xref: /openbmc/linux/kernel/time/tick-sched.c (revision 22ab8bc0)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 #include <linux/mm.h>
31 
32 #include <asm/irq_regs.h>
33 
34 #include "tick-internal.h"
35 
36 #include <trace/events/timer.h>
37 
38 /*
39  * Per-CPU nohz control structure
40  */
41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 	return &per_cpu(tick_cpu_sched, cpu);
46 }
47 
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 /*
50  * The time, when the last jiffy update happened. Protected by jiffies_lock.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 0;
60 	ktime_t delta;
61 
62 	/*
63 	 * Do a quick check without holding jiffies_lock:
64 	 */
65 	delta = ktime_sub(now, last_jiffies_update);
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		last_jiffies_update = ktime_add(last_jiffies_update,
77 						tick_period);
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 							   incr * ticks);
87 		}
88 		do_timer(++ticks);
89 
90 		/* Keep the tick_next_period variable up to date */
91 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
92 	} else {
93 		write_sequnlock(&jiffies_lock);
94 		return;
95 	}
96 	write_sequnlock(&jiffies_lock);
97 	update_wall_time();
98 }
99 
100 /*
101  * Initialize and return retrieve the jiffies update.
102  */
103 static ktime_t tick_init_jiffy_update(void)
104 {
105 	ktime_t period;
106 
107 	write_seqlock(&jiffies_lock);
108 	/* Did we start the jiffies update yet ? */
109 	if (last_jiffies_update == 0)
110 		last_jiffies_update = tick_next_period;
111 	period = last_jiffies_update;
112 	write_sequnlock(&jiffies_lock);
113 	return period;
114 }
115 
116 
117 static void tick_sched_do_timer(ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 */
129 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
130 	    && !tick_nohz_full_cpu(cpu))
131 		tick_do_timer_cpu = cpu;
132 #endif
133 
134 	/* Check, if the jiffies need an update */
135 	if (tick_do_timer_cpu == cpu)
136 		tick_do_update_jiffies64(now);
137 }
138 
139 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 {
141 #ifdef CONFIG_NO_HZ_COMMON
142 	/*
143 	 * When we are idle and the tick is stopped, we have to touch
144 	 * the watchdog as we might not schedule for a really long
145 	 * time. This happens on complete idle SMP systems while
146 	 * waiting on the login prompt. We also increment the "start of
147 	 * idle" jiffy stamp so the idle accounting adjustment we do
148 	 * when we go busy again does not account too much ticks.
149 	 */
150 	if (ts->tick_stopped) {
151 		touch_softlockup_watchdog_sched();
152 		if (is_idle_task(current))
153 			ts->idle_jiffies++;
154 		/*
155 		 * In case the current tick fired too early past its expected
156 		 * expiration, make sure we don't bypass the next clock reprogramming
157 		 * to the same deadline.
158 		 */
159 		ts->next_tick = 0;
160 	}
161 #endif
162 	update_process_times(user_mode(regs));
163 	profile_tick(CPU_PROFILING);
164 }
165 #endif
166 
167 #ifdef CONFIG_NO_HZ_FULL
168 cpumask_var_t tick_nohz_full_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
171 
172 static bool check_tick_dependency(atomic_t *dep)
173 {
174 	int val = atomic_read(dep);
175 
176 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 		return true;
179 	}
180 
181 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 		return true;
184 	}
185 
186 	if (val & TICK_DEP_MASK_SCHED) {
187 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 		return true;
189 	}
190 
191 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 		return true;
194 	}
195 
196 	return false;
197 }
198 
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
200 {
201 	lockdep_assert_irqs_disabled();
202 
203 	if (unlikely(!cpu_online(cpu)))
204 		return false;
205 
206 	if (check_tick_dependency(&tick_dep_mask))
207 		return false;
208 
209 	if (check_tick_dependency(&ts->tick_dep_mask))
210 		return false;
211 
212 	if (check_tick_dependency(&current->tick_dep_mask))
213 		return false;
214 
215 	if (check_tick_dependency(&current->signal->tick_dep_mask))
216 		return false;
217 
218 	return true;
219 }
220 
221 static void nohz_full_kick_func(struct irq_work *work)
222 {
223 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
224 }
225 
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 	.func = nohz_full_kick_func,
228 };
229 
230 /*
231  * Kick this CPU if it's full dynticks in order to force it to
232  * re-evaluate its dependency on the tick and restart it if necessary.
