xref: /openbmc/linux/kernel/time/tick-sched.c (revision 2232c2d8)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	touch_softlockup_watchdog();
137 
138 	cpu_clear(cpu, nohz_cpu_mask);
139 	now = ktime_get();
140 	ts->idle_waketime = now;
141 
142 	local_irq_save(flags);
143 	tick_do_update_jiffies64(now);
144 	local_irq_restore(flags);
145 }
146 
147 void tick_nohz_stop_idle(int cpu)
148 {
149 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150 
151 	if (ts->idle_active) {
152 		ktime_t now, delta;
153 		now = ktime_get();
154 		delta = ktime_sub(now, ts->idle_entrytime);
155 		ts->idle_lastupdate = now;
156 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 		ts->idle_active = 0;
158 	}
159 }
160 
161 static ktime_t tick_nohz_start_idle(int cpu)
162 {
163 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
164 	ktime_t now, delta;
165 
166 	now = ktime_get();
167 	if (ts->idle_active) {
168 		delta = ktime_sub(now, ts->idle_entrytime);
169 		ts->idle_lastupdate = now;
170 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
171 	}
172 	ts->idle_entrytime = now;
173 	ts->idle_active = 1;
174 	return now;
175 }
176 
177 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
178 {
179 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
180 
181 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
182 	return ktime_to_us(ts->idle_sleeptime);
183 }
184 
185 /**
186  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
187  *
188  * When the next event is more than a tick into the future, stop the idle tick
189  * Called either from the idle loop or from irq_exit() when an idle period was
190  * just interrupted by an interrupt which did not cause a reschedule.
191  */
192 void tick_nohz_stop_sched_tick(void)
193 {
194 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
195 	unsigned long rt_jiffies;
196 	struct tick_sched *ts;
197 	ktime_t last_update, expires, now;
198 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
199 	int cpu;
200 
201 	local_irq_save(flags);
202 
203 	cpu = smp_processor_id();
204 	now = tick_nohz_start_idle(cpu);
205 	ts = &per_cpu(tick_cpu_sched, cpu);
206 
207 	/*
208 	 * If this cpu is offline and it is the one which updates
209 	 * jiffies, then give up the assignment and let it be taken by
210 	 * the cpu which runs the tick timer next. If we don't drop
211 	 * this here the jiffies might be stale and do_timer() never
212 	 * invoked.
213 	 */
214 	if (unlikely(!cpu_online(cpu))) {
215 		if (cpu == tick_do_timer_cpu)
216 			tick_do_timer_cpu = -1;
217 	}
218 
219 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
220 		goto end;
221 
222 	if (need_resched())
223 		goto end;
224 
225 	cpu = smp_processor_id();
226 	if (unlikely(local_softirq_pending())) {
227 		static int ratelimit;
228 
229 		if (ratelimit < 10) {
230 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
231 			       local_softirq_pending());
232 			ratelimit++;
233 		}
234 	}
235 
236 	ts->idle_calls++;
237 	/* Read jiffies and the time when jiffies were updated last */
238 	do {
239 		seq = read_seqbegin(&xtime_lock);
240 		last_update = last_jiffies_update;
241 		last_jiffies = jiffies;
242 	} while (read_seqretry(&xtime_lock, seq));
243 
244 	/* Get the next timer wheel timer */
245 	next_jiffies = get_next_timer_interrupt(last_jiffies);
246 	delta_jiffies = next_jiffies - last_jiffies;
247 
248 	rt_jiffies = rt_needs_cpu(cpu);
249 	if (rt_jiffies && rt_jiffies < delta_jiffies)
250 		delta_jiffies = rt_jiffies;
251 
252 	if (rcu_needs_cpu(cpu))
253 		delta_jiffies = 1;
254 	/*
255 	 * Do not stop the tick, if we are only one off
256 	 * or if the cpu is required for rcu
257 	 */
258 	if (!ts->tick_stopped && delta_jiffies == 1)
259 		goto out;
260 
261 	/* Schedule the tick, if we are at least one jiffie off */
262 	if ((long)delta_jiffies >= 1) {
263 
264 		if (delta_jiffies > 1)
265 			cpu_set(cpu, nohz_cpu_mask);
266 		/*
267 		 * nohz_stop_sched_tick can be called several times before
268 		 * the nohz_restart_sched_tick is called. This happens when
269 		 * interrupts arrive which do not cause a reschedule. In the
270 		 * first call we save the current tick time, so we can restart
271 		 * the scheduler tick in nohz_restart_sched_tick.
