_t now; 1234 1235 if (!ts->idle_active && !ts->tick_stopped) 1236 return; 1237 now = ktime_get(); 1238 if (ts->idle_active) 1239 tick_nohz_stop_idle(ts, now); 1240 if (ts->tick_stopped) 1241 tick_nohz_update_jiffies(now); 1242 } 1243 1244 #else 1245 1246 static inline void tick_nohz_switch_to_nohz(void) { } 1247 static inline void tick_nohz_irq_enter(void) { } 1248 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1249 1250 #endif /* CONFIG_NO_HZ_COMMON */ 1251 1252 /* 1253 * Called from irq_enter to notify about the possible interruption of idle() 1254 */ 1255 void tick_irq_enter(void) 1256 { 1257 tick_check_oneshot_broadcast_this_cpu(); 1258 tick_nohz_irq_enter(); 1259 } 1260 1261 /* 1262 * High resolution timer specific code 1263 */ 1264 #ifdef CONFIG_HIGH_RES_TIMERS 1265 /* 1266 * We rearm the timer until we get disabled by the idle code. 1267 * Called with interrupts disabled. 1268 */ 1269 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1270 { 1271 struct tick_sched *ts = 1272 container_of(timer, struct tick_sched, sched_timer); 1273 struct pt_regs *regs = get_irq_regs(); 1274 ktime_t now = ktime_get(); 1275 1276 tick_sched_do_timer(ts, now); 1277 1278 /* 1279 * Do not call, when we are not in irq context and have 1280 * no valid regs pointer 1281 */ 1282 if (regs) 1283 tick_sched_handle(ts, regs); 1284 else 1285 ts->next_tick = 0; 1286 1287 /* No need to reprogram if we are in idle or full dynticks mode */ 1288 if (unlikely(ts->tick_stopped)) 1289 return HRTIMER_NORESTART; 1290 1291 hrtimer_forward(timer, now, tick_period); 1292 1293 return HRTIMER_RESTART; 1294 } 1295 1296 static int sched_skew_tick; 1297 1298 static int __init skew_tick(char *str) 1299 { 1300 get_option(&str, &sched_skew_tick); 1301 1302 return 0; 1303 } 1304 early_param("skew_tick", skew_tick); 1305 1306 /** 1307 * tick_setup_sched_timer - setup the tick emulation timer 1308 */ 1309 void tick_setup_sched_timer(void) 1310 { 1311 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1312 ktime_t now = ktime_get(); 1313 1314 /* 1315 * Emulate tick processing via per-CPU hrtimers: 1316 */ 1317 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1318 ts->sched_timer.function = tick_sched_timer; 1319 1320 /* Get the next period (per-CPU) */ 1321 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1322 1323 /* Offset the tick to avert jiffies_lock contention. */ 1324 if (sched_skew_tick) { 1325 u64 offset = ktime_to_ns(tick_period) >> 1; 1326 do_div(offset, num_possible_cpus()); 1327 offset *= smp_processor_id(); 1328 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1329 } 1330 1331 hrtimer_forward(&ts->sched_timer, now, tick_period); 1332 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1333 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1334 } 1335 #endif /* HIGH_RES_TIMERS */ 1336 1337 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1338 void tick_cancel_sched_timer(int cpu) 1339 { 1340 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1341 1342 # ifdef CONFIG_HIGH_RES_TIMERS 1343 if (ts->sched_timer.base) 1344 hrtimer_cancel(&ts->sched_timer); 1345 # endif 1346 1347 memset(ts, 0, sizeof(*ts)); 1348 } 1349 #endif 1350 1351 /** 1352 * Async notification about clocksource changes 1353 */ 1354 void tick_clock_notify(void) 1355 { 1356 int cpu; 1357 1358 for_each_possible_cpu(cpu) 1359 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1360 } 1361 1362 /* 1363 * Async notification about clock event changes 1364 */ 1365 void tick_oneshot_notify(void) 1366 { 1367 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1368 1369 set_bit(0, &ts->check_clocks); 1370 } 1371 1372 /** 1373 * Check, if a change happened, which makes oneshot possible. 1374 * 1375 * Called cyclic from the hrtimer softirq (driven by the timer 1376 * softirq) allow_nohz signals, that we can switch into low-res nohz 1377 * mode, because high resolution timers are disabled (either compile 1378 * or runtime). Called with interrupts disabled. 1379 */ 1380 int tick_check_oneshot_change(int allow_nohz) 1381 { 1382 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1383 1384 if (!test_and_clear_bit(0, &ts->check_clocks)) 1385 return 0; 1386 1387 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1388 return 0; 1389 1390 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1391 return 0; 1392 1393 if (!allow_nohz) 1394 return 1; 1395 1396 tick_nohz_switch_to_nohz(); 1397 return 0; 1398 } 1399