1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 114 static void tick_sched_do_timer(ktime_t now) 115 { 116 int cpu = smp_processor_id(); 117 118 #ifdef CONFIG_NO_HZ_COMMON 119 /* 120 * Check if the do_timer duty was dropped. We don't care about 121 * concurrency: This happens only when the CPU in charge went 122 * into a long sleep. If two CPUs happen to assign themselves to 123 * this duty, then the jiffies update is still serialized by 124 * jiffies_lock. 125 */ 126 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 127 && !tick_nohz_full_cpu(cpu)) 128 tick_do_timer_cpu = cpu; 129 #endif 130 131 /* Check, if the jiffies need an update */ 132 if (tick_do_timer_cpu == cpu) 133 tick_do_update_jiffies64(now); 134 } 135 136 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 137 { 138 #ifdef CONFIG_NO_HZ_COMMON 139 /* 140 * When we are idle and the tick is stopped, we have to touch 141 * the watchdog as we might not schedule for a really long 142 * time. This happens on complete idle SMP systems while 143 * waiting on the login prompt. We also increment the "start of 144 * idle" jiffy stamp so the idle accounting adjustment we do 145 * when we go busy again does not account too much ticks. 146 */ 147 if (ts->tick_stopped) { 148 touch_softlockup_watchdog_sched(); 149 if (is_idle_task(current)) 150 ts->idle_jiffies++; 151 } 152 #endif 153 update_process_times(user_mode(regs)); 154 profile_tick(CPU_PROFILING); 155 } 156 #endif 157 158 #ifdef CONFIG_NO_HZ_FULL 159 cpumask_var_t tick_nohz_full_mask; 160 cpumask_var_t housekeeping_mask; 161 bool tick_nohz_full_running; 162 static atomic_t tick_dep_mask; 163 164 static bool check_tick_dependency(atomic_t *dep) 165 { 166 int val = atomic_read(dep); 167 168 if (val & TICK_DEP_MASK_POSIX_TIMER) { 169 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 170 return true; 171 } 172 173 if (val & TICK_DEP_MASK_PERF_EVENTS) { 174 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 175 return true; 176 } 177 178 if (val & TICK_DEP_MASK_SCHED) { 179 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 180 return true; 181 } 182 183 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 184 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 185 return true; 186 } 187 188 return false; 189 } 190 191 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 192 { 193 WARN_ON_ONCE(!irqs_disabled()); 194 195 if (unlikely(!cpu_online(cpu))) 196 return false; 197 198 if (check_tick_dependency(&tick_dep_mask)) 199 return false; 200 201 if (check_tick_dependency(&ts->tick_dep_mask)) 202 return false; 203 204 if (check_tick_dependency(¤t->tick_dep_mask)) 205 return false; 206 207 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 208 return false; 209 210 return true; 211 } 212 213 static void nohz_full_kick_func(struct irq_work *work) 214 { 215 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 216 } 217 218 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 219 .func = nohz_full_kick_func, 220 }; 221 222 /* 223 * Kick this CPU if it's full dynticks in order to force it to 224 * re-evaluate its dependency on the tick and restart it if necessary. 225 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 226 * is NMI safe. 227 */ 228 static void tick_nohz_full_kick(void) 229 { 230 if (!tick_nohz_full_cpu(smp_processor_id())) 231 return; 232 233 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 234 } 235 236 /* 237 * Kick the CPU if it's full dynticks in order to force it to 238 * re-evaluate its dependency on the tick and restart it if necessary. 239 */ 240 void tick_nohz_full_kick_cpu(int cpu) 241 { 242 if (!tick_nohz_full_cpu(cpu)) 243 return; 244 245 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 246 } 247 248 /* 249 * Kick all full dynticks CPUs in order to force these to re-evaluate 250 * their dependency on the tick and restart it if necessary. 