xref: /openbmc/linux/kernel/time/tick-sched.c (revision 13dd8710)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 * The READ_ONCE() pairs with two updates done later in this function.
62 	 */
63 	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 	if (delta < tick_period)
65 		return;
66 
67 	/* Reevaluate with jiffies_lock held */
68 	raw_spin_lock(&jiffies_lock);
69 	write_seqcount_begin(&jiffies_seq);
70 
71 	delta = ktime_sub(now, last_jiffies_update);
72 	if (delta >= tick_period) {
73 
74 		delta = ktime_sub(delta, tick_period);
75 		/* Pairs with the lockless read in this function. */
76 		WRITE_ONCE(last_jiffies_update,
77 			   ktime_add(last_jiffies_update, tick_period));
78 
79 		/* Slow path for long timeouts */
80 		if (unlikely(delta >= tick_period)) {
81 			s64 incr = ktime_to_ns(tick_period);
82 
83 			ticks = ktime_divns(delta, incr);
84 
85 			/* Pairs with the lockless read in this function. */
86 			WRITE_ONCE(last_jiffies_update,
87 				   ktime_add_ns(last_jiffies_update,
88 						incr * ticks));
89 		}
90 		do_timer(++ticks);
91 
92 		/* Keep the tick_next_period variable up to date */
93 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
94 	} else {
95 		write_seqcount_end(&jiffies_seq);
96 		raw_spin_unlock(&jiffies_lock);
97 		return;
98 	}
99 	write_seqcount_end(&jiffies_seq);
100 	raw_spin_unlock(&jiffies_lock);
101 	update_wall_time();
102 }
103 
104 /*
105  * Initialize and return retrieve the jiffies update.
106  */
107 static ktime_t tick_init_jiffy_update(void)
108 {
109 	ktime_t period;
110 
111 	raw_spin_lock(&jiffies_lock);
112 	write_seqcount_begin(&jiffies_seq);
113 	/* Did we start the jiffies update yet ? */
114 	if (last_jiffies_update == 0)
115 		last_jiffies_update = tick_next_period;
116 	period = last_jiffies_update;
117 	write_seqcount_end(&jiffies_seq);
118 	raw_spin_unlock(&jiffies_lock);
119 	return period;
120 }
121 
122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
123 {
124 	int cpu = smp_processor_id();
125 
126 #ifdef CONFIG_NO_HZ_COMMON
127 	/*
128 	 * Check if the do_timer duty was dropped. We don't care about
129 	 * concurrency: This happens only when the CPU in charge went
130 	 * into a long sleep. If two CPUs happen to assign themselves to
131 	 * this duty, then the jiffies update is still serialized by
132 	 * jiffies_lock.
133 	 *
134 	 * If nohz_full is enabled, this should not happen because the
135 	 * tick_do_timer_cpu never relinquishes.
136 	 */
137 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
138 #ifdef CONFIG_NO_HZ_FULL
139 		WARN_ON(tick_nohz_full_running);
140 #endif
141 		tick_do_timer_cpu = cpu;
142 	}
143 #endif
144 
145 	/* Check, if the jiffies need an update */
146 	if (tick_do_timer_cpu == cpu)
147 		tick_do_update_jiffies64(now);
148 
149 	if (ts->inidle)
150 		ts->got_idle_tick = 1;
151 }
152 
153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
154 {
155 #ifdef CONFIG_NO_HZ_COMMON
156 	/*
157 	 * When we are idle and the tick is stopped, we have to touch
158 	 * the watchdog as we might not schedule for a really long
159 	 * time. This happens on complete idle SMP systems while
160 	 * waiting on the login prompt. We also increment the "start of
161 	 * idle" jiffy stamp so the idle accounting adjustment we do
162 	 * when we go busy again does not account too much ticks.
163 	 */
164 	if (ts->tick_stopped) {
165 		touch_softlockup_watchdog_sched();
166 		if (is_idle_task(current))
167 			ts->idle_jiffies++;
168 		/*
169 		 * In case the current tick fired too early past its expected
170 		 * expiration, make sure we don't bypass the next clock reprogramming
171 		 * to the same deadline.