272 		 */
273 		if (!ts->tick_stopped) {
274 			if (select_nohz_load_balancer(1)) {
275 				/*
276 				 * sched tick not stopped!
277 				 */
278 				cpu_clear(cpu, nohz_cpu_mask);
279 				goto out;
280 			}
281 
282 			ts->idle_tick = ts->sched_timer.expires;
283 			ts->tick_stopped = 1;
284 			ts->idle_jiffies = last_jiffies;
285 			rcu_enter_nohz();
286 		}
287 
288 		/*
289 		 * If this cpu is the one which updates jiffies, then
290 		 * give up the assignment and let it be taken by the
291 		 * cpu which runs the tick timer next, which might be
292 		 * this cpu as well. If we don't drop this here the
293 		 * jiffies might be stale and do_timer() never
294 		 * invoked.
295 		 */
296 		if (cpu == tick_do_timer_cpu)
297 			tick_do_timer_cpu = -1;
298 
299 		ts->idle_sleeps++;
300 
301 		/*
302 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
303 		 * there is no timer pending or at least extremly far
304 		 * into the future (12 days for HZ=1000). In this case
305 		 * we simply stop the tick timer:
306 		 */
307 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
308 			ts->idle_expires.tv64 = KTIME_MAX;
309 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
310 				hrtimer_cancel(&ts->sched_timer);
311 			goto out;
312 		}
313 
314 		/*
315 		 * calculate the expiry time for the next timer wheel
316 		 * timer
317 		 */
318 		expires = ktime_add_ns(last_update, tick_period.tv64 *
319 				       delta_jiffies);
320 		ts->idle_expires = expires;
321 
322 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
323 			hrtimer_start(&ts->sched_timer, expires,
324 				      HRTIMER_MODE_ABS);
325 			/* Check, if the timer was already in the past */
326 			if (hrtimer_active(&ts->sched_timer))
327 				goto out;
328 		} else if (!tick_program_event(expires, 0))
329 				goto out;
330 		/*
331 		 * We are past the event already. So we crossed a
332 		 * jiffie boundary. Update jiffies and raise the
333 		 * softirq.
334 		 */
335 		tick_do_update_jiffies64(ktime_get());
336 		cpu_clear(cpu, nohz_cpu_mask);
337 	}
338 	raise_softirq_irqoff(TIMER_SOFTIRQ);
339 out:
340 	ts->next_jiffies = next_jiffies;
341 	ts->last_jiffies = last_jiffies;
342 	ts->sleep_length = ktime_sub(dev->next_event, now);
343 end:
344 	local_irq_restore(flags);
345 }
346 
347 /**
348  * tick_nohz_get_sleep_length - return the length of the current sleep
349  *
350  * Called from power state control code with interrupts disabled
351  */
352 ktime_t tick_nohz_get_sleep_length(void)
353 {
354 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
355 
356 	return ts->sleep_length;
357 }
358 
359 /**
360  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
361  *
362  * Restart the idle tick when the CPU is woken up from idle
363  */
364 void tick_nohz_restart_sched_tick(void)
365 {
366 	int cpu = smp_processor_id();
367 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
368 	unsigned long ticks;
369 	ktime_t now;
370 
371 	local_irq_disable();
372 	tick_nohz_stop_idle(cpu);
373 
374 	if (!ts->tick_stopped) {
375 		local_irq_enable();
376 		return;
377 	}
378 
379 	rcu_exit_nohz();
380 
381 	/* Update jiffies first */
382 	select_nohz_load_balancer(0);
383 	now = ktime_get();
384 	tick_do_update_jiffies64(now);
385 	cpu_clear(cpu, nohz_cpu_mask);
386 
387 	/*
388 	 * We stopped the tick in idle. Update process times would miss the
389 	 * time we slept as update_process_times does only a 1 tick
390 	 * accounting. Enforce that this is accounted to idle !
391 	 */
392 	ticks = jiffies - ts->idle_jiffies;
393 	/*
394 	 * We might be one off. Do not randomly account a huge number of ticks!