233  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234  * is NMI safe.
235  */
236 static void tick_nohz_full_kick(void)
237 {
238 	if (!tick_nohz_full_cpu(smp_processor_id()))
239 		return;
240 
241 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 }
243 
244 /*
245  * Kick the CPU if it's full dynticks in order to force it to
246  * re-evaluate its dependency on the tick and restart it if necessary.
247  */
248 void tick_nohz_full_kick_cpu(int cpu)
249 {
250 	if (!tick_nohz_full_cpu(cpu))
251 		return;
252 
253 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
254 }
255 
256 /*
257  * Kick all full dynticks CPUs in order to force these to re-evaluate
258  * their dependency on the tick and restart it if necessary.
259  */
260 static void tick_nohz_full_kick_all(void)
261 {
262 	int cpu;
263 
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 		tick_nohz_full_kick_cpu(cpu);
270 	preempt_enable();
271 }
272 
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 				  enum tick_dep_bits bit)
275 {
276 	int prev;
277 
278 	prev = atomic_fetch_or(BIT(bit), dep);
279 	if (!prev)
280 		tick_nohz_full_kick_all();
281 }
282 
283 /*
284  * Set a global tick dependency. Used by perf events that rely on freq and
285  * by unstable clock.
286  */
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
288 {
289 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
290 }
291 
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
293 {
294 	atomic_andnot(BIT(bit), &tick_dep_mask);
295 }
296 
297 /*
298  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299  * manage events throttling.
300  */
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302 {
303 	int prev;
304 	struct tick_sched *ts;
305 
306 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307 
308 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 	if (!prev) {
310 		preempt_disable();
311 		/* Perf needs local kick that is NMI safe */
312 		if (cpu == smp_processor_id()) {
313 			tick_nohz_full_kick();
314 		} else {
315 			/* Remote irq work not NMI-safe */
316 			if (!WARN_ON_ONCE(in_nmi()))
317 				tick_nohz_full_kick_cpu(cpu);
318 		}
319 		preempt_enable();
320 	}
321 }
322 
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324 {
325 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326 
327 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
328 }
329 
330 /*
331  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332  * per task timers.
333  */
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 {
336 	/*
337 	 * We could optimize this with just kicking the target running the task
338 	 * if that noise matters for nohz full users.
339 	 */
340 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341 }
342 
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
346 }
347 
348 /*
349  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350  * per process timers.
351  */
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353 {
354 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355 }
356 
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
360 }
361 
362 /*
363  * Re-evaluate the need for the tick as we switch the current task.
364  * It might need the tick due to per task/process properties:
365  * perf events, posix CPU timers, ...
366  */
367 void __tick_nohz_task_switch(void)
368 {
369 	unsigned long flags;
370 	struct tick_sched *ts;
371 
372 	local_irq_save(flags);
373 
374 	if (!tick_nohz_full_cpu(smp_processor_id()))
375 		goto out;
376 
377 	ts = this_cpu_ptr(&tick_cpu_sched);
378 
379 	if (ts->tick_stopped) {
380 		if (atomic_read(&current->tick_dep_mask) ||
381 		    atomic_read(&current->signal->tick_dep_mask))
382 			tick_nohz_full_kick();
383 	}
384 out:
385 	local_irq_restore(flags);
386 }
387 
388 /* Get the boot-time nohz CPU list from the kernel parameters. */
389 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
390 {
391 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 	cpumask_copy(tick_nohz_full_mask, cpumask);
393 	tick_nohz_full_running = true;
394 }
395 
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 	/*
399 	 * The boot CPU handles housekeeping duty (unbound timers,
400 	 * workqueues, timekeeping, ...) on behalf of full dynticks
401 	 * CPUs. It must remain online when nohz full is enabled.