251 */ 252 static void tick_nohz_full_kick_all(void) 253 { 254 int cpu; 255 256 if (!tick_nohz_full_running) 257 return; 258 259 preempt_disable(); 260 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 261 tick_nohz_full_kick_cpu(cpu); 262 preempt_enable(); 263 } 264 265 static void tick_nohz_dep_set_all(atomic_t *dep, 266 enum tick_dep_bits bit) 267 { 268 int prev; 269 270 prev = atomic_fetch_or(BIT(bit), dep); 271 if (!prev) 272 tick_nohz_full_kick_all(); 273 } 274 275 /* 276 * Set a global tick dependency. Used by perf events that rely on freq and 277 * by unstable clock. 278 */ 279 void tick_nohz_dep_set(enum tick_dep_bits bit) 280 { 281 tick_nohz_dep_set_all(&tick_dep_mask, bit); 282 } 283 284 void tick_nohz_dep_clear(enum tick_dep_bits bit) 285 { 286 atomic_andnot(BIT(bit), &tick_dep_mask); 287 } 288 289 /* 290 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 291 * manage events throttling. 292 */ 293 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 294 { 295 int prev; 296 struct tick_sched *ts; 297 298 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 299 300 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 301 if (!prev) { 302 preempt_disable(); 303 /* Perf needs local kick that is NMI safe */ 304 if (cpu == smp_processor_id()) { 305 tick_nohz_full_kick(); 306 } else { 307 /* Remote irq work not NMI-safe */ 308 if (!WARN_ON_ONCE(in_nmi())) 309 tick_nohz_full_kick_cpu(cpu); 310 } 311 preempt_enable(); 312 } 313 } 314 315 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 316 { 317 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 318 319 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 320 } 321 322 /* 323 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 324 * per task timers. 325 */ 326 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 327 { 328 /* 329 * We could optimize this with just kicking the target running the task 330 * if that noise matters for nohz full users. 331 */ 332 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 333 } 334 335 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 336 { 337 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 338 } 339 340 /* 341 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 342 * per process timers. 343 */ 344 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 345 { 346 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 347 } 348 349 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 350 { 351 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 352 } 353 354 /* 355 * Re-evaluate the need for the tick as we switch the current task. 356 * It might need the tick due to per task/process properties: 357 * perf events, posix CPU timers, ... 358 */ 359 void __tick_nohz_task_switch(void) 360 { 361 unsigned long flags; 362 struct tick_sched *ts; 363 364 local_irq_save(flags); 365 366 if (!tick_nohz_full_cpu(smp_processor_id())) 367 goto out; 368 369 ts = this_cpu_ptr(&tick_cpu_sched); 370 371 if (ts->tick_stopped) { 372 if (atomic_read(¤t->tick_dep_mask) || 373 atomic_read(¤t->signal->tick_dep_mask)) 374 tick_nohz_full_kick(); 375 } 376 out: 377 local_irq_restore(flags); 378 } 379 380 /* Parse the boot-time nohz CPU list from the kernel parameters. */ 381 static int __init tick_nohz_full_setup(char *str) 382 { 383 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 384 if (cpulist_parse(str, tick_nohz_full_mask) < 0) { 385 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n"); 386 free_bootmem_cpumask_var(tick_nohz_full_mask); 387 return 1; 388 } 389 tick_nohz_full_running = true; 390 391 return 1; 392 } 393 __setup("nohz_full=", tick_nohz_full_setup); 394 395 static int tick_nohz_cpu_down(unsigned int cpu) 396 { 397 /* 398 * The boot CPU handles housekeeping duty (unbound timers, 399 * workqueues, timekeeping, ...) on behalf of full dynticks 400 * CPUs. It must remain online when nohz full is enabled. 