xref: /openbmc/linux/kernel/time/tick-sched.c (revision 174cd4b1)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 */
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta < tick_period)
64 		return;
65 
66 	/* Reevaluate with jiffies_lock held */
67 	write_seqlock(&jiffies_lock);
68 
69 	delta = ktime_sub(now, last_jiffies_update);
70 	if (delta >= tick_period) {
71 
72 		delta = ktime_sub(delta, tick_period);
73 		last_jiffies_update = ktime_add(last_jiffies_update,
74 						tick_period);
75 
76 		/* Slow path for long timeouts */
77 		if (unlikely(delta >= tick_period)) {
78 			s64 incr = ktime_to_ns(tick_period);
79 
80 			ticks = ktime_divns(delta, incr);
81 
82 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 							   incr * ticks);
84 		}
85 		do_timer(++ticks);
86 
87 		/* Keep the tick_next_period variable up to date */
88 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 	} else {
90 		write_sequnlock(&jiffies_lock);
91 		return;
92 	}
93 	write_sequnlock(&jiffies_lock);
94 	update_wall_time();
95 }
96 
97 /*
98  * Initialize and return retrieve the jiffies update.
99  */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 	ktime_t period;
103 
104 	write_seqlock(&jiffies_lock);
105 	/* Did we start the jiffies update yet ? */
106 	if (last_jiffies_update == 0)
107 		last_jiffies_update = tick_next_period;
108 	period = last_jiffies_update;
109 	write_sequnlock(&jiffies_lock);
110 	return period;
111 }
112 
113 
114 static void tick_sched_do_timer(ktime_t now)
115 {
116 	int cpu = smp_processor_id();
117 
118 #ifdef CONFIG_NO_HZ_COMMON
119 	/*
120 	 * Check if the do_timer duty was dropped. We don't care about
121 	 * concurrency: This happens only when the CPU in charge went
122 	 * into a long sleep. If two CPUs happen to assign themselves to
123 	 * this duty, then the jiffies update is still serialized by
124 	 * jiffies_lock.
125 	 */
126 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
127 	    && !tick_nohz_full_cpu(cpu))
128 		tick_do_timer_cpu = cpu;
129 #endif
130 
131 	/* Check, if the jiffies need an update */
132 	if (tick_do_timer_cpu == cpu)
133 		tick_do_update_jiffies64(now);
134 }
135 
136 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
137 {
138 #ifdef CONFIG_NO_HZ_COMMON
139 	/*
140 	 * When we are idle and the tick is stopped, we have to touch
141 	 * the watchdog as we might not schedule for a really long
142 	 * time. This happens on complete idle SMP systems while
143 	 * waiting on the login prompt. We also increment the "start of
144 	 * idle" jiffy stamp so the idle accounting adjustment we do
145 	 * when we go busy again does not account too much ticks.
146 	 */
147 	if (ts->tick_stopped) {
148 		touch_softlockup_watchdog_sched();
149 		if (is_idle_task(current))
150 			ts->idle_jiffies++;
151 	}
152 #endif
153 	update_process_times(user_mode(regs));
154 	profile_tick(CPU_PROFILING);
155 }
156 #endif
157 
158 #ifdef CONFIG_NO_HZ_FULL
159 cpumask_var_t tick_nohz_full_mask;
160 cpumask_var_t housekeeping_mask;
161 bool tick_nohz_full_running;
162 static atomic_t tick_dep_mask;
163 
164 static bool check_tick_dependency(atomic_t *dep)
165 {
166 	int val = atomic_read(dep);
167 
168 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
169 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
170 		return true;
171 	}
172 
173 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
174 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
175 		return true;
176 	}
177 
178 	if (val & TICK_DEP_MASK_SCHED) {
179 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
180 		return true;
181 	}
182 
183 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
184 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
185 		return true;
186 	}
187 
188 	return false;
189 }
190 
191 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
192 {
193 	WARN_ON_ONCE(!irqs_disabled());
194 
195 	if (unlikely(!cpu_online(cpu)))
196 		return false;
197 
198 	if (check_tick_dependency(&tick_dep_mask))
199 		return false;
200 
201 	if (check_tick_dependency(&ts->tick_dep_mask))
202 		return false;
203 
204 	if (check_tick_dependency(&current->tick_dep_mask))
205 		return false;
206 
207 	if (check_tick_dependency(&current->signal->tick_dep_mask))
208 		return false;
209 
210 	return true;
211 }
212 
213 static void nohz_full_kick_func(struct irq_work *work)
214 {
215 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
216 }
217 
218 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
219 	.func = nohz_full_kick_func,
220 };
221 
222 /*
223  * Kick this CPU if it's full dynticks in order to force it to
224  * re-evaluate its dependency on the tick and restart it if necessary.
