xref: /openbmc/linux/kernel/time/tick-sched.c (revision 157d29e1)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick this CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231  * is NMI safe.
232  */
233 void tick_nohz_full_kick(void)
234 {
235 	if (!tick_nohz_full_cpu(smp_processor_id()))
236 		return;
237 
238 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239 }
240 
241 /*
242  * Kick the CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 	if (!tick_nohz_full_cpu(cpu))
248 		return;
249 
250 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252 
253 static void nohz_full_kick_ipi(void *info)
254 {
255 	__tick_nohz_full_check();
256 }
257 
258 /*
259  * Kick all full dynticks CPUs in order to force these to re-evaluate
260  * their dependency on the tick and restart it if necessary.
261  */
262 void tick_nohz_full_kick_all(void)
263 {
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	smp_call_function_many(tick_nohz_full_mask,
269 			       nohz_full_kick_ipi, NULL, false);
270 	tick_nohz_full_kick();
271 	preempt_enable();
272 }
273 
274 /*
275  * Re-evaluate the need for the tick as we switch the current task.
276  * It might need the tick due to per task/process properties:
277  * perf events, posix cpu timers, ...
278  */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 	unsigned long flags;
282 
283 	local_irq_save(flags);
284 
285 	if (!tick_nohz_full_cpu(smp_processor_id()))
286 		goto out;
287 
288 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 		tick_nohz_full_kick();
290 
291 out:
292 	local_irq_restore(flags);
293 }
294 
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 		free_bootmem_cpumask_var(tick_nohz_full_mask);
302 		return 1;
303 	}
304 	tick_nohz_full_running = true;
305 
306 	return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309 
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 						 unsigned long action,
312 						 void *hcpu)
313 {
314 	unsigned int cpu = (unsigned long)hcpu;
315 
316 	switch (action & ~CPU_TASKS_FROZEN) {
317 	case CPU_DOWN_PREPARE:
318 		/*
319 		 * If we handle the timekeeping duty for full dynticks CPUs,
320 		 * we can't safely shutdown that CPU.
321 		 */
322 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 			return NOTIFY_BAD;
324 		break;
325 	}
326 	return NOTIFY_OK;
327 }
328 
329 static int tick_nohz_init_all(void)
330 {
331 	int err = -1;
332 
333 #ifdef CONFIG_NO_HZ_FULL_ALL
334 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336 		return err;
337 	}
338 	err = 0;
339 	cpumask_setall(tick_nohz_full_mask);
340 	tick_nohz_full_running = true;
341 #endif
342 	return err;
343 }
344 
345 void __init tick_nohz_init(void)
346 {
347 	int cpu;
348 
349 	if (!tick_nohz_full_running) {
350 		if (tick_nohz_init_all() < 0)
351 			return;
352 	}
353 
354 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
355 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
356 		cpumask_clear(tick_nohz_full_mask);
357 		tick_nohz_full_running = false;
358 		return;
359 	}
360 
361 	/*
362 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
363 	 * locking contexts. But then we need irq work to raise its own
364 	 * interrupts to avoid circular dependency on the tick
365 	 */
366 	if (!arch_irq_work_has_interrupt()) {
367 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
368 			   "support irq work self-IPIs\n");
369 		cpumask_clear(tick_nohz_full_mask);
370 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
371 		tick_nohz_full_running = false;
372 		return;
373 	}
374 
375 	cpu = smp_processor_id();
376 
377 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
378 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
379 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
380 	}
381 
382 	cpumask_andnot(housekeeping_mask,
383 		       cpu_possible_mask, tick_nohz_full_mask);
384 
385 	for_each_cpu(cpu, tick_nohz_full_mask)
386 		context_tracking_cpu_set(cpu);
387 
388 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
389 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
390 		cpumask_pr_args(tick_nohz_full_mask));
391 }
392 #endif
393 
394 /*
395  * NOHZ - aka dynamic tick functionality
396  */
397 #ifdef CONFIG_NO_HZ_COMMON
398 /*
399  * NO HZ enabled ?