395 	 */
396 	if (ticks && ticks < LONG_MAX) {
397 		add_preempt_count(HARDIRQ_OFFSET);
398 		account_system_time(current, HARDIRQ_OFFSET,
399 				    jiffies_to_cputime(ticks));
400 		sub_preempt_count(HARDIRQ_OFFSET);
401 	}
402 
403 	/*
404 	 * Cancel the scheduled timer and restore the tick
405 	 */
406 	ts->tick_stopped  = 0;
407 	ts->idle_exittime = now;
408 	hrtimer_cancel(&ts->sched_timer);
409 	ts->sched_timer.expires = ts->idle_tick;
410 
411 	while (1) {
412 		/* Forward the time to expire in the future */
413 		hrtimer_forward(&ts->sched_timer, now, tick_period);
414 
415 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
416 			hrtimer_start(&ts->sched_timer,
417 				      ts->sched_timer.expires,
418 				      HRTIMER_MODE_ABS);
419 			/* Check, if the timer was already in the past */
420 			if (hrtimer_active(&ts->sched_timer))
421 				break;
422 		} else {
423 			if (!tick_program_event(ts->sched_timer.expires, 0))
424 				break;
425 		}
426 		/* Update jiffies and reread time */
427 		tick_do_update_jiffies64(now);
428 		now = ktime_get();
429 	}
430 	local_irq_enable();
431 }
432 
433 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
434 {
435 	hrtimer_forward(&ts->sched_timer, now, tick_period);
436 	return tick_program_event(ts->sched_timer.expires, 0);
437 }
438 
439 /*
440  * The nohz low res interrupt handler
441  */
442 static void tick_nohz_handler(struct clock_event_device *dev)
443 {
444 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
445 	struct pt_regs *regs = get_irq_regs();
446 	int cpu = smp_processor_id();
447 	ktime_t now = ktime_get();
448 
449 	dev->next_event.tv64 = KTIME_MAX;
450 
451 	/*
452 	 * Check if the do_timer duty was dropped. We don't care about
453 	 * concurrency: This happens only when the cpu in charge went
454 	 * into a long sleep. If two cpus happen to assign themself to
455 	 * this duty, then the jiffies update is still serialized by
456 	 * xtime_lock.
457 	 */
458 	if (unlikely(tick_do_timer_cpu == -1))
459 		tick_do_timer_cpu = cpu;
460 
461 	/* Check, if the jiffies need an update */
462 	if (tick_do_timer_cpu == cpu)
463 		tick_do_update_jiffies64(now);
464 
465 	/*
466 	 * When we are idle and the tick is stopped, we have to touch
467 	 * the watchdog as we might not schedule for a really long
468 	 * time. This happens on complete idle SMP systems while
469 	 * waiting on the login prompt. We also increment the "start
470 	 * of idle" jiffy stamp so the idle accounting adjustment we
471 	 * do when we go busy again does not account too much ticks.
472 	 */
473 	if (ts->tick_stopped) {
474 		touch_softlockup_watchdog();
475 		ts->idle_jiffies++;
476 	}
477 
478 	update_process_times(user_mode(regs));
479 	profile_tick(CPU_PROFILING);
480 
481 	/* Do not restart, when we are in the idle loop */
482 	if (ts->tick_stopped)
483 		return;
484 
485 	while (tick_nohz_reprogram(ts, now)) {
486 		now = ktime_get();
487 		tick_do_update_jiffies64(now);
488 	}
489 }
490 
491 /**
492  * tick_nohz_switch_to_nohz - switch to nohz mode
493  */
494 static void tick_nohz_switch_to_nohz(void)
495 {
496 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
497 	ktime_t next;
498 
499 	if (!tick_nohz_enabled)
500 		return;
501 
502 	local_irq_disable();
503 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
504 		local_irq_enable();
505 		return;
506 	}
507 
508 	ts->nohz_mode = NOHZ_MODE_LOWRES;
509 
510 	/*
511 	 * Recycle the hrtimer in ts, so we can share the
512 	 * hrtimer_forward with the highres code.
513 	 */
514 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
515 	/* Get the next period */
516 	next = tick_init_jiffy_update();
517 
518 	for (;;) {
519 		ts->sched_timer.expires = next;
520 		if (!tick_program_event(next, 0))
521 			break;
522 		next = ktime_add(next, tick_period);
523 	}
524 	local_irq_enable();
525 
526 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
527 	       smp_processor_id());
528 }
529 
530 #else
531 
532 static inline void tick_nohz_switch_to_nohz(void) { }
533 
534 #endif /* NO_HZ */
535 
536 /*
537  * High resolution timer specific code
538  */
539 #ifdef CONFIG_HIGH_RES_TIMERS
540 /*
541  * We rearm the timer until we get disabled by the idle code.
542  * Called with interrupts disabled and timer->base->cpu_base->lock held.