225  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
226  * is NMI safe.
227  */
228 static void tick_nohz_full_kick(void)
229 {
230 	if (!tick_nohz_full_cpu(smp_processor_id()))
231 		return;
232 
233 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
234 }
235 
236 /*
237  * Kick the CPU if it's full dynticks in order to force it to
238  * re-evaluate its dependency on the tick and restart it if necessary.
239  */
240 void tick_nohz_full_kick_cpu(int cpu)
241 {
242 	if (!tick_nohz_full_cpu(cpu))
243 		return;
244 
245 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
246 }
247 
248 /*
249  * Kick all full dynticks CPUs in order to force these to re-evaluate
250  * their dependency on the tick and restart it if necessary.
251  */
252 static void tick_nohz_full_kick_all(void)
253 {
254 	int cpu;
255 
256 	if (!tick_nohz_full_running)
257 		return;
258 
259 	preempt_disable();
260 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
261 		tick_nohz_full_kick_cpu(cpu);
262 	preempt_enable();
263 }
264 
265 static void tick_nohz_dep_set_all(atomic_t *dep,
266 				  enum tick_dep_bits bit)
267 {
268 	int prev;
269 
270 	prev = atomic_fetch_or(BIT(bit), dep);
271 	if (!prev)
272 		tick_nohz_full_kick_all();
273 }
274 
275 /*
276  * Set a global tick dependency. Used by perf events that rely on freq and
277  * by unstable clock.
278  */
279 void tick_nohz_dep_set(enum tick_dep_bits bit)
280 {
281 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
282 }
283 
284 void tick_nohz_dep_clear(enum tick_dep_bits bit)
285 {
286 	atomic_andnot(BIT(bit), &tick_dep_mask);
287 }
288 
289 /*
290  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
291  * manage events throttling.
292  */
293 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
294 {
295 	int prev;
296 	struct tick_sched *ts;
297 
298 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
299 
300 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
301 	if (!prev) {
302 		preempt_disable();
303 		/* Perf needs local kick that is NMI safe */
304 		if (cpu == smp_processor_id()) {
305 			tick_nohz_full_kick();
306 		} else {
307 			/* Remote irq work not NMI-safe */
308 			if (!WARN_ON_ONCE(in_nmi()))
309 				tick_nohz_full_kick_cpu(cpu);
310 		}
311 		preempt_enable();
312 	}
313 }
314 
315 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
316 {
317 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
318 
319 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
320 }
321 
322 /*
323  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
324  * per task timers.
325  */
326 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
327 {
328 	/*
329 	 * We could optimize this with just kicking the target running the task
330 	 * if that noise matters for nohz full users.
331 	 */
332 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
333 }
334 
335 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
336 {
337 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
338 }
339 
340 /*
341  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
342  * per process timers.
343  */
344 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
345 {
346 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
347 }
348 
349 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
350 {
351 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
352 }
353 
354 /*
355  * Re-evaluate the need for the tick as we switch the current task.
356  * It might need the tick due to per task/process properties:
357  * perf events, posix CPU timers, ...
358  */
359 void __tick_nohz_task_switch(void)
360 {
361 	unsigned long flags;
362 	struct tick_sched *ts;
363 
364 	local_irq_save(flags);
365 
366 	if (!tick_nohz_full_cpu(smp_processor_id()))
367 		goto out;
368 
369 	ts = this_cpu_ptr(&tick_cpu_sched);
370 
371 	if (ts->tick_stopped) {
372 		if (atomic_read(&current->tick_dep_mask) ||
373 		    atomic_read(&current->signal->tick_dep_mask))
374 			tick_nohz_full_kick();
375 	}
376 out:
377 	local_irq_restore(flags);
378 }
379 
380 /* Parse the boot-time nohz CPU list from the kernel parameters. */
381 static int __init tick_nohz_full_setup(char *str)
382 {
383 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
384 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
385 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
386 		free_bootmem_cpumask_var(tick_nohz_full_mask);
387 		return 1;
388 	}
389 	tick_nohz_full_running = true;
390 
391 	return 1;
392 }
393 __setup("nohz_full=", tick_nohz_full_setup);
394 
395 static int tick_nohz_cpu_down(unsigned int cpu)
396 {
397 	/*
398 	 * The boot CPU handles housekeeping duty (unbound timers,
399 	 * workqueues, timekeeping, ...) on behalf of full dynticks
400 	 * CPUs. It must remain online when nohz full is enabled.