172 		 */
173 		ts->next_tick = 0;
174 	}
175 #endif
176 	update_process_times(user_mode(regs));
177 	profile_tick(CPU_PROFILING);
178 }
179 #endif
180 
181 #ifdef CONFIG_NO_HZ_FULL
182 cpumask_var_t tick_nohz_full_mask;
183 bool tick_nohz_full_running;
184 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
185 static atomic_t tick_dep_mask;
186 
187 static bool check_tick_dependency(atomic_t *dep)
188 {
189 	int val = atomic_read(dep);
190 
191 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
192 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
193 		return true;
194 	}
195 
196 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
197 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
198 		return true;
199 	}
200 
201 	if (val & TICK_DEP_MASK_SCHED) {
202 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
203 		return true;
204 	}
205 
206 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
207 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
208 		return true;
209 	}
210 
211 	if (val & TICK_DEP_MASK_RCU) {
212 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
213 		return true;
214 	}
215 
216 	return false;
217 }
218 
219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
220 {
221 	lockdep_assert_irqs_disabled();
222 
223 	if (unlikely(!cpu_online(cpu)))
224 		return false;
225 
226 	if (check_tick_dependency(&tick_dep_mask))
227 		return false;
228 
229 	if (check_tick_dependency(&ts->tick_dep_mask))
230 		return false;
231 
232 	if (check_tick_dependency(&current->tick_dep_mask))
233 		return false;
234 
235 	if (check_tick_dependency(&current->signal->tick_dep_mask))
236 		return false;
237 
238 	return true;
239 }
240 
241 static void nohz_full_kick_func(struct irq_work *work)
242 {
243 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
244 }
245 
246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
247 	.func = nohz_full_kick_func,
248 	.flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
249 };
250 
251 /*
252  * Kick this CPU if it's full dynticks in order to force it to
253  * re-evaluate its dependency on the tick and restart it if necessary.
254  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
255  * is NMI safe.
256  */
257 static void tick_nohz_full_kick(void)
258 {
259 	if (!tick_nohz_full_cpu(smp_processor_id()))
260 		return;
261 
262 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
263 }
264 
265 /*
266  * Kick the CPU if it's full dynticks in order to force it to
267  * re-evaluate its dependency on the tick and restart it if necessary.
268  */
269 void tick_nohz_full_kick_cpu(int cpu)
270 {
271 	if (!tick_nohz_full_cpu(cpu))
272 		return;
273 
274 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
275 }
276 
277 /*
278  * Kick all full dynticks CPUs in order to force these to re-evaluate
279  * their dependency on the tick and restart it if necessary.
280  */
281 static void tick_nohz_full_kick_all(void)
282 {
283 	int cpu;
284 
285 	if (!tick_nohz_full_running)
286 		return;
287 
288 	preempt_disable();
289 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
290 		tick_nohz_full_kick_cpu(cpu);
291 	preempt_enable();
292 }
293 
294 static void tick_nohz_dep_set_all(atomic_t *dep,
295 				  enum tick_dep_bits bit)
296 {
297 	int prev;
298 
299 	prev = atomic_fetch_or(BIT(bit), dep);
300 	if (!prev)
301 		tick_nohz_full_kick_all();
302 }
303 
304 /*
305  * Set a global tick dependency. Used by perf events that rely on freq and
306  * by unstable clock.
307  */
308 void tick_nohz_dep_set(enum tick_dep_bits bit)
309 {
310 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
311 }
312 
313 void tick_nohz_dep_clear(enum tick_dep_bits bit)
314 {
315 	atomic_andnot(BIT(bit), &tick_dep_mask);
316 }
317 
318 /*
319  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
320  * manage events throttling.