400  */
401 static int tick_nohz_enabled __read_mostly  = 1;
402 int tick_nohz_active  __read_mostly;
403 /*
404  * Enable / Disable tickless mode
405  */
406 static int __init setup_tick_nohz(char *str)
407 {
408 	if (!strcmp(str, "off"))
409 		tick_nohz_enabled = 0;
410 	else if (!strcmp(str, "on"))
411 		tick_nohz_enabled = 1;
412 	else
413 		return 0;
414 	return 1;
415 }
416 
417 __setup("nohz=", setup_tick_nohz);
418 
419 int tick_nohz_tick_stopped(void)
420 {
421 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
422 }
423 
424 /**
425  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
426  *
427  * Called from interrupt entry when the CPU was idle
428  *
429  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
430  * must be updated. Otherwise an interrupt handler could use a stale jiffy
431  * value. We do this unconditionally on any cpu, as we don't know whether the
432  * cpu, which has the update task assigned is in a long sleep.
433  */
434 static void tick_nohz_update_jiffies(ktime_t now)
435 {
436 	unsigned long flags;
437 
438 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
439 
440 	local_irq_save(flags);
441 	tick_do_update_jiffies64(now);
442 	local_irq_restore(flags);
443 
444 	touch_softlockup_watchdog();
445 }
446 
447 /*
448  * Updates the per cpu time idle statistics counters
449  */
450 static void
451 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
452 {
453 	ktime_t delta;
454 
455 	if (ts->idle_active) {
456 		delta = ktime_sub(now, ts->idle_entrytime);
457 		if (nr_iowait_cpu(cpu) > 0)
458 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459 		else
460 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461 		ts->idle_entrytime = now;
462 	}
463 
464 	if (last_update_time)
465 		*last_update_time = ktime_to_us(now);
466 
467 }
468 
469 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
470 {
471 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472 	ts->idle_active = 0;
473 
474 	sched_clock_idle_wakeup_event(0);
475 }
476 
477 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
478 {
479 	ktime_t now = ktime_get();
480 
481 	ts->idle_entrytime = now;
482 	ts->idle_active = 1;
483 	sched_clock_idle_sleep_event();
484 	return now;
485 }
486 
487 /**
488  * get_cpu_idle_time_us - get the total idle time of a cpu
489  * @cpu: CPU number to query
490  * @last_update_time: variable to store update time in. Do not update
491  * counters if NULL.
492  *
493  * Return the cummulative idle time (since boot) for a given
494  * CPU, in microseconds.
495  *
496  * This time is measured via accounting rather than sampling,
497  * and is as accurate as ktime_get() is.
498  *
499  * This function returns -1 if NOHZ is not enabled.
500  */
501 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
502 {
503 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 	ktime_t now, idle;
505 
506 	if (!tick_nohz_active)
507 		return -1;
508 
509 	now = ktime_get();
510 	if (last_update_time) {
511 		update_ts_time_stats(cpu, ts, now, last_update_time);
512 		idle = ts->idle_sleeptime;
513 	} else {
514 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
515 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516 
517 			idle = ktime_add(ts->idle_sleeptime, delta);
518 		} else {
519 			idle = ts->idle_sleeptime;
520 		}
521 	}
522 
523 	return ktime_to_us(idle);
524 
525 }
526 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
527 
528 /**
529  * get_cpu_iowait_time_us - get the total iowait time of a cpu
530  * @cpu: CPU number to query
531  * @last_update_time: variable to store update time in. Do not update
532  * counters if NULL.
533  *
534  * Return the cummulative iowait time (since boot) for a given
535  * CPU, in microseconds.
536  *
537  * This time is measured via accounting rather than sampling,
538  * and is as accurate as ktime_get() is.
539  *
540  * This function returns -1 if NOHZ is not enabled.