401 	 */
402 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
403 		return -EBUSY;
404 	return 0;
405 }
406 
407 static int tick_nohz_init_all(void)
408 {
409 	int err = -1;
410 
411 #ifdef CONFIG_NO_HZ_FULL_ALL
412 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
413 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
414 		return err;
415 	}
416 	err = 0;
417 	cpumask_setall(tick_nohz_full_mask);
418 	tick_nohz_full_running = true;
419 #endif
420 	return err;
421 }
422 
423 void __init tick_nohz_init(void)
424 {
425 	int cpu, ret;
426 
427 	if (!tick_nohz_full_running) {
428 		if (tick_nohz_init_all() < 0)
429 			return;
430 	}
431 
432 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
433 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
434 		cpumask_clear(tick_nohz_full_mask);
435 		tick_nohz_full_running = false;
436 		return;
437 	}
438 
439 	/*
440 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
441 	 * locking contexts. But then we need irq work to raise its own
442 	 * interrupts to avoid circular dependency on the tick
443 	 */
444 	if (!arch_irq_work_has_interrupt()) {
445 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
446 		cpumask_clear(tick_nohz_full_mask);
447 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
448 		tick_nohz_full_running = false;
449 		return;
450 	}
451 
452 	cpu = smp_processor_id();
453 
454 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
455 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
456 			cpu);
457 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
458 	}
459 
460 	cpumask_andnot(housekeeping_mask,
461 		       cpu_possible_mask, tick_nohz_full_mask);
462 
463 	for_each_cpu(cpu, tick_nohz_full_mask)
464 		context_tracking_cpu_set(cpu);
465 
466 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
467 					"kernel/nohz:predown", NULL,
468 					tick_nohz_cpu_down);
469 	WARN_ON(ret < 0);
470 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 		cpumask_pr_args(tick_nohz_full_mask));
472 
473 	/*
474 	 * We need at least one CPU to handle housekeeping work such
475 	 * as timekeeping, unbound timers, workqueues, ...
476 	 */
477 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
478 }
479 #endif
480 
481 /*
482  * NOHZ - aka dynamic tick functionality
483  */
484 #ifdef CONFIG_NO_HZ_COMMON
485 /*
486  * NO HZ enabled ?
487  */
488 bool tick_nohz_enabled __read_mostly  = true;
489 unsigned long tick_nohz_active  __read_mostly;
490 /*
491  * Enable / Disable tickless mode
492  */
493 static int __init setup_tick_nohz(char *str)
494 {
495 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
496 }
497 
498 __setup("nohz=", setup_tick_nohz);
499 
500 int tick_nohz_tick_stopped(void)
501 {
502 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
503 }
504 
505 /**
506  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
507  *
508  * Called from interrupt entry when the CPU was idle
509  *
510  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511  * must be updated. Otherwise an interrupt handler could use a stale jiffy
512  * value. We do this unconditionally on any CPU, as we don't know whether the
513  * CPU, which has the update task assigned is in a long sleep.
514  */
515 static void tick_nohz_update_jiffies(ktime_t now)
516 {
517 	unsigned long flags;
518 
519 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
520 
521 	local_irq_save(flags);
522 	tick_do_update_jiffies64(now);
523 	local_irq_restore(flags);
524 
525 	touch_softlockup_watchdog_sched();
526 }
527 
528 /*
529  * Updates the per-CPU time idle statistics counters
530  */
531 static void
532 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
533 {
534 	ktime_t delta;
535 
536 	if (ts->idle_active) {
537 		delta = ktime_sub(now, ts->idle_entrytime);
538 		if (nr_iowait_cpu(cpu) > 0)
539 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
540 		else
541 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542 		ts->idle_entrytime = now;
543 	}
544 
545 	if (last_update_time)
546 		*last_update_time = ktime_to_us(now);
547 
548 }
549 
550 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
551 {
552 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
553 	ts->idle_active = 0;
554 
555 	sched_clock_idle_wakeup_event(0);
556 }
557 
558 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
559 {
560 	ktime_t now = ktime_get();
561 
562 	ts->idle_entrytime = now;
563 	ts->idle_active = 1;
564 	sched_clock_idle_sleep_event();
565 	return now;
566 }
567 
568 /**
569  * get_cpu_idle_time_us - get the total idle time of a CPU
570  * @cpu: CPU number to query
571  * @last_update_time: variable to store update time in. Do not update
572  * counters if NULL.