401 */ 402 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 403 return -EBUSY; 404 return 0; 405 } 406 407 static int tick_nohz_init_all(void) 408 { 409 int err = -1; 410 411 #ifdef CONFIG_NO_HZ_FULL_ALL 412 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) { 413 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n"); 414 return err; 415 } 416 err = 0; 417 cpumask_setall(tick_nohz_full_mask); 418 tick_nohz_full_running = true; 419 #endif 420 return err; 421 } 422 423 void __init tick_nohz_init(void) 424 { 425 int cpu, ret; 426 427 if (!tick_nohz_full_running) { 428 if (tick_nohz_init_all() < 0) 429 return; 430 } 431 432 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) { 433 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n"); 434 cpumask_clear(tick_nohz_full_mask); 435 tick_nohz_full_running = false; 436 return; 437 } 438 439 /* 440 * Full dynticks uses irq work to drive the tick rescheduling on safe 441 * locking contexts. But then we need irq work to raise its own 442 * interrupts to avoid circular dependency on the tick 443 */ 444 if (!arch_irq_work_has_interrupt()) { 445 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 446 cpumask_clear(tick_nohz_full_mask); 447 cpumask_copy(housekeeping_mask, cpu_possible_mask); 448 tick_nohz_full_running = false; 449 return; 450 } 451 452 cpu = smp_processor_id(); 453 454 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 455 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 456 cpu); 457 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 458 } 459 460 cpumask_andnot(housekeeping_mask, 461 cpu_possible_mask, tick_nohz_full_mask); 462 463 for_each_cpu(cpu, tick_nohz_full_mask) 464 context_tracking_cpu_set(cpu); 465 466 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 467 "kernel/nohz:predown", NULL, 468 tick_nohz_cpu_down); 469 WARN_ON(ret < 0); 470 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 471 cpumask_pr_args(tick_nohz_full_mask)); 472 473 /* 474 * We need at least one CPU to handle housekeeping work such 475 * as timekeeping, unbound timers, workqueues, ... 476 */ 477 WARN_ON_ONCE(cpumask_empty(housekeeping_mask)); 478 } 479 #endif 480 481 /* 482 * NOHZ - aka dynamic tick functionality 483 */ 484 #ifdef CONFIG_NO_HZ_COMMON 485 /* 486 * NO HZ enabled ? 487 */ 488 bool tick_nohz_enabled __read_mostly = true; 489 unsigned long tick_nohz_active __read_mostly; 490 /* 491 * Enable / Disable tickless mode 492 */ 493 static int __init setup_tick_nohz(char *str) 494 { 495 return (kstrtobool(str, &tick_nohz_enabled) == 0); 496 } 497 498 __setup("nohz=", setup_tick_nohz); 499 500 int tick_nohz_tick_stopped(void) 501 { 502 return __this_cpu_read(tick_cpu_sched.tick_stopped); 503 } 504 505 /** 506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 507 * 508 * Called from interrupt entry when the CPU was idle 509 * 510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 511 * must be updated. Otherwise an interrupt handler could use a stale jiffy 512 * value. We do this unconditionally on any CPU, as we don't know whether the 513 * CPU, which has the update task assigned is in a long sleep. 514 */ 515 static void tick_nohz_update_jiffies(ktime_t now) 516 { 517 unsigned long flags; 518 519 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 520 521 local_irq_save(flags); 522 tick_do_update_jiffies64(now); 523 local_irq_restore(flags); 524 525 touch_softlockup_watchdog_sched(); 526 } 527 528 /* 529 * Updates the per-CPU time idle statistics counters 530 */ 531 static void 532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 533 { 534 ktime_t delta; 535 536 if (ts->idle_active) { 537 delta = ktime_sub(now, ts->idle_entrytime); 538 if (nr_iowait_cpu(cpu) > 0) 539 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 540 else 541 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 542 ts->idle_entrytime = now; 543 } 544 545 if (last_update_time) 546 *last_update_time = ktime_to_us(now); 547 548 } 549 550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 551 { 552 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 553 ts->idle_active = 0; 554 555 sched_clock_idle_wakeup_event(0); 556 } 557 558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts) 559 { 560 ktime_t now = ktime_get(); 561 562 ts->idle_entrytime = now; 563 ts->idle_active = 1; 564 sched_clock_idle_sleep_event(); 565 return now; 566 } 567 568 /** 569 * get_cpu_idle_time_us - get the total idle time of a CPU 570 * @cpu: CPU number to query 571 * @last_update_time: variable to store update time in. Do not update 572 * counters if NULL. 573 * 574 * Return the cumulative idle time (since boot) for a given 575 * CPU, in microseconds. 