541  */
542 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
543 {
544 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545 	ktime_t now, iowait;
546 
547 	if (!tick_nohz_active)
548 		return -1;
549 
550 	now = ktime_get();
551 	if (last_update_time) {
552 		update_ts_time_stats(cpu, ts, now, last_update_time);
553 		iowait = ts->iowait_sleeptime;
554 	} else {
555 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
556 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
557 
558 			iowait = ktime_add(ts->iowait_sleeptime, delta);
559 		} else {
560 			iowait = ts->iowait_sleeptime;
561 		}
562 	}
563 
564 	return ktime_to_us(iowait);
565 }
566 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
567 
568 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
569 {
570 	hrtimer_cancel(&ts->sched_timer);
571 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
572 
573 	/* Forward the time to expire in the future */
574 	hrtimer_forward(&ts->sched_timer, now, tick_period);
575 
576 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
577 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
578 	else
579 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
580 }
581 
582 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
583 					 ktime_t now, int cpu)
584 {
585 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
586 	ktime_t last_update, expires, ret = { .tv64 = 0 };
587 	unsigned long rcu_delta_jiffies;
588 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
589 	u64 time_delta;
590 
591 	time_delta = timekeeping_max_deferment();
592 
593 	/* Read jiffies and the time when jiffies were updated last */
594 	do {
595 		seq = read_seqbegin(&jiffies_lock);
596 		last_update = last_jiffies_update;
597 		last_jiffies = jiffies;
598 	} while (read_seqretry(&jiffies_lock, seq));
599 
600 	if (rcu_needs_cpu(&rcu_delta_jiffies) ||
601 	    arch_needs_cpu() || irq_work_needs_cpu()) {
602 		next_jiffies = last_jiffies + 1;
603 		delta_jiffies = 1;
604 	} else {
605 		/* Get the next timer wheel timer */
606 		next_jiffies = get_next_timer_interrupt(last_jiffies);
607 		delta_jiffies = next_jiffies - last_jiffies;
608 		if (rcu_delta_jiffies < delta_jiffies) {
609 			next_jiffies = last_jiffies + rcu_delta_jiffies;
610 			delta_jiffies = rcu_delta_jiffies;
611 		}
612 	}
613 
614 	if ((long)delta_jiffies <= 1) {
615 		if (!ts->tick_stopped)
616 			goto out;
617 		if (delta_jiffies == 0) {
618 			/* Tick is stopped, but required now. Enforce it */
619 			tick_nohz_restart(ts, now);
620 			goto out;
621 		}
622 	}
623 
624 	/*
625 	 * If this cpu is the one which updates jiffies, then give up
626 	 * the assignment and let it be taken by the cpu which runs
627 	 * the tick timer next, which might be this cpu as well. If we
628 	 * don't drop this here the jiffies might be stale and
629 	 * do_timer() never invoked. Keep track of the fact that it
630 	 * was the one which had the do_timer() duty last. If this cpu
631 	 * is the one which had the do_timer() duty last, we limit the
632 	 * sleep time to the timekeeping max_deferement value which we
633 	 * retrieved above. Otherwise we can sleep as long as we want.
634 	 */
635 	if (cpu == tick_do_timer_cpu) {
636 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
637 		ts->do_timer_last = 1;
638 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
639 		time_delta = KTIME_MAX;
640 		ts->do_timer_last = 0;
641 	} else if (!ts->do_timer_last) {
642 		time_delta = KTIME_MAX;
643 	}
644 
645 #ifdef CONFIG_NO_HZ_FULL
646 	if (!ts->inidle)
647 		time_delta = min(time_delta, scheduler_tick_max_deferment());
648 #endif
649 
650 	/*
651 	 * calculate the expiry time for the next timer wheel
652 	 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
653 	 * there is no timer pending or at least extremely far into
654 	 * the future (12 days for HZ=1000). In this case we set the
655 	 * expiry to the end of time.
656 	 */
657 	if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
658 		/*
659 		 * Calculate the time delta for the next timer event.
660 		 * If the time delta exceeds the maximum time delta
661 		 * permitted by the current clocksource then adjust
662 		 * the time delta accordingly to ensure the
663 		 * clocksource does not wrap.