573  *
574  * Return the cumulative idle time (since boot) for a given
575  * CPU, in microseconds.
576  *
577  * This time is measured via accounting rather than sampling,
578  * and is as accurate as ktime_get() is.
579  *
580  * This function returns -1 if NOHZ is not enabled.
581  */
582 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
583 {
584 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585 	ktime_t now, idle;
586 
587 	if (!tick_nohz_active)
588 		return -1;
589 
590 	now = ktime_get();
591 	if (last_update_time) {
592 		update_ts_time_stats(cpu, ts, now, last_update_time);
593 		idle = ts->idle_sleeptime;
594 	} else {
595 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
597 
598 			idle = ktime_add(ts->idle_sleeptime, delta);
599 		} else {
600 			idle = ts->idle_sleeptime;
601 		}
602 	}
603 
604 	return ktime_to_us(idle);
605 
606 }
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608 
609 /**
610  * get_cpu_iowait_time_us - get the total iowait time of a CPU
611  * @cpu: CPU number to query
612  * @last_update_time: variable to store update time in. Do not update
613  * counters if NULL.
614  *
615  * Return the cumulative iowait time (since boot) for a given
616  * CPU, in microseconds.
617  *
618  * This time is measured via accounting rather than sampling,
619  * and is as accurate as ktime_get() is.
620  *
621  * This function returns -1 if NOHZ is not enabled.
622  */
623 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
624 {
625 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626 	ktime_t now, iowait;
627 
628 	if (!tick_nohz_active)
629 		return -1;
630 
631 	now = ktime_get();
632 	if (last_update_time) {
633 		update_ts_time_stats(cpu, ts, now, last_update_time);
634 		iowait = ts->iowait_sleeptime;
635 	} else {
636 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638 
639 			iowait = ktime_add(ts->iowait_sleeptime, delta);
640 		} else {
641 			iowait = ts->iowait_sleeptime;
642 		}
643 	}
644 
645 	return ktime_to_us(iowait);
646 }
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
648 
649 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
650 {
651 	hrtimer_cancel(&ts->sched_timer);
652 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
653 
654 	/* Forward the time to expire in the future */
655 	hrtimer_forward(&ts->sched_timer, now, tick_period);
656 
657 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
658 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
659 	else
660 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
661 }
662 
663 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
664 					 ktime_t now, int cpu)
665 {
666 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
668 	unsigned long seq, basejiff;
669 	ktime_t	tick;
670 
671 	/* Read jiffies and the time when jiffies were updated last */
672 	do {
673 		seq = read_seqbegin(&jiffies_lock);
674 		basemono = last_jiffies_update;
675 		basejiff = jiffies;
676 	} while (read_seqretry(&jiffies_lock, seq));
677 	ts->last_jiffies = basejiff;
678 
679 	if (rcu_needs_cpu(basemono, &next_rcu) ||
680 	    arch_needs_cpu() || irq_work_needs_cpu()) {
681 		next_tick = basemono + TICK_NSEC;
682 	} else {
683 		/*
684 		 * Get the next pending timer. If high resolution
685 		 * timers are enabled this only takes the timer wheel
686 		 * timers into account. If high resolution timers are
687 		 * disabled this also looks at the next expiring
688 		 * hrtimer.
689 		 */
690 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 		ts->next_timer = next_tmr;
692 		/* Take the next rcu event into account */
693 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 	}
695 
696 	/*
697 	 * If the tick is due in the next period, keep it ticking or
698 	 * force prod the timer.
699 	 */
700 	delta = next_tick - basemono;
701 	if (delta <= (u64)TICK_NSEC) {
702 		tick = 0;
703 
704 		/*
705 		 * Tell the timer code that the base is not idle, i.e. undo
706 		 * the effect of get_next_timer_interrupt():
707 		 */
708 		timer_clear_idle();
709 		/*
710 		 * We've not stopped the tick yet, and there's a timer in the
711 		 * next period, so no point in stopping it either, bail.