576 * 577 * This time is measured via accounting rather than sampling, 578 * and is as accurate as ktime_get() is. 579 * 580 * This function returns -1 if NOHZ is not enabled. 581 */ 582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 583 { 584 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 585 ktime_t now, idle; 586 587 if (!tick_nohz_active) 588 return -1; 589 590 now = ktime_get(); 591 if (last_update_time) { 592 update_ts_time_stats(cpu, ts, now, last_update_time); 593 idle = ts->idle_sleeptime; 594 } else { 595 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 596 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 597 598 idle = ktime_add(ts->idle_sleeptime, delta); 599 } else { 600 idle = ts->idle_sleeptime; 601 } 602 } 603 604 return ktime_to_us(idle); 605 606 } 607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 608 609 /** 610 * get_cpu_iowait_time_us - get the total iowait time of a CPU 611 * @cpu: CPU number to query 612 * @last_update_time: variable to store update time in. Do not update 613 * counters if NULL. 614 * 615 * Return the cumulative iowait time (since boot) for a given 616 * CPU, in microseconds. 617 * 618 * This time is measured via accounting rather than sampling, 619 * and is as accurate as ktime_get() is. 620 * 621 * This function returns -1 if NOHZ is not enabled. 622 */ 623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 624 { 625 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 626 ktime_t now, iowait; 627 628 if (!tick_nohz_active) 629 return -1; 630 631 now = ktime_get(); 632 if (last_update_time) { 633 update_ts_time_stats(cpu, ts, now, last_update_time); 634 iowait = ts->iowait_sleeptime; 635 } else { 636 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 637 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 638 639 iowait = ktime_add(ts->iowait_sleeptime, delta); 640 } else { 641 iowait = ts->iowait_sleeptime; 642 } 643 } 644 645 return ktime_to_us(iowait); 646 } 647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 648 649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 650 { 651 hrtimer_cancel(&ts->sched_timer); 652 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 653 654 /* Forward the time to expire in the future */ 655 hrtimer_forward(&ts->sched_timer, now, tick_period); 656 657 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 658 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 659 else 660 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 661 } 662 663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 664 ktime_t now, int cpu) 665 { 666 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 667 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 668 unsigned long seq, basejiff; 669 ktime_t tick; 670 671 /* Read jiffies and the time when jiffies were updated last */ 672 do { 673 seq = read_seqbegin(&jiffies_lock); 674 basemono = last_jiffies_update; 675 basejiff = jiffies; 676 } while (read_seqretry(&jiffies_lock, seq)); 677 ts->last_jiffies = basejiff; 678 679 if (rcu_needs_cpu(basemono, &next_rcu) || 680 arch_needs_cpu() || irq_work_needs_cpu()) { 681 next_tick = basemono + TICK_NSEC; 682 } else { 683 /* 684 * Get the next pending timer. If high resolution 685 * timers are enabled this only takes the timer wheel 686 * timers into account. If high resolution timers are 687 * disabled this also looks at the next expiring 688 * hrtimer. 689 */ 690 next_tmr = get_next_timer_interrupt(basejiff, basemono); 691 ts->next_timer = next_tmr; 692 /* Take the next rcu event into account */ 693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 694 } 695 696 /* 697 * If the tick is due in the next period, keep it ticking or 698 * force prod the timer. 