402 	 */
403 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 		return -EBUSY;
405 	return 0;
406 }
407 
408 static int tick_nohz_init_all(void)
409 {
410 	int err = -1;
411 
412 #ifdef CONFIG_NO_HZ_FULL_ALL
413 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
414 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 		return err;
416 	}
417 	err = 0;
418 	cpumask_setall(tick_nohz_full_mask);
419 	tick_nohz_full_running = true;
420 #endif
421 	return err;
422 }
423 
424 void __init tick_nohz_init(void)
425 {
426 	int cpu, ret;
427 
428 	if (!tick_nohz_full_running) {
429 		if (tick_nohz_init_all() < 0)
430 			return;
431 	}
432 
433 	/*
434 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
435 	 * locking contexts. But then we need irq work to raise its own
436 	 * interrupts to avoid circular dependency on the tick
437 	 */
438 	if (!arch_irq_work_has_interrupt()) {
439 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
440 		cpumask_clear(tick_nohz_full_mask);
441 		tick_nohz_full_running = false;
442 		return;
443 	}
444 
445 	cpu = smp_processor_id();
446 
447 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
448 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
449 			cpu);
450 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
451 	}
452 
453 	for_each_cpu(cpu, tick_nohz_full_mask)
454 		context_tracking_cpu_set(cpu);
455 
456 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
457 					"kernel/nohz:predown", NULL,
458 					tick_nohz_cpu_down);
459 	WARN_ON(ret < 0);
460 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
461 		cpumask_pr_args(tick_nohz_full_mask));
462 }
463 #endif
464 
465 /*
466  * NOHZ - aka dynamic tick functionality
467  */
468 #ifdef CONFIG_NO_HZ_COMMON
469 /*
470  * NO HZ enabled ?
471  */
472 bool tick_nohz_enabled __read_mostly  = true;
473 unsigned long tick_nohz_active  __read_mostly;
474 /*
475  * Enable / Disable tickless mode
476  */
477 static int __init setup_tick_nohz(char *str)
478 {
479 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
480 }
481 
482 __setup("nohz=", setup_tick_nohz);
483 
484 bool tick_nohz_tick_stopped(void)
485 {
486 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
487 }
488 
489 bool tick_nohz_tick_stopped_cpu(int cpu)
490 {
491 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
492 
493 	return ts->tick_stopped;
494 }
495 
496 /**
497  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
498  *
499  * Called from interrupt entry when the CPU was idle
500  *
501  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
502  * must be updated. Otherwise an interrupt handler could use a stale jiffy
503  * value. We do this unconditionally on any CPU, as we don't know whether the
504  * CPU, which has the update task assigned is in a long sleep.
505  */
506 static void tick_nohz_update_jiffies(ktime_t now)
507 {
508 	unsigned long flags;
509 
510 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
511 
512 	local_irq_save(flags);
513 	tick_do_update_jiffies64(now);
514 	local_irq_restore(flags);
515 
516 	touch_softlockup_watchdog_sched();
517 }
518 
519 /*
520  * Updates the per-CPU time idle statistics counters
521  */
522 static void
523 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
524 {
525 	ktime_t delta;
526 
527 	if (ts->idle_active) {
528 		delta = ktime_sub(now, ts->idle_entrytime);
529 		if (nr_iowait_cpu(cpu) > 0)
530 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
531 		else
532 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
533 		ts->idle_entrytime = now;
534 	}
535 
536 	if (last_update_time)
537 		*last_update_time = ktime_to_us(now);
538 
539 }
540 
541 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
542 {
543 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
544 	ts->idle_active = 0;
545 
546 	sched_clock_idle_wakeup_event();
547 }
548 
549 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
550 {
551 	ktime_t now = ktime_get();
552 
553 	ts->idle_entrytime = now;
554 	ts->idle_active = 1;
555 	sched_clock_idle_sleep_event();
556 	return now;
557 }
558 
559 /**
560  * get_cpu_idle_time_us - get the total idle time of a CPU
561  * @cpu: CPU number to query
562  * @last_update_time: variable to store update time in. Do not update
563  * counters if NULL.
564  *
565  * Return the cumulative idle time (since boot) for a given
566  * CPU, in microseconds.
567  *
568  * This time is measured via accounting rather than sampling,
569  * and is as accurate as ktime_get() is.
570  *
571  * This function returns -1 if NOHZ is not enabled.
572  */
573 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
574 {
575 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
576 	ktime_t now, idle;
577 
578 	if (!tick_nohz_active)
579 		return -1;
580 
581 	now = ktime_get();
582 	if (last_update_time) {
583 		update_ts_time_stats(cpu, ts, now, last_update_time);
584 		idle = ts->idle_sleeptime;
585 	} else {
586 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
587 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
588 
589 			idle = ktime_add(ts->idle_sleeptime, delta);
590 		} else {
591 			idle = ts->idle_sleeptime;
592 		}
593 	}
594 
595 	return ktime_to_us(idle);
596 
597 }
598 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
599 
600 /**
601  * get_cpu_iowait_time_us - get the total iowait time of a CPU
602  * @cpu: CPU number to query
603  * @last_update_time: variable to store update time in. Do not update
604  * counters if NULL.