712 		 */
713 		if (!ts->tick_stopped)
714 			goto out;
715 
716 		/*
717 		 * If, OTOH, we did stop it, but there's a pending (expired)
718 		 * timer reprogram the timer hardware to fire now.
719 		 *
720 		 * We will not restart the tick proper, just prod the timer
721 		 * hardware into firing an interrupt to process the pending
722 		 * timers. Just like tick_irq_exit() will not restart the tick
723 		 * for 'normal' interrupts.
724 		 *
725 		 * Only once we exit the idle loop will we re-enable the tick,
726 		 * see tick_nohz_idle_exit().
727 		 */
728 		if (delta == 0) {
729 			tick_nohz_restart(ts, now);
730 			goto out;
731 		}
732 	}
733 
734 	/*
735 	 * If this CPU is the one which updates jiffies, then give up
736 	 * the assignment and let it be taken by the CPU which runs
737 	 * the tick timer next, which might be this CPU as well. If we
738 	 * don't drop this here the jiffies might be stale and
739 	 * do_timer() never invoked. Keep track of the fact that it
740 	 * was the one which had the do_timer() duty last. If this CPU
741 	 * is the one which had the do_timer() duty last, we limit the
742 	 * sleep time to the timekeeping max_deferment value.
743 	 * Otherwise we can sleep as long as we want.
744 	 */
745 	delta = timekeeping_max_deferment();
746 	if (cpu == tick_do_timer_cpu) {
747 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
748 		ts->do_timer_last = 1;
749 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
750 		delta = KTIME_MAX;
751 		ts->do_timer_last = 0;
752 	} else if (!ts->do_timer_last) {
753 		delta = KTIME_MAX;
754 	}
755 
756 #ifdef CONFIG_NO_HZ_FULL
757 	/* Limit the tick delta to the maximum scheduler deferment */
758 	if (!ts->inidle)
759 		delta = min(delta, scheduler_tick_max_deferment());
760 #endif
761 
762 	/* Calculate the next expiry time */
763 	if (delta < (KTIME_MAX - basemono))
764 		expires = basemono + delta;
765 	else
766 		expires = KTIME_MAX;
767 
768 	expires = min_t(u64, expires, next_tick);
769 	tick = expires;
770 
771 	/* Skip reprogram of event if its not changed */
772 	if (ts->tick_stopped && (expires == dev->next_event))
773 		goto out;
774 
775 	/*
776 	 * nohz_stop_sched_tick can be called several times before
777 	 * the nohz_restart_sched_tick is called. This happens when
778 	 * interrupts arrive which do not cause a reschedule. In the
779 	 * first call we save the current tick time, so we can restart
780 	 * the scheduler tick in nohz_restart_sched_tick.
781 	 */
782 	if (!ts->tick_stopped) {
783 		nohz_balance_enter_idle(cpu);
784 		calc_load_enter_idle();
785 		cpu_load_update_nohz_start();
786 
787 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 		ts->tick_stopped = 1;
789 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
790 	}
791 
792 	/*
793 	 * If the expiration time == KTIME_MAX, then we simply stop
794 	 * the tick timer.
795 	 */
796 	if (unlikely(expires == KTIME_MAX)) {
797 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 			hrtimer_cancel(&ts->sched_timer);
799 		goto out;
800 	}
801 
802 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
804 	else
805 		tick_program_event(tick, 1);
806 out:
807 	/* Update the estimated sleep length */
808 	ts->sleep_length = ktime_sub(dev->next_event, now);
809 	return tick;
810 }
811 
812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
813 {
814 	/* Update jiffies first */
815 	tick_do_update_jiffies64(now);
816 	cpu_load_update_nohz_stop();
817 
818 	/*
819 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
820 	 * the clock forward checks in the enqueue path:
821 	 */
822 	timer_clear_idle();
823 
824 	calc_load_exit_idle();
825 	touch_softlockup_watchdog_sched();
826 	/*
827 	 * Cancel the scheduled timer and restore the tick
828 	 */
829 	ts->tick_stopped  = 0;
830 	ts->idle_exittime = now;
831 
832 	tick_nohz_restart(ts, now);
833 }
834 
835 static void tick_nohz_full_update_tick(struct tick_sched *ts)
836 {
837 #ifdef CONFIG_NO_HZ_FULL
838 	int cpu = smp_processor_id();
839 
840 	if (!tick_nohz_full_cpu(cpu))
841 		return;
842 
843 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
844 		return;
845 
846 	if (can_stop_full_tick(cpu, ts))
847 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
848 	else if (ts->tick_stopped)
849 		tick_nohz_restart_sched_tick(ts, ktime_get());
850 #endif
851 }
852 
853 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
854 {
855 	/*
856 	 * If this CPU is offline and it is the one which updates
857 	 * jiffies, then give up the assignment and let it be taken by
858 	 * the CPU which runs the tick timer next. If we don't drop
859 	 * this here the jiffies might be stale and do_timer() never
860 	 * invoked.