664 		 */
665 		time_delta = min_t(u64, time_delta,
666 				   tick_period.tv64 * delta_jiffies);
667 	}
668 
669 	if (time_delta < KTIME_MAX)
670 		expires = ktime_add_ns(last_update, time_delta);
671 	else
672 		expires.tv64 = KTIME_MAX;
673 
674 	/* Skip reprogram of event if its not changed */
675 	if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
676 		goto out;
677 
678 	ret = expires;
679 
680 	/*
681 	 * nohz_stop_sched_tick can be called several times before
682 	 * the nohz_restart_sched_tick is called. This happens when
683 	 * interrupts arrive which do not cause a reschedule. In the
684 	 * first call we save the current tick time, so we can restart
685 	 * the scheduler tick in nohz_restart_sched_tick.
686 	 */
687 	if (!ts->tick_stopped) {
688 		nohz_balance_enter_idle(cpu);
689 		calc_load_enter_idle();
690 
691 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
692 		ts->tick_stopped = 1;
693 		trace_tick_stop(1, " ");
694 	}
695 
696 	/*
697 	 * If the expiration time == KTIME_MAX, then
698 	 * in this case we simply stop the tick timer.
699 	 */
700 	if (unlikely(expires.tv64 == KTIME_MAX)) {
701 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
702 			hrtimer_cancel(&ts->sched_timer);
703 		goto out;
704 	}
705 
706 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
707 		hrtimer_start(&ts->sched_timer, expires,
708 			      HRTIMER_MODE_ABS_PINNED);
709 	else
710 		tick_program_event(expires, 1);
711 out:
712 	ts->next_jiffies = next_jiffies;
713 	ts->last_jiffies = last_jiffies;
714 	ts->sleep_length = ktime_sub(dev->next_event, now);
715 
716 	return ret;
717 }
718 
719 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
720 {
721 #ifdef CONFIG_NO_HZ_FULL
722 	int cpu = smp_processor_id();
723 
724 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
725 		return;
726 
727 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
728 		return;
729 
730 	if (!can_stop_full_tick())
731 		return;
732 
733 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
734 #endif
735 }
736 
737 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
738 {
739 	/*
740 	 * If this cpu is offline and it is the one which updates
741 	 * jiffies, then give up the assignment and let it be taken by
742 	 * the cpu which runs the tick timer next. If we don't drop
743 	 * this here the jiffies might be stale and do_timer() never
744 	 * invoked.
745 	 */
746 	if (unlikely(!cpu_online(cpu))) {
747 		if (cpu == tick_do_timer_cpu)
748 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 		return false;
750 	}
751 
752 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
753 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
754 		return false;
755 	}
756 
757 	if (need_resched())
758 		return false;
759 
760 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
761 		static int ratelimit;
762 
763 		if (ratelimit < 10 &&
764 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
765 			pr_warn("NOHZ: local_softirq_pending %02x\n",
766 				(unsigned int) local_softirq_pending());
767 			ratelimit++;
768 		}
769 		return false;
770 	}
771 
772 	if (tick_nohz_full_enabled()) {
773 		/*
774 		 * Keep the tick alive to guarantee timekeeping progression
775 		 * if there are full dynticks CPUs around
776 		 */
777 		if (tick_do_timer_cpu == cpu)
778 			return false;
779 		/*
780 		 * Boot safety: make sure the timekeeping duty has been
781 		 * assigned before entering dyntick-idle mode,
782 		 */
783 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
784 			return false;
785 	}
786 
787 	return true;
788 }
789 
790 static void __tick_nohz_idle_enter(struct tick_sched *ts)
791 {
792 	ktime_t now, expires;
793 	int cpu = smp_processor_id();
794 
795 	now = tick_nohz_start_idle(ts);
796 
797 	if (can_stop_idle_tick(cpu, ts)) {
798 		int was_stopped = ts->tick_stopped;
799 
800 		ts->idle_calls++;
801 
802 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
803 		if (expires.tv64 > 0LL) {
804 			ts->idle_sleeps++;
805 			ts->idle_expires = expires;
806 		}
807 
808 		if (!was_stopped && ts->tick_stopped)
809 			ts->idle_jiffies = ts->last_jiffies;
810 	}
811 }
812 
813 /**
814  * tick_nohz_idle_enter - stop the idle tick from the idle task
815  *
816  * When the next event is more than a tick into the future, stop the idle tick
817  * Called when we start the idle loop.