605  *
606  * Return the cumulative iowait time (since boot) for a given
607  * CPU, in microseconds.
608  *
609  * This time is measured via accounting rather than sampling,
610  * and is as accurate as ktime_get() is.
611  *
612  * This function returns -1 if NOHZ is not enabled.
613  */
614 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
615 {
616 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
617 	ktime_t now, iowait;
618 
619 	if (!tick_nohz_active)
620 		return -1;
621 
622 	now = ktime_get();
623 	if (last_update_time) {
624 		update_ts_time_stats(cpu, ts, now, last_update_time);
625 		iowait = ts->iowait_sleeptime;
626 	} else {
627 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
628 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
629 
630 			iowait = ktime_add(ts->iowait_sleeptime, delta);
631 		} else {
632 			iowait = ts->iowait_sleeptime;
633 		}
634 	}
635 
636 	return ktime_to_us(iowait);
637 }
638 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
639 
640 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
641 {
642 	hrtimer_cancel(&ts->sched_timer);
643 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
644 
645 	/* Forward the time to expire in the future */
646 	hrtimer_forward(&ts->sched_timer, now, tick_period);
647 
648 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
649 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
650 	else
651 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
652 
653 	/*
654 	 * Reset to make sure next tick stop doesn't get fooled by past
655 	 * cached clock deadline.
656 	 */
657 	ts->next_tick = 0;
658 }
659 
660 static inline bool local_timer_softirq_pending(void)
661 {
662 	return local_softirq_pending() & TIMER_SOFTIRQ;
663 }
664 
665 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
666 					 ktime_t now, int cpu)
667 {
668 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
669 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
670 	unsigned long seq, basejiff;
671 	ktime_t	tick;
672 
673 	/* Read jiffies and the time when jiffies were updated last */
674 	do {
675 		seq = read_seqbegin(&jiffies_lock);
676 		basemono = last_jiffies_update;
677 		basejiff = jiffies;
678 	} while (read_seqretry(&jiffies_lock, seq));
679 	ts->last_jiffies = basejiff;
680 
681 	/*
682 	 * Keep the periodic tick, when RCU, architecture or irq_work
683 	 * requests it.
684 	 * Aside of that check whether the local timer softirq is
685 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
686 	 * because there is an already expired timer, so it will request
687 	 * immeditate expiry, which rearms the hardware timer with a
688 	 * minimal delta which brings us back to this place
689 	 * immediately. Lather, rinse and repeat...
690 	 */
691 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
692 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
693 		next_tick = basemono + TICK_NSEC;
694 	} else {
695 		/*
696 		 * Get the next pending timer. If high resolution
697 		 * timers are enabled this only takes the timer wheel
698 		 * timers into account. If high resolution timers are
699 		 * disabled this also looks at the next expiring
700 		 * hrtimer.
701 		 */
702 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
703 		ts->next_timer = next_tmr;
704 		/* Take the next rcu event into account */
705 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
706 	}
707 
708 	/*
709 	 * If the tick is due in the next period, keep it ticking or
710 	 * force prod the timer.
711 	 */
712 	delta = next_tick - basemono;
713 	if (delta <= (u64)TICK_NSEC) {
714 		/*
715 		 * Tell the timer code that the base is not idle, i.e. undo
716 		 * the effect of get_next_timer_interrupt():
717 		 */
718 		timer_clear_idle();
719 		/*
720 		 * We've not stopped the tick yet, and there's a timer in the
721 		 * next period, so no point in stopping it either, bail.
722 		 */
723 		if (!ts->tick_stopped) {
724 			tick = 0;
725 			goto out;
726 		}
727 	}
728 
729 	/*
730 	 * If this CPU is the one which updates jiffies, then give up
731 	 * the assignment and let it be taken by the CPU which runs
732 	 * the tick timer next, which might be this CPU as well. If we
733 	 * don't drop this here the jiffies might be stale and
734 	 * do_timer() never invoked. Keep track of the fact that it
735 	 * was the one which had the do_timer() duty last. If this CPU
736 	 * is the one which had the do_timer() duty last, we limit the
737 	 * sleep time to the timekeeping max_deferment value.