861 	 */
862 	if (unlikely(!cpu_online(cpu))) {
863 		if (cpu == tick_do_timer_cpu)
864 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
865 		return false;
866 	}
867 
868 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
869 		ts->sleep_length = NSEC_PER_SEC / HZ;
870 		return false;
871 	}
872 
873 	if (need_resched())
874 		return false;
875 
876 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
877 		static int ratelimit;
878 
879 		if (ratelimit < 10 &&
880 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
881 			pr_warn("NOHZ: local_softirq_pending %02x\n",
882 				(unsigned int) local_softirq_pending());
883 			ratelimit++;
884 		}
885 		return false;
886 	}
887 
888 	if (tick_nohz_full_enabled()) {
889 		/*
890 		 * Keep the tick alive to guarantee timekeeping progression
891 		 * if there are full dynticks CPUs around
892 		 */
893 		if (tick_do_timer_cpu == cpu)
894 			return false;
895 		/*
896 		 * Boot safety: make sure the timekeeping duty has been
897 		 * assigned before entering dyntick-idle mode,
898 		 */
899 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
900 			return false;
901 	}
902 
903 	return true;
904 }
905 
906 static void __tick_nohz_idle_enter(struct tick_sched *ts)
907 {
908 	ktime_t now, expires;
909 	int cpu = smp_processor_id();
910 
911 	now = tick_nohz_start_idle(ts);
912 
913 	if (can_stop_idle_tick(cpu, ts)) {
914 		int was_stopped = ts->tick_stopped;
915 
916 		ts->idle_calls++;
917 
918 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
919 		if (expires > 0LL) {
920 			ts->idle_sleeps++;
921 			ts->idle_expires = expires;
922 		}
923 
924 		if (!was_stopped && ts->tick_stopped)
925 			ts->idle_jiffies = ts->last_jiffies;
926 	}
927 }
928 
929 /**
930  * tick_nohz_idle_enter - stop the idle tick from the idle task
931  *
932  * When the next event is more than a tick into the future, stop the idle tick
933  * Called when we start the idle loop.
934  *
935  * The arch is responsible of calling:
936  *
937  * - rcu_idle_enter() after its last use of RCU before the CPU is put
938  *  to sleep.
939  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
940  */
941 void tick_nohz_idle_enter(void)
942 {
943 	struct tick_sched *ts;
944 
945 	WARN_ON_ONCE(irqs_disabled());
946 
947 	/*
948 	 * Update the idle state in the scheduler domain hierarchy
949 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
950 	 * State will be updated to busy during the first busy tick after
951 	 * exiting idle.
952 	 */
953 	set_cpu_sd_state_idle();
954 
955 	local_irq_disable();
956 
957 	ts = this_cpu_ptr(&tick_cpu_sched);
958 	ts->inidle = 1;
959 	__tick_nohz_idle_enter(ts);
960 
961 	local_irq_enable();
962 }
963 
964 /**
965  * tick_nohz_irq_exit - update next tick event from interrupt exit
966  *
967  * When an interrupt fires while we are idle and it doesn't cause
968  * a reschedule, it may still add, modify or delete a timer, enqueue
969  * an RCU callback, etc...
970  * So we need to re-calculate and reprogram the next tick event.