818  *
819  * The arch is responsible of calling:
820  *
821  * - rcu_idle_enter() after its last use of RCU before the CPU is put
822  *  to sleep.
823  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
824  */
825 void tick_nohz_idle_enter(void)
826 {
827 	struct tick_sched *ts;
828 
829 	WARN_ON_ONCE(irqs_disabled());
830 
831 	/*
832  	 * Update the idle state in the scheduler domain hierarchy
833  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
834  	 * State will be updated to busy during the first busy tick after
835  	 * exiting idle.
836  	 */
837 	set_cpu_sd_state_idle();
838 
839 	local_irq_disable();
840 
841 	ts = this_cpu_ptr(&tick_cpu_sched);
842 	ts->inidle = 1;
843 	__tick_nohz_idle_enter(ts);
844 
845 	local_irq_enable();
846 }
847 
848 /**
849  * tick_nohz_irq_exit - update next tick event from interrupt exit
850  *
851  * When an interrupt fires while we are idle and it doesn't cause
852  * a reschedule, it may still add, modify or delete a timer, enqueue
853  * an RCU callback, etc...
854  * So we need to re-calculate and reprogram the next tick event.
855  */
856 void tick_nohz_irq_exit(void)
857 {
858 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
859 
860 	if (ts->inidle)
861 		__tick_nohz_idle_enter(ts);
862 	else
863 		tick_nohz_full_stop_tick(ts);
864 }
865 
866 /**
867  * tick_nohz_get_sleep_length - return the length of the current sleep
868  *
869  * Called from power state control code with interrupts disabled
870  */
871 ktime_t tick_nohz_get_sleep_length(void)
872 {
873 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
874 
875 	return ts->sleep_length;
876 }
877 
878 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
879 {
880 	/* Update jiffies first */
881 	tick_do_update_jiffies64(now);
882 	update_cpu_load_nohz();
883 
884 	calc_load_exit_idle();
885 	touch_softlockup_watchdog();
886 	/*
887 	 * Cancel the scheduled timer and restore the tick
888 	 */
889 	ts->tick_stopped  = 0;
890 	ts->idle_exittime = now;
891 
892 	tick_nohz_restart(ts, now);
893 }
894 
895 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
896 {
897 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
898 	unsigned long ticks;
899 
900 	if (vtime_accounting_enabled())
901 		return;
902 	/*
903 	 * We stopped the tick in idle. Update process times would miss the
904 	 * time we slept as update_process_times does only a 1 tick
905 	 * accounting. Enforce that this is accounted to idle !
906 	 */
907 	ticks = jiffies - ts->idle_jiffies;
908 	/*
909 	 * We might be one off. Do not randomly account a huge number of ticks!
910 	 */
911 	if (ticks && ticks < LONG_MAX)
912 		account_idle_ticks(ticks);
913 #endif
914 }
915 
916 /**
917  * tick_nohz_idle_exit - restart the idle tick from the idle task
918  *
919  * Restart the idle tick when the CPU is woken up from idle
920  * This also exit the RCU extended quiescent state. The CPU
921  * can use RCU again after this function is called.