543  */
544 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
545 {
546 	struct tick_sched *ts =
547 		container_of(timer, struct tick_sched, sched_timer);
548 	struct pt_regs *regs = get_irq_regs();
549 	ktime_t now = ktime_get();
550 	int cpu = smp_processor_id();
551 
552 #ifdef CONFIG_NO_HZ
553 	/*
554 	 * Check if the do_timer duty was dropped. We don't care about
555 	 * concurrency: This happens only when the cpu in charge went
556 	 * into a long sleep. If two cpus happen to assign themself to
557 	 * this duty, then the jiffies update is still serialized by
558 	 * xtime_lock.
559 	 */
560 	if (unlikely(tick_do_timer_cpu == -1))
561 		tick_do_timer_cpu = cpu;
562 #endif
563 
564 	/* Check, if the jiffies need an update */
565 	if (tick_do_timer_cpu == cpu)
566 		tick_do_update_jiffies64(now);
567 
568 	/*
569 	 * Do not call, when we are not in irq context and have
570 	 * no valid regs pointer
571 	 */
572 	if (regs) {
573 		/*
574 		 * When we are idle and the tick is stopped, we have to touch
575 		 * the watchdog as we might not schedule for a really long
576 		 * time. This happens on complete idle SMP systems while
577 		 * waiting on the login prompt. We also increment the "start of
578 		 * idle" jiffy stamp so the idle accounting adjustment we do
579 		 * when we go busy again does not account too much ticks.
580 		 */
581 		if (ts->tick_stopped) {
582 			touch_softlockup_watchdog();
583 			ts->idle_jiffies++;
584 		}
585 		update_process_times(user_mode(regs));
586 		profile_tick(CPU_PROFILING);
587 	}
588 
589 	/* Do not restart, when we are in the idle loop */
590 	if (ts->tick_stopped)
591 		return HRTIMER_NORESTART;
592 
593 	hrtimer_forward(timer, now, tick_period);
594 
595 	return HRTIMER_RESTART;
596 }
597 
598 /**
599  * tick_setup_sched_timer - setup the tick emulation timer
600  */
601 void tick_setup_sched_timer(void)
602 {
603 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
604 	ktime_t now = ktime_get();
605 	u64 offset;
606 
607 	/*
608 	 * Emulate tick processing via per-CPU hrtimers:
609 	 */
610 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
611 	ts->sched_timer.function = tick_sched_timer;
612 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
613 
614 	/* Get the next period (per cpu) */
615 	ts->sched_timer.expires = tick_init_jiffy_update();
616 	offset = ktime_to_ns(tick_period) >> 1;
617 	do_div(offset, num_possible_cpus());
618 	offset *= smp_processor_id();
619 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
620 
621 	for (;;) {
622 		hrtimer_forward(&ts->sched_timer, now, tick_period);
623 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
624 			      HRTIMER_MODE_ABS);
625 		/* Check, if the timer was already in the past */
626 		if (hrtimer_active(&ts->sched_timer))
627 			break;
628 		now = ktime_get();
629 	}
630 
631 #ifdef CONFIG_NO_HZ
632 	if (tick_nohz_enabled)
633 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
634 #endif
635 }
636 
637 void tick_cancel_sched_timer(int cpu)
638 {
639 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
640 
641 	if (ts->sched_timer.base)
642 		hrtimer_cancel(&ts->sched_timer);
643 	ts->tick_stopped = 0;
644 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
645 }
646 #endif /* HIGH_RES_TIMERS */
647 
648 /**
649  * Async notification about clocksource changes
650  */
651 void tick_clock_notify(void)
652 {
653 	int cpu;
654 
655 	for_each_possible_cpu(cpu)
656 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
657 }
658 
659 /*
660  * Async notification about clock event changes
661  */
662 void tick_oneshot_notify(void)
663 {
664 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
665 
666 	set_bit(0, &ts->check_clocks);
667 }
668 
669 /**
670  * Check, if a change happened, which makes oneshot possible.
671  *
672  * Called cyclic from the hrtimer softirq (driven by the timer
673  * softirq) allow_nohz signals, that we can switch into low-res nohz
674  * mode, because high resolution timers are disabled (either compile
675  * or runtime).
676  */
677 int tick_check_oneshot_change(int allow_nohz)
678 {
679 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
680 
681 	if (!test_and_clear_bit(0, &ts->check_clocks))
682 		return 0;
683 
684 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
685 		return 0;
686 
687 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
688 		return 0;
689 
690 	if (!allow_nohz)
691 		return 1;
692 
693 	tick_nohz_switch_to_nohz();
694 	return 0;
695 }
696