738 	 * Otherwise we can sleep as long as we want.
739 	 */
740 	delta = timekeeping_max_deferment();
741 	if (cpu == tick_do_timer_cpu) {
742 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
743 		ts->do_timer_last = 1;
744 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
745 		delta = KTIME_MAX;
746 		ts->do_timer_last = 0;
747 	} else if (!ts->do_timer_last) {
748 		delta = KTIME_MAX;
749 	}
750 
751 #ifdef CONFIG_NO_HZ_FULL
752 	/* Limit the tick delta to the maximum scheduler deferment */
753 	if (!ts->inidle)
754 		delta = min(delta, scheduler_tick_max_deferment());
755 #endif
756 
757 	/* Calculate the next expiry time */
758 	if (delta < (KTIME_MAX - basemono))
759 		expires = basemono + delta;
760 	else
761 		expires = KTIME_MAX;
762 
763 	expires = min_t(u64, expires, next_tick);
764 	tick = expires;
765 
766 	/* Skip reprogram of event if its not changed */
767 	if (ts->tick_stopped && (expires == ts->next_tick)) {
768 		/* Sanity check: make sure clockevent is actually programmed */
769 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
770 			goto out;
771 
772 		WARN_ON_ONCE(1);
773 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
774 			    basemono, ts->next_tick, dev->next_event,
775 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
776 	}
777 
778 	/*
779 	 * nohz_stop_sched_tick can be called several times before
780 	 * the nohz_restart_sched_tick is called. This happens when
781 	 * interrupts arrive which do not cause a reschedule. In the
782 	 * first call we save the current tick time, so we can restart
783 	 * the scheduler tick in nohz_restart_sched_tick.
784 	 */
785 	if (!ts->tick_stopped) {
786 		calc_load_nohz_start();
787 		cpu_load_update_nohz_start();
788 		quiet_vmstat();
789 
790 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
791 		ts->tick_stopped = 1;
792 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
793 	}
794 
795 	ts->next_tick = tick;
796 
797 	/*
798 	 * If the expiration time == KTIME_MAX, then we simply stop
799 	 * the tick timer.
800 	 */
801 	if (unlikely(expires == KTIME_MAX)) {
802 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 			hrtimer_cancel(&ts->sched_timer);
804 		goto out;
805 	}
806 
807 	hrtimer_set_expires(&ts->sched_timer, tick);
808 
809 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
810 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
811 	else
812 		tick_program_event(tick, 1);
813 out:
814 	/*
815 	 * Update the estimated sleep length until the next timer
816 	 * (not only the tick).
817 	 */
818 	ts->sleep_length = ktime_sub(dev->next_event, now);
819 	return tick;
820 }
821 
822 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
823 {
824 	/* Update jiffies first */
825 	tick_do_update_jiffies64(now);
826 	cpu_load_update_nohz_stop();
827 
828 	/*
829 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
830 	 * the clock forward checks in the enqueue path:
831 	 */
832 	timer_clear_idle();
833 
834 	calc_load_nohz_stop();
835 	touch_softlockup_watchdog_sched();
836 	/*
837 	 * Cancel the scheduled timer and restore the tick
838 	 */
839 	ts->tick_stopped  = 0;
840 	ts->idle_exittime = now;
841 
842 	tick_nohz_restart(ts, now);
843 }
844 
845 static void tick_nohz_full_update_tick(struct tick_sched *ts)
846 {
847 #ifdef CONFIG_NO_HZ_FULL
848 	int cpu = smp_processor_id();
849 
850 	if (!tick_nohz_full_cpu(cpu))
851 		return;
852 
853 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
854 		return;
855 
856 	if (can_stop_full_tick(cpu, ts))
857 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
858 	else if (ts->tick_stopped)
859 		tick_nohz_restart_sched_tick(ts, ktime_get());
860 #endif
861 }
862 
863 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
864 {
865 	/*
866 	 * If this CPU is offline and it is the one which updates
867 	 * jiffies, then give up the assignment and let it be taken by
868 	 * the CPU which runs the tick timer next. If we don't drop
869 	 * this here the jiffies might be stale and do_timer() never
870 	 * invoked.