699 */ 700 delta = next_tick - basemono; 701 if (delta <= (u64)TICK_NSEC) { 702 tick = 0; 703 704 /* 705 * Tell the timer code that the base is not idle, i.e. undo 706 * the effect of get_next_timer_interrupt(): 707 */ 708 timer_clear_idle(); 709 /* 710 * We've not stopped the tick yet, and there's a timer in the 711 * next period, so no point in stopping it either, bail. 712 */ 713 if (!ts->tick_stopped) 714 goto out; 715 716 /* 717 * If, OTOH, we did stop it, but there's a pending (expired) 718 * timer reprogram the timer hardware to fire now. 719 * 720 * We will not restart the tick proper, just prod the timer 721 * hardware into firing an interrupt to process the pending 722 * timers. Just like tick_irq_exit() will not restart the tick 723 * for 'normal' interrupts. 724 * 725 * Only once we exit the idle loop will we re-enable the tick, 726 * see tick_nohz_idle_exit(). 727 */ 728 if (delta == 0) { 729 tick_nohz_restart(ts, now); 730 goto out; 731 } 732 } 733 734 /* 735 * If this CPU is the one which updates jiffies, then give up 736 * the assignment and let it be taken by the CPU which runs 737 * the tick timer next, which might be this CPU as well. If we 738 * don't drop this here the jiffies might be stale and 739 * do_timer() never invoked. Keep track of the fact that it 740 * was the one which had the do_timer() duty last. If this CPU 741 * is the one which had the do_timer() duty last, we limit the 742 * sleep time to the timekeeping max_deferment value. 743 * Otherwise we can sleep as long as we want. 744 */ 745 delta = timekeeping_max_deferment(); 746 if (cpu == tick_do_timer_cpu) { 747 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 748 ts->do_timer_last = 1; 749 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 750 delta = KTIME_MAX; 751 ts->do_timer_last = 0; 752 } else if (!ts->do_timer_last) { 753 delta = KTIME_MAX; 754 } 755 756 #ifdef CONFIG_NO_HZ_FULL 757 /* Limit the tick delta to the maximum scheduler deferment */ 758 if (!ts->inidle) 759 delta = min(delta, scheduler_tick_max_deferment()); 760 #endif 761 762 /* Calculate the next expiry time */ 763 if (delta < (KTIME_MAX - basemono)) 764 expires = basemono + delta; 765 else 766 expires = KTIME_MAX; 767 768 expires = min_t(u64, expires, next_tick); 769 tick = expires; 770 771 /* Skip reprogram of event if its not changed */ 772 if (ts->tick_stopped && (expires == dev->next_event)) 773 goto out; 774 775 /* 776 * nohz_stop_sched_tick can be called several times before 777 * the nohz_restart_sched_tick is called. This happens when 778 * interrupts arrive which do not cause a reschedule. In the 779 * first call we save the current tick time, so we can restart 780 * the scheduler tick in nohz_restart_sched_tick. 781 */ 782 if (!ts->tick_stopped) { 783 nohz_balance_enter_idle(cpu); 784 calc_load_enter_idle(); 785 cpu_load_update_nohz_start(); 786 787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 788 ts->tick_stopped = 1; 789 trace_tick_stop(1, TICK_DEP_MASK_NONE); 790 } 791 792 /* 793 * If the expiration time == KTIME_MAX, then we simply stop 794 * the tick timer. 795 */ 796 if (unlikely(expires == KTIME_MAX)) { 797 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 798 hrtimer_cancel(&ts->sched_timer); 799 goto out; 800 } 801 802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 803 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 804 else 805 tick_program_event(tick, 1); 806 out: 807 /* Update the estimated sleep length */ 808 ts->sleep_length = ktime_sub(dev->next_event, now); 809 return tick; 810 } 811 812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 813 { 814 /* Update jiffies first */ 815 tick_do_update_jiffies64(now); 816 cpu_load_update_nohz_stop(); 817 818 /* 819 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 820 * the clock forward checks in the enqueue path: 821 */ 822 timer_clear_idle(); 823 824 calc_load_exit_idle(); 825 touch_softlockup_watchdog_sched(); 826 /* 827 * Cancel the scheduled timer and restore the tick 828 */ 829 ts->tick_stopped = 0; 830 ts->idle_exittime = now; 831 832 tick_nohz_restart(ts, now); 833 } 834 835 static void tick_nohz_full_update_tick(struct tick_sched *ts) 836 { 837 #ifdef CONFIG_NO_HZ_FULL 838 int cpu = smp_processor_id(); 839 840 if (!tick_nohz_full_cpu(cpu)) 841 return; 842 843 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 844 return; 845 846 if (can_stop_full_tick(cpu, ts)) 847 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); 848 else if (ts->tick_stopped) 849 tick_nohz_restart_sched_tick(ts, ktime_get()); 850 #endif 851 } 852 853 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 854 { 855 /* 856 * If this CPU is offline and it is the one which updates 857 * jiffies, then give up the assignment and let it be taken by 858 * the CPU which runs the tick timer next. If we don't drop 859 * this here the jiffies might be stale and do_timer() never 860 * invoked. 861 */ 862 if (unlikely(!cpu_online(cpu))) { 863 if (cpu == tick_do_timer_cpu) 864 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 865 return false; 866 } 867 868 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { 869 ts->sleep_length = NSEC_PER_SEC / HZ; 870 return false; 871 } 872 873 if (need_resched()) 874 return false; 875 876 if (unlikely(local_softirq_pending() && cpu_online(cpu))) { 877 static int ratelimit; 878 879 if (ratelimit < 10 && 880 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 881 pr_warn("NOHZ: local_softirq_pending %02x\n", 882 (unsigned int) local_softirq_pending()); 883 ratelimit++; 884 } 885 return false; 886 } 887 888 if (tick_nohz_full_enabled()) { 889 /* 890 * Keep the tick alive to guarantee timekeeping progression 891 * if there are full dynticks CPUs around 892 */ 893 if (tick_do_timer_cpu == cpu) 894 return false; 895 /* 896 * Boot safety: make sure the timekeeping duty has been 897 * assigned before entering dyntick-idle mode, 898 */ 899 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 900 return false; 901 } 902 903 return true; 904 } 905 906 static void __tick_nohz_idle_enter(struct tick_sched *ts) 907 { 908 ktime_t now, expires; 909 int cpu = smp_processor_id(); 910 911 now = tick_nohz_start_idle(ts); 912 913 if (can_stop_idle_tick(cpu, ts)) { 914 int was_stopped = ts->tick_stopped; 915 916 ts->idle_calls++; 917 918 expires = tick_nohz_stop_sched_tick(ts, now, cpu); 919 if (expires > 0LL) { 920 ts->idle_sleeps++; 921 ts->idle_expires = expires; 922 } 923 924 if (!was_stopped && ts->tick_stopped) 925 ts->idle_jiffies = ts->last_jiffies; 926 } 927 } 928 929 /** 930 * tick_nohz_idle_enter - stop the idle tick from the idle task 931 * 932 * When the next event is more than a tick into the future, stop the idle tick 933 * Called when we start the idle loop. 934 * 935 * The arch is responsible of calling: 936 * 937 * - rcu_idle_enter() after its last use of RCU before the CPU is put 938 * to sleep. 939 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. 940 */ 941 void tick_nohz_idle_enter(void) 942 { 943 struct tick_sched *ts; 944 945 WARN_ON_ONCE(irqs_disabled()); 946 947 /* 948 * Update the idle state in the scheduler domain hierarchy 949 * when tick_nohz_stop_sched_tick() is called from the idle loop. 950 * State will be updated to busy during the first busy tick after 951 * exiting idle. 952 */ 953 set_cpu_sd_state_idle(); 954 955 local_irq_disable(); 956 957 ts = this_cpu_ptr(&tick_cpu_sched); 958 ts->inidle = 1; 959 __tick_nohz_idle_enter(ts); 960 961 local_irq_enable(); 962 } 963 964 /** 965 * tick_nohz_irq_exit - update next tick event from interrupt exit 966 * 967 * When an interrupt fires while we are idle and it doesn't cause 968 * a reschedule, it may still add, modify or delete a timer, enqueue 969 * an RCU callback, etc... 970 * So we need to re-calculate and reprogram the next tick event. 