922  */
923 void tick_nohz_idle_exit(void)
924 {
925 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
926 	ktime_t now;
927 
928 	local_irq_disable();
929 
930 	WARN_ON_ONCE(!ts->inidle);
931 
932 	ts->inidle = 0;
933 
934 	if (ts->idle_active || ts->tick_stopped)
935 		now = ktime_get();
936 
937 	if (ts->idle_active)
938 		tick_nohz_stop_idle(ts, now);
939 
940 	if (ts->tick_stopped) {
941 		tick_nohz_restart_sched_tick(ts, now);
942 		tick_nohz_account_idle_ticks(ts);
943 	}
944 
945 	local_irq_enable();
946 }
947 
948 /*
949  * The nohz low res interrupt handler
950  */
951 static void tick_nohz_handler(struct clock_event_device *dev)
952 {
953 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
954 	struct pt_regs *regs = get_irq_regs();
955 	ktime_t now = ktime_get();
956 
957 	dev->next_event.tv64 = KTIME_MAX;
958 
959 	tick_sched_do_timer(now);
960 	tick_sched_handle(ts, regs);
961 
962 	/* No need to reprogram if we are running tickless  */
963 	if (unlikely(ts->tick_stopped))
964 		return;
965 
966 	hrtimer_forward(&ts->sched_timer, now, tick_period);
967 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
968 }
969 
970 /**
971  * tick_nohz_switch_to_nohz - switch to nohz mode
972  */
973 static void tick_nohz_switch_to_nohz(void)
974 {
975 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
976 	ktime_t next;
977 
978 	if (!tick_nohz_enabled)
979 		return;
980 
981 	local_irq_disable();
982 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
983 		local_irq_enable();
984 		return;
985 	}
986 	tick_nohz_active = 1;
987 	ts->nohz_mode = NOHZ_MODE_LOWRES;
988 
989 	/*
990 	 * Recycle the hrtimer in ts, so we can share the
991 	 * hrtimer_forward with the highres code.
992 	 */
993 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
994 	/* Get the next period */
995 	next = tick_init_jiffy_update();
996 
997 	hrtimer_forward_now(&ts->sched_timer, tick_period);
998 	hrtimer_set_expires(&ts->sched_timer, next);
999 	tick_program_event(next, 1);
1000 	local_irq_enable();
1001 }
1002 
1003 /*
1004  * When NOHZ is enabled and the tick is stopped, we need to kick the
1005  * tick timer from irq_enter() so that the jiffies update is kept
1006  * alive during long running softirqs. That's ugly as hell, but
1007  * correctness is key even if we need to fix the offending softirq in
1008  * the first place.
1009  *
1010  * Note, this is different to tick_nohz_restart. We just kick the
1011  * timer and do not touch the other magic bits which need to be done
1012  * when idle is left.
1013  */
1014 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1015 {
1016 #if 0
1017 	/* Switch back to 2.6.27 behaviour */
1018 	ktime_t delta;
1019 
1020 	/*
1021 	 * Do not touch the tick device, when the next expiry is either
1022 	 * already reached or less/equal than the tick period.
1023 	 */
1024 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1025 	if (delta.tv64 <= tick_period.tv64)
1026 		return;
1027 
1028 	tick_nohz_restart(ts, now);
1029 #endif
1030 }
1031 
1032 static inline void tick_nohz_irq_enter(void)
1033 {
1034 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1035 	ktime_t now;
1036 
1037 	if (!ts->idle_active && !ts->tick_stopped)
1038 		return;
1039 	now = ktime_get();
1040 	if (ts->idle_active)
1041 		tick_nohz_stop_idle(ts, now);
1042 	if (ts->tick_stopped) {
1043 		tick_nohz_update_jiffies(now);
1044 		tick_nohz_kick_tick(ts, now);
1045 	}
1046 }
1047 
1048 #else
1049 
1050 static inline void tick_nohz_switch_to_nohz(void) { }
1051 static inline void tick_nohz_irq_enter(void) { }
1052 
1053 #endif /* CONFIG_NO_HZ_COMMON */
1054 
1055 /*
1056  * Called from irq_enter to notify about the possible interruption of idle()
1057  */
1058 void tick_irq_enter(void)
1059 {
1060 	tick_check_oneshot_broadcast_this_cpu();
1061 	tick_nohz_irq_enter();
1062 }
1063 
1064 /*
1065  * High resolution timer specific code
1066  */
1067 #ifdef CONFIG_HIGH_RES_TIMERS
1068 /*
1069  * We rearm the timer until we get disabled by the idle code.