971  */
972 void tick_nohz_irq_exit(void)
973 {
974 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
975 
976 	if (ts->inidle)
977 		__tick_nohz_idle_enter(ts);
978 	else
979 		tick_nohz_full_update_tick(ts);
980 }
981 
982 /**
983  * tick_nohz_get_sleep_length - return the length of the current sleep
984  *
985  * Called from power state control code with interrupts disabled
986  */
987 ktime_t tick_nohz_get_sleep_length(void)
988 {
989 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
990 
991 	return ts->sleep_length;
992 }
993 
994 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
995 {
996 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
997 	unsigned long ticks;
998 
999 	if (vtime_accounting_cpu_enabled())
1000 		return;
1001 	/*
1002 	 * We stopped the tick in idle. Update process times would miss the
1003 	 * time we slept as update_process_times does only a 1 tick
1004 	 * accounting. Enforce that this is accounted to idle !
1005 	 */
1006 	ticks = jiffies - ts->idle_jiffies;
1007 	/*
1008 	 * We might be one off. Do not randomly account a huge number of ticks!
1009 	 */
1010 	if (ticks && ticks < LONG_MAX)
1011 		account_idle_ticks(ticks);
1012 #endif
1013 }
1014 
1015 /**
1016  * tick_nohz_idle_exit - restart the idle tick from the idle task
1017  *
1018  * Restart the idle tick when the CPU is woken up from idle
1019  * This also exit the RCU extended quiescent state. The CPU
1020  * can use RCU again after this function is called.
1021  */
1022 void tick_nohz_idle_exit(void)
1023 {
1024 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1025 	ktime_t now;
1026 
1027 	local_irq_disable();
1028 
1029 	WARN_ON_ONCE(!ts->inidle);
1030 
1031 	ts->inidle = 0;
1032 
1033 	if (ts->idle_active || ts->tick_stopped)
1034 		now = ktime_get();
1035 
1036 	if (ts->idle_active)
1037 		tick_nohz_stop_idle(ts, now);
1038 
1039 	if (ts->tick_stopped) {
1040 		tick_nohz_restart_sched_tick(ts, now);
1041 		tick_nohz_account_idle_ticks(ts);
1042 	}
1043 
1044 	local_irq_enable();
1045 }
1046 
1047 /*
1048  * The nohz low res interrupt handler
1049  */
1050 static void tick_nohz_handler(struct clock_event_device *dev)
1051 {
1052 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1053 	struct pt_regs *regs = get_irq_regs();
1054 	ktime_t now = ktime_get();
1055 
1056 	dev->next_event = KTIME_MAX;
1057 
1058 	tick_sched_do_timer(now);
1059 	tick_sched_handle(ts, regs);
1060 
1061 	/* No need to reprogram if we are running tickless  */
1062 	if (unlikely(ts->tick_stopped))
1063 		return;
1064 
1065 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1066 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1067 }
1068 
1069 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1070 {
1071 	if (!tick_nohz_enabled)
1072 		return;
1073 	ts->nohz_mode = mode;
1074 	/* One update is enough */
1075 	if (!test_and_set_bit(0, &tick_nohz_active))
1076 		timers_update_migration(true);
1077 }
1078 
1079 /**
1080  * tick_nohz_switch_to_nohz - switch to nohz mode
1081  */
1082 static void tick_nohz_switch_to_nohz(void)
1083 {
1084 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1085 	ktime_t next;
1086 
1087 	if (!tick_nohz_enabled)
1088 		return;
1089 
1090 	if (tick_switch_to_oneshot(tick_nohz_handler))
1091 		return;
1092 
1093 	/*
1094 	 * Recycle the hrtimer in ts, so we can share the
1095 	 * hrtimer_forward with the highres code.
1096 	 */
1097 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1098 	/* Get the next period */
1099 	next = tick_init_jiffy_update();
1100 
1101 	hrtimer_set_expires(&ts->sched_timer, next);
1102 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1103 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1104 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1105 }
1106 
1107 static inline void tick_nohz_irq_enter(void)
1108 {
1109 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1110 	ktime_t now;
1111 
1112 	if (!ts->idle_active && !ts->tick_stopped)
1113 		return;
1114 	now = ktime_get();
1115 	if (ts->idle_active)
1116 		tick_nohz_stop_idle(ts, now);
1117 	if (ts->tick_stopped)
1118 		tick_nohz_update_jiffies(now);
1119 }
1120 
1121 #else
1122 
1123 static inline void tick_nohz_switch_to_nohz(void) { }
1124 static inline void tick_nohz_irq_enter(void) { }
1125 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1126 
1127 #endif /* CONFIG_NO_HZ_COMMON */
1128 
1129 /*
1130  * Called from irq_enter to notify about the possible interruption of idle()
1131  */
1132 void tick_irq_enter(void)
1133 {
1134 	tick_check_oneshot_broadcast_this_cpu();
1135 	tick_nohz_irq_enter();
1136 }
1137 
1138 /*
1139  * High resolution timer specific code
1140  */
1141 #ifdef CONFIG_HIGH_RES_TIMERS
1142 /*
1143  * We rearm the timer until we get disabled by the idle code.