971 */ 972 void tick_nohz_irq_exit(void) 973 { 974 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 975 976 if (ts->inidle) 977 __tick_nohz_idle_enter(ts); 978 else 979 tick_nohz_full_update_tick(ts); 980 } 981 982 /** 983 * tick_nohz_get_sleep_length - return the length of the current sleep 984 * 985 * Called from power state control code with interrupts disabled 986 */ 987 ktime_t tick_nohz_get_sleep_length(void) 988 { 989 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 990 991 return ts->sleep_length; 992 } 993 994 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 995 { 996 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 997 unsigned long ticks; 998 999 if (vtime_accounting_cpu_enabled()) 1000 return; 1001 /* 1002 * We stopped the tick in idle. Update process times would miss the 1003 * time we slept as update_process_times does only a 1 tick 1004 * accounting. Enforce that this is accounted to idle ! 1005 */ 1006 ticks = jiffies - ts->idle_jiffies; 1007 /* 1008 * We might be one off. Do not randomly account a huge number of ticks! 1009 */ 1010 if (ticks && ticks < LONG_MAX) 1011 account_idle_ticks(ticks); 1012 #endif 1013 } 1014 1015 /** 1016 * tick_nohz_idle_exit - restart the idle tick from the idle task 1017 * 1018 * Restart the idle tick when the CPU is woken up from idle 1019 * This also exit the RCU extended quiescent state. The CPU 1020 * can use RCU again after this function is called. 1021 */ 1022 void tick_nohz_idle_exit(void) 1023 { 1024 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1025 ktime_t now; 1026 1027 local_irq_disable(); 1028 1029 WARN_ON_ONCE(!ts->inidle); 1030 1031 ts->inidle = 0; 1032 1033 if (ts->idle_active || ts->tick_stopped) 1034 now = ktime_get(); 1035 1036 if (ts->idle_active) 1037 tick_nohz_stop_idle(ts, now); 1038 1039 if (ts->tick_stopped) { 1040 tick_nohz_restart_sched_tick(ts, now); 1041 tick_nohz_account_idle_ticks(ts); 1042 } 1043 1044 local_irq_enable(); 1045 } 1046 1047 /* 1048 * The nohz low res interrupt handler 1049 */ 1050 static void tick_nohz_handler(struct clock_event_device *dev) 1051 { 1052 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1053 struct pt_regs *regs = get_irq_regs(); 1054 ktime_t now = ktime_get(); 1055 1056 dev->next_event = KTIME_MAX; 1057 1058 tick_sched_do_timer(now); 1059 tick_sched_handle(ts, regs); 1060 1061 /* No need to reprogram if we are running tickless */ 1062 if (unlikely(ts->tick_stopped)) 1063 return; 1064 1065 hrtimer_forward(&ts->sched_timer, now, tick_period); 1066 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1067 } 1068 1069 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1070 { 1071 if (!tick_nohz_enabled) 1072 return; 1073 ts->nohz_mode = mode; 1074 /* One update is enough */ 1075 if (!test_and_set_bit(0, &tick_nohz_active)) 1076 timers_update_migration(true); 1077 } 1078 1079 /** 1080 * tick_nohz_switch_to_nohz - switch to nohz mode 1081 */ 1082 static void tick_nohz_switch_to_nohz(void) 1083 { 1084 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1085 ktime_t next; 1086 1087 if (!tick_nohz_enabled) 1088 return; 1089 1090 if (tick_switch_to_oneshot(tick_nohz_handler)) 1091 return; 1092 1093 /* 1094 * Recycle the hrtimer in ts, so we can share the 1095 * hrtimer_forward with the highres code. 1096 */ 1097 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1098 /* Get the next period */ 1099 next = tick_init_jiffy_update(); 1100 1101 hrtimer_set_expires(&ts->sched_timer, next); 1102 hrtimer_forward_now(&ts->sched_timer, tick_period); 1103 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1104 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1105 } 1106 1107 static inline void tick_nohz_irq_enter(void) 1108 { 1109 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1110 ktime_t now; 1111 1112 if (!ts->idle_active && !ts->tick_stopped) 1113 return; 1114 now = ktime_get(); 1115 if (ts->idle_active) 1116 tick_nohz_stop_idle(ts, now); 1117 if (ts->tick_stopped) 1118 tick_nohz_update_jiffies(now); 1119 } 1120 1121 #else 1122 1123 static inline void tick_nohz_switch_to_nohz(void) { } 1124 static inline void tick_nohz_irq_enter(void) { } 1125 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1126 1127 #endif /* CONFIG_NO_HZ_COMMON */ 1128 1129 /* 1130 * Called from irq_enter to notify about the possible interruption of idle() 1131 */ 1132 void tick_irq_enter(void) 1133 { 1134 tick_check_oneshot_broadcast_this_cpu(); 1135 tick_nohz_irq_enter(); 1136 } 1137 1138 /* 1139 * High resolution timer specific code 1140 */ 1141 #ifdef CONFIG_HIGH_RES_TIMERS 1142 /* 1143 * We rearm the timer until we get disabled by the idle code. 1144 * Called with interrupts disabled. 