871 	 */
872 	if (unlikely(!cpu_online(cpu))) {
873 		if (cpu == tick_do_timer_cpu)
874 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
875 		/*
876 		 * Make sure the CPU doesn't get fooled by obsolete tick
877 		 * deadline if it comes back online later.
878 		 */
879 		ts->next_tick = 0;
880 		return false;
881 	}
882 
883 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
884 		ts->sleep_length = NSEC_PER_SEC / HZ;
885 		return false;
886 	}
887 
888 	if (need_resched())
889 		return false;
890 
891 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
892 		static int ratelimit;
893 
894 		if (ratelimit < 10 &&
895 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
896 			pr_warn("NOHZ: local_softirq_pending %02x\n",
897 				(unsigned int) local_softirq_pending());
898 			ratelimit++;
899 		}
900 		return false;
901 	}
902 
903 	if (tick_nohz_full_enabled()) {
904 		/*
905 		 * Keep the tick alive to guarantee timekeeping progression
906 		 * if there are full dynticks CPUs around
907 		 */
908 		if (tick_do_timer_cpu == cpu)
909 			return false;
910 		/*
911 		 * Boot safety: make sure the timekeeping duty has been
912 		 * assigned before entering dyntick-idle mode,
913 		 */
914 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
915 			return false;
916 	}
917 
918 	return true;
919 }
920 
921 static void __tick_nohz_idle_enter(struct tick_sched *ts)
922 {
923 	ktime_t now, expires;
924 	int cpu = smp_processor_id();
925 
926 	now = tick_nohz_start_idle(ts);
927 
928 	if (can_stop_idle_tick(cpu, ts)) {
929 		int was_stopped = ts->tick_stopped;
930 
931 		ts->idle_calls++;
932 
933 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
934 		if (expires > 0LL) {
935 			ts->idle_sleeps++;
936 			ts->idle_expires = expires;
937 		}
938 
939 		if (!was_stopped && ts->tick_stopped) {
940 			ts->idle_jiffies = ts->last_jiffies;
941 			nohz_balance_enter_idle(cpu);
942 		}
943 	}
944 }
945 
946 /**
947  * tick_nohz_idle_enter - stop the idle tick from the idle task
948  *
949  * When the next event is more than a tick into the future, stop the idle tick
950  * Called when we start the idle loop.
951  *
952  * The arch is responsible of calling:
953  *
954  * - rcu_idle_enter() after its last use of RCU before the CPU is put
955  *  to sleep.
956  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
957  */
958 void tick_nohz_idle_enter(void)
959 {
960 	struct tick_sched *ts;
961 
962 	lockdep_assert_irqs_enabled();
963 	/*
964 	 * Update the idle state in the scheduler domain hierarchy
965 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
966 	 * State will be updated to busy during the first busy tick after
967 	 * exiting idle.
968 	 */
969 	set_cpu_sd_state_idle();
970 
971 	local_irq_disable();
972 
973 	ts = this_cpu_ptr(&tick_cpu_sched);
974 	ts->inidle = 1;
975 	__tick_nohz_idle_enter(ts);
976 
977 	local_irq_enable();
978 }
979 
980 /**
981  * tick_nohz_irq_exit - update next tick event from interrupt exit
982  *
983  * When an interrupt fires while we are idle and it doesn't cause
984  * a reschedule, it may still add, modify or delete a timer, enqueue
985  * an RCU callback, etc...
986  * So we need to re-calculate and reprogram the next tick event.
987  */
988 void tick_nohz_irq_exit(void)
989 {
990 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
991 
992 	if (ts->inidle)
993 		__tick_nohz_idle_enter(ts);
994 	else
995 		tick_nohz_full_update_tick(ts);
996 }
997 
998 /**
999  * tick_nohz_get_sleep_length - return the length of the current sleep
1000  *
1001  * Called from power state control code with interrupts disabled
1002  */
1003 ktime_t tick_nohz_get_sleep_length(void)
1004 {
1005 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1006 
1007 	return ts->sleep_length;
1008 }
1009 
1010 /**
1011  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1012  * for a particular CPU.
1013  *
1014  * Called from the schedutil frequency scaling governor in scheduler context.
1015  */
1016 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1017 {
1018 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1019 
1020 	return ts->idle_calls;
1021 }
1022 
1023 /**
1024  * tick_nohz_get_idle_calls - return the current idle calls counter value
1025  *
1026  * Called from the schedutil frequency scaling governor in scheduler context.