1144  * Called with interrupts disabled.
1145  */
1146 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1147 {
1148 	struct tick_sched *ts =
1149 		container_of(timer, struct tick_sched, sched_timer);
1150 	struct pt_regs *regs = get_irq_regs();
1151 	ktime_t now = ktime_get();
1152 
1153 	tick_sched_do_timer(now);
1154 
1155 	/*
1156 	 * Do not call, when we are not in irq context and have
1157 	 * no valid regs pointer
1158 	 */
1159 	if (regs)
1160 		tick_sched_handle(ts, regs);
1161 
1162 	/* No need to reprogram if we are in idle or full dynticks mode */
1163 	if (unlikely(ts->tick_stopped))
1164 		return HRTIMER_NORESTART;
1165 
1166 	hrtimer_forward(timer, now, tick_period);
1167 
1168 	return HRTIMER_RESTART;
1169 }
1170 
1171 static int sched_skew_tick;
1172 
1173 static int __init skew_tick(char *str)
1174 {
1175 	get_option(&str, &sched_skew_tick);
1176 
1177 	return 0;
1178 }
1179 early_param("skew_tick", skew_tick);
1180 
1181 /**
1182  * tick_setup_sched_timer - setup the tick emulation timer
1183  */
1184 void tick_setup_sched_timer(void)
1185 {
1186 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1187 	ktime_t now = ktime_get();
1188 
1189 	/*
1190 	 * Emulate tick processing via per-CPU hrtimers:
1191 	 */
1192 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1193 	ts->sched_timer.function = tick_sched_timer;
1194 
1195 	/* Get the next period (per-CPU) */
1196 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1197 
1198 	/* Offset the tick to avert jiffies_lock contention. */
1199 	if (sched_skew_tick) {
1200 		u64 offset = ktime_to_ns(tick_period) >> 1;
1201 		do_div(offset, num_possible_cpus());
1202 		offset *= smp_processor_id();
1203 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1204 	}
1205 
1206 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1207 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1208 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1209 }
1210 #endif /* HIGH_RES_TIMERS */
1211 
1212 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1213 void tick_cancel_sched_timer(int cpu)
1214 {
1215 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1216 
1217 # ifdef CONFIG_HIGH_RES_TIMERS
1218 	if (ts->sched_timer.base)
1219 		hrtimer_cancel(&ts->sched_timer);
1220 # endif
1221 
1222 	memset(ts, 0, sizeof(*ts));
1223 }
1224 #endif
1225 
1226 /**
1227  * Async notification about clocksource changes
1228  */
1229 void tick_clock_notify(void)
1230 {
1231 	int cpu;
1232 
1233 	for_each_possible_cpu(cpu)
1234 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1235 }
1236 
1237 /*
1238  * Async notification about clock event changes
1239  */
1240 void tick_oneshot_notify(void)
1241 {
1242 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1243 
1244 	set_bit(0, &ts->check_clocks);
1245 }
1246 
1247 /**
1248  * Check, if a change happened, which makes oneshot possible.
1249  *
1250  * Called cyclic from the hrtimer softirq (driven by the timer
1251  * softirq) allow_nohz signals, that we can switch into low-res nohz
1252  * mode, because high resolution timers are disabled (either compile
1253  * or runtime). Called with interrupts disabled.
1254  */
1255 int tick_check_oneshot_change(int allow_nohz)
1256 {
1257 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1258 
1259 	if (!test_and_clear_bit(0, &ts->check_clocks))
1260 		return 0;
1261 
1262 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1263 		return 0;
1264 
1265 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1266 		return 0;
1267 
1268 	if (!allow_nohz)
1269 		return 1;
1270 
1271 	tick_nohz_switch_to_nohz();
1272 	return 0;
1273 }
1274