1145 */ 1146 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1147 { 1148 struct tick_sched *ts = 1149 container_of(timer, struct tick_sched, sched_timer); 1150 struct pt_regs *regs = get_irq_regs(); 1151 ktime_t now = ktime_get(); 1152 1153 tick_sched_do_timer(now); 1154 1155 /* 1156 * Do not call, when we are not in irq context and have 1157 * no valid regs pointer 1158 */ 1159 if (regs) 1160 tick_sched_handle(ts, regs); 1161 1162 /* No need to reprogram if we are in idle or full dynticks mode */ 1163 if (unlikely(ts->tick_stopped)) 1164 return HRTIMER_NORESTART; 1165 1166 hrtimer_forward(timer, now, tick_period); 1167 1168 return HRTIMER_RESTART; 1169 } 1170 1171 static int sched_skew_tick; 1172 1173 static int __init skew_tick(char *str) 1174 { 1175 get_option(&str, &sched_skew_tick); 1176 1177 return 0; 1178 } 1179 early_param("skew_tick", skew_tick); 1180 1181 /** 1182 * tick_setup_sched_timer - setup the tick emulation timer 1183 */ 1184 void tick_setup_sched_timer(void) 1185 { 1186 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1187 ktime_t now = ktime_get(); 1188 1189 /* 1190 * Emulate tick processing via per-CPU hrtimers: 1191 */ 1192 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1193 ts->sched_timer.function = tick_sched_timer; 1194 1195 /* Get the next period (per-CPU) */ 1196 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1197 1198 /* Offset the tick to avert jiffies_lock contention. */ 1199 if (sched_skew_tick) { 1200 u64 offset = ktime_to_ns(tick_period) >> 1; 1201 do_div(offset, num_possible_cpus()); 1202 offset *= smp_processor_id(); 1203 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1204 } 1205 1206 hrtimer_forward(&ts->sched_timer, now, tick_period); 1207 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1208 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1209 } 1210 #endif /* HIGH_RES_TIMERS */ 1211 1212 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1213 void tick_cancel_sched_timer(int cpu) 1214 { 1215 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1216 1217 # ifdef CONFIG_HIGH_RES_TIMERS 1218 if (ts->sched_timer.base) 1219 hrtimer_cancel(&ts->sched_timer); 1220 # endif 1221 1222 memset(ts, 0, sizeof(*ts)); 1223 } 1224 #endif 1225 1226 /** 1227 * Async notification about clocksource changes 1228 */ 1229 void tick_clock_notify(void) 1230 { 1231 int cpu; 1232 1233 for_each_possible_cpu(cpu) 1234 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1235 } 1236 1237 /* 1238 * Async notification about clock event changes 1239 */ 1240 void tick_oneshot_notify(void) 1241 { 1242 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1243 1244 set_bit(0, &ts->check_clocks); 1245 } 1246 1247 /** 1248 * Check, if a change happened, which makes oneshot possible. 1249 * 1250 * Called cyclic from the hrtimer softirq (driven by the timer 1251 * softirq) allow_nohz signals, that we can switch into low-res nohz 1252 * mode, because high resolution timers are disabled (either compile 1253 * or runtime). Called with interrupts disabled. 1254 */ 1255 int tick_check_oneshot_change(int allow_nohz) 1256 { 1257 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1258 1259 if (!test_and_clear_bit(0, &ts->check_clocks)) 1260 return 0; 1261 1262 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1263 return 0; 1264 1265 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1266 return 0; 1267 1268 if (!allow_nohz) 1269 return 1; 1270 1271 tick_nohz_switch_to_nohz(); 1272 return 0; 1273 } 1274