1027  */
1028 unsigned long tick_nohz_get_idle_calls(void)
1029 {
1030 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1031 
1032 	return ts->idle_calls;
1033 }
1034 
1035 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1036 {
1037 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1038 	unsigned long ticks;
1039 
1040 	if (vtime_accounting_cpu_enabled())
1041 		return;
1042 	/*
1043 	 * We stopped the tick in idle. Update process times would miss the
1044 	 * time we slept as update_process_times does only a 1 tick
1045 	 * accounting. Enforce that this is accounted to idle !
1046 	 */
1047 	ticks = jiffies - ts->idle_jiffies;
1048 	/*
1049 	 * We might be one off. Do not randomly account a huge number of ticks!
1050 	 */
1051 	if (ticks && ticks < LONG_MAX)
1052 		account_idle_ticks(ticks);
1053 #endif
1054 }
1055 
1056 /**
1057  * tick_nohz_idle_exit - restart the idle tick from the idle task
1058  *
1059  * Restart the idle tick when the CPU is woken up from idle
1060  * This also exit the RCU extended quiescent state. The CPU
1061  * can use RCU again after this function is called.
1062  */
1063 void tick_nohz_idle_exit(void)
1064 {
1065 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1066 	ktime_t now;
1067 
1068 	local_irq_disable();
1069 
1070 	WARN_ON_ONCE(!ts->inidle);
1071 
1072 	ts->inidle = 0;
1073 
1074 	if (ts->idle_active || ts->tick_stopped)
1075 		now = ktime_get();
1076 
1077 	if (ts->idle_active)
1078 		tick_nohz_stop_idle(ts, now);
1079 
1080 	if (ts->tick_stopped) {
1081 		tick_nohz_restart_sched_tick(ts, now);
1082 		tick_nohz_account_idle_ticks(ts);
1083 	}
1084 
1085 	local_irq_enable();
1086 }
1087 
1088 /*
1089  * The nohz low res interrupt handler
1090  */
1091 static void tick_nohz_handler(struct clock_event_device *dev)
1092 {
1093 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1094 	struct pt_regs *regs = get_irq_regs();
1095 	ktime_t now = ktime_get();
1096 
1097 	dev->next_event = KTIME_MAX;
1098 
1099 	tick_sched_do_timer(now);
1100 	tick_sched_handle(ts, regs);
1101 
1102 	/* No need to reprogram if we are running tickless  */
1103 	if (unlikely(ts->tick_stopped))
1104 		return;
1105 
1106 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1107 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1108 }
1109 
1110 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1111 {
1112 	if (!tick_nohz_enabled)
1113 		return;
1114 	ts->nohz_mode = mode;
1115 	/* One update is enough */
1116 	if (!test_and_set_bit(0, &tick_nohz_active))
1117 		timers_update_nohz();
1118 }
1119 
1120 /**
1121  * tick_nohz_switch_to_nohz - switch to nohz mode
1122  */
1123 static void tick_nohz_switch_to_nohz(void)
1124 {
1125 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1126 	ktime_t next;
1127 
1128 	if (!tick_nohz_enabled)
1129 		return;
1130 
1131 	if (tick_switch_to_oneshot(tick_nohz_handler))
1132 		return;
1133 
1134 	/*
1135 	 * Recycle the hrtimer in ts, so we can share the
1136 	 * hrtimer_forward with the highres code.
1137 	 */
1138 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1139 	/* Get the next period */
1140 	next = tick_init_jiffy_update();
1141 
1142 	hrtimer_set_expires(&ts->sched_timer, next);
1143 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1144 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1145 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1146 }
1147 
1148 static inline void tick_nohz_irq_enter(void)
1149 {
1150 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151 	ktime_t now;
1152 
1153 	if (!ts->idle_active && !ts->tick_stopped)
1154 		return;
1155 	now = ktime_get();
1156 	if (ts->idle_active)
1157 		tick_nohz_stop_idle(ts, now);
1158 	if (ts->tick_stopped)
1159 		tick_nohz_update_jiffies(now);
1160 }
1161 
1162 #else
1163 
1164 static inline void tick_nohz_switch_to_nohz(void) { }
1165 static inline void tick_nohz_irq_enter(void) { }
1166 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1167 
1168 #endif /* CONFIG_NO_HZ_COMMON */
1169 
1170 /*
1171  * Called from irq_enter to notify about the possible interruption of idle()
1172  */
1173 void tick_irq_enter(void)
1174 {
1175 	tick_check_oneshot_broadcast_this_cpu();
1176 	tick_nohz_irq_enter();
1177 }
1178 
1179 /*
1180  * High resolution timer specific code
1181  */
1182 #ifdef CONFIG_HIGH_RES_TIMERS
1183 /*
1184  * We rearm the timer until we get disabled by the idle code.