321  */
322 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
323 {
324 	int prev;
325 	struct tick_sched *ts;
326 
327 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
328 
329 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
330 	if (!prev) {
331 		preempt_disable();
332 		/* Perf needs local kick that is NMI safe */
333 		if (cpu == smp_processor_id()) {
334 			tick_nohz_full_kick();
335 		} else {
336 			/* Remote irq work not NMI-safe */
337 			if (!WARN_ON_ONCE(in_nmi()))
338 				tick_nohz_full_kick_cpu(cpu);
339 		}
340 		preempt_enable();
341 	}
342 }
343 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
344 
345 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
346 {
347 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
348 
349 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
350 }
351 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
352 
353 /*
354  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
355  * in order to elapse per task timers.
356  */
357 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
358 {
359 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
360 		if (tsk == current) {
361 			preempt_disable();
362 			tick_nohz_full_kick();
363 			preempt_enable();
364 		} else {
365 			/*
366 			 * Some future tick_nohz_full_kick_task()
367 			 * should optimize this.
368 			 */
369 			tick_nohz_full_kick_all();
370 		}
371 	}
372 }
373 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
374 
375 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
376 {
377 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
378 }
379 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
380 
381 /*
382  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
383  * per process timers.
384  */
385 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
386 {
387 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
388 }
389 
390 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
391 {
392 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
393 }
394 
395 /*
396  * Re-evaluate the need for the tick as we switch the current task.
397  * It might need the tick due to per task/process properties:
398  * perf events, posix CPU timers, ...
399  */
400 void __tick_nohz_task_switch(void)
401 {
402 	unsigned long flags;
403 	struct tick_sched *ts;
404 
405 	local_irq_save(flags);
406 
407 	if (!tick_nohz_full_cpu(smp_processor_id()))
408 		goto out;
409 
410 	ts = this_cpu_ptr(&tick_cpu_sched);
411 
412 	if (ts->tick_stopped) {
413 		if (atomic_read(&current->tick_dep_mask) ||
414 		    atomic_read(&current->signal->tick_dep_mask))
415 			tick_nohz_full_kick();
416 	}
417 out:
418 	local_irq_restore(flags);
419 }
420 
421 /* Get the boot-time nohz CPU list from the kernel parameters. */
422 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
423 {
424 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
425 	cpumask_copy(tick_nohz_full_mask, cpumask);
426 	tick_nohz_full_running = true;
427 }
428 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
429 
430 static int tick_nohz_cpu_down(unsigned int cpu)
431 {
432 	/*
433 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
434 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
435 	 * CPUs. It must remain online when nohz full is enabled.
436 	 */
437 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
438 		return -EBUSY;
439 	return 0;
440 }
441 
442 void __init tick_nohz_init(void)
443 {
444 	int cpu, ret;
445 
446 	if (!tick_nohz_full_running)
447 		return;
448 
449 	/*
450 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
451 	 * locking contexts. But then we need irq work to raise its own
452 	 * interrupts to avoid circular dependency on the tick
453 	 */
454 	if (!arch_irq_work_has_interrupt()) {
455 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
456 		cpumask_clear(tick_nohz_full_mask);
457 		tick_nohz_full_running = false;
458 		return;
459 	}
460 
461 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
462 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
463 		cpu = smp_processor_id();
464 
465 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
466 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
467 				"for timekeeping\n", cpu);
468 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
469 		}
470 	}
471 
472 	for_each_cpu(cpu, tick_nohz_full_mask)
473 		context_tracking_cpu_set(cpu);
474 
475 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
476 					"kernel/nohz:predown", NULL,
477 					tick_nohz_cpu_down);
478 	WARN_ON(ret < 0);
479 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
480 		cpumask_pr_args(tick_nohz_full_mask));
481 }
482 #endif
483 
484 /*
485  * NOHZ - aka dynamic tick functionality
486  */
487 #ifdef CONFIG_NO_HZ_COMMON
488 /*
489  * NO HZ enabled ?
490  */
491 bool tick_nohz_enabled __read_mostly  = true;
492 unsigned long tick_nohz_active  __read_mostly;
493 /*
494  * Enable / Disable tickless mode
495  */
496 static int __init setup_tick_nohz(char *str)
497 {
498 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
499 }
500 
501 __setup("nohz=", setup_tick_nohz);
502 
503 bool tick_nohz_tick_stopped(