1070  * Called with interrupts disabled.
1071  */
1072 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1073 {
1074 	struct tick_sched *ts =
1075 		container_of(timer, struct tick_sched, sched_timer);
1076 	struct pt_regs *regs = get_irq_regs();
1077 	ktime_t now = ktime_get();
1078 
1079 	tick_sched_do_timer(now);
1080 
1081 	/*
1082 	 * Do not call, when we are not in irq context and have
1083 	 * no valid regs pointer
1084 	 */
1085 	if (regs)
1086 		tick_sched_handle(ts, regs);
1087 
1088 	/* No need to reprogram if we are in idle or full dynticks mode */
1089 	if (unlikely(ts->tick_stopped))
1090 		return HRTIMER_NORESTART;
1091 
1092 	hrtimer_forward(timer, now, tick_period);
1093 
1094 	return HRTIMER_RESTART;
1095 }
1096 
1097 static int sched_skew_tick;
1098 
1099 static int __init skew_tick(char *str)
1100 {
1101 	get_option(&str, &sched_skew_tick);
1102 
1103 	return 0;
1104 }
1105 early_param("skew_tick", skew_tick);
1106 
1107 /**
1108  * tick_setup_sched_timer - setup the tick emulation timer
1109  */
1110 void tick_setup_sched_timer(void)
1111 {
1112 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113 	ktime_t now = ktime_get();
1114 
1115 	/*
1116 	 * Emulate tick processing via per-CPU hrtimers:
1117 	 */
1118 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1119 	ts->sched_timer.function = tick_sched_timer;
1120 
1121 	/* Get the next period (per cpu) */
1122 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1123 
1124 	/* Offset the tick to avert jiffies_lock contention. */
1125 	if (sched_skew_tick) {
1126 		u64 offset = ktime_to_ns(tick_period) >> 1;
1127 		do_div(offset, num_possible_cpus());
1128 		offset *= smp_processor_id();
1129 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1130 	}
1131 
1132 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1133 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1134 
1135 #ifdef CONFIG_NO_HZ_COMMON
1136 	if (tick_nohz_enabled) {
1137 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1138 		tick_nohz_active = 1;
1139 	}
1140 #endif
1141 }
1142 #endif /* HIGH_RES_TIMERS */
1143 
1144 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1145 void tick_cancel_sched_timer(int cpu)
1146 {
1147 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1148 
1149 # ifdef CONFIG_HIGH_RES_TIMERS
1150 	if (ts->sched_timer.base)
1151 		hrtimer_cancel(&ts->sched_timer);
1152 # endif
1153 
1154 	memset(ts, 0, sizeof(*ts));
1155 }
1156 #endif
1157 
1158 /**
1159  * Async notification about clocksource changes
1160  */
1161 void tick_clock_notify(void)
1162 {
1163 	int cpu;
1164 
1165 	for_each_possible_cpu(cpu)
1166 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1167 }
1168 
1169 /*
1170  * Async notification about clock event changes
1171  */
1172 void tick_oneshot_notify(void)
1173 {
1174 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1175 
1176 	set_bit(0, &ts->check_clocks);
1177 }
1178 
1179 /**
1180  * Check, if a change happened, which makes oneshot possible.
1181  *
1182  * Called cyclic from the hrtimer softirq (driven by the timer
1183  * softirq) allow_nohz signals, that we can switch into low-res nohz
1184  * mode, because high resolution timers are disabled (either compile
1185  * or runtime).
1186  */
1187 int tick_check_oneshot_change(int allow_nohz)
1188 {
1189 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1190 
1191 	if (!test_and_clear_bit(0, &ts->check_clocks))
1192 		return 0;
1193 
1194 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1195 		return 0;
1196 
1197 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1198 		return 0;
1199 
1200 	if (!allow_nohz)
1201 		return 1;
1202 
1203 	tick_nohz_switch_to_nohz();
1204 	return 0;
1205 }
1206