1185  * Called with interrupts disabled.
1186  */
1187 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1188 {
1189 	struct tick_sched *ts =
1190 		container_of(timer, struct tick_sched, sched_timer);
1191 	struct pt_regs *regs = get_irq_regs();
1192 	ktime_t now = ktime_get();
1193 
1194 	tick_sched_do_timer(now);
1195 
1196 	/*
1197 	 * Do not call, when we are not in irq context and have
1198 	 * no valid regs pointer
1199 	 */
1200 	if (regs)
1201 		tick_sched_handle(ts, regs);
1202 	else
1203 		ts->next_tick = 0;
1204 
1205 	/* No need to reprogram if we are in idle or full dynticks mode */
1206 	if (unlikely(ts->tick_stopped))
1207 		return HRTIMER_NORESTART;
1208 
1209 	hrtimer_forward(timer, now, tick_period);
1210 
1211 	return HRTIMER_RESTART;
1212 }
1213 
1214 static int sched_skew_tick;
1215 
1216 static int __init skew_tick(char *str)
1217 {
1218 	get_option(&str, &sched_skew_tick);
1219 
1220 	return 0;
1221 }
1222 early_param("skew_tick", skew_tick);
1223 
1224 /**
1225  * tick_setup_sched_timer - setup the tick emulation timer
1226  */
1227 void tick_setup_sched_timer(void)
1228 {
1229 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1230 	ktime_t now = ktime_get();
1231 
1232 	/*
1233 	 * Emulate tick processing via per-CPU hrtimers:
1234 	 */
1235 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1236 	ts->sched_timer.function = tick_sched_timer;
1237 
1238 	/* Get the next period (per-CPU) */
1239 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1240 
1241 	/* Offset the tick to avert jiffies_lock contention. */
1242 	if (sched_skew_tick) {
1243 		u64 offset = ktime_to_ns(tick_period) >> 1;
1244 		do_div(offset, num_possible_cpus());
1245 		offset *= smp_processor_id();
1246 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1247 	}
1248 
1249 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1250 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1251 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1252 }
1253 #endif /* HIGH_RES_TIMERS */
1254 
1255 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1256 void tick_cancel_sched_timer(int cpu)
1257 {
1258 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1259 
1260 # ifdef CONFIG_HIGH_RES_TIMERS
1261 	if (ts->sched_timer.base)
1262 		hrtimer_cancel(&ts->sched_timer);
1263 # endif
1264 
1265 	memset(ts, 0, sizeof(*ts));
1266 }
1267 #endif
1268 
1269 /**
1270  * Async notification about clocksource changes
1271  */
1272 void tick_clock_notify(void)
1273 {
1274 	int cpu;
1275 
1276 	for_each_possible_cpu(cpu)
1277 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1278 }
1279 
1280 /*
1281  * Async notification about clock event changes
1282  */
1283 void tick_oneshot_notify(void)
1284 {
1285 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1286 
1287 	set_bit(0, &ts->check_clocks);
1288 }
1289 
1290 /**
1291  * Check, if a change happened, which makes oneshot possible.
1292  *
1293  * Called cyclic from the hrtimer softirq (driven by the timer
1294  * softirq) allow_nohz signals, that we can switch into low-res nohz
1295  * mode, because high resolution timers are disabled (either compile
1296  * or runtime). Called with interrupts disabled.
1297  */
1298 int tick_check_oneshot_change(int allow_nohz)
1299 {
1300 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301 
1302 	if (!test_and_clear_bit(0, &ts->check_clocks))
1303 		return 0;
1304 
1305 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1306 		return 0;
1307 
1308 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1309 		return 0;
1310 
1311 	if (!allow_nohz)
1312 		return 1;
1313 
1314 	tick_nohz_switch_to_nohz();
1315 	return 0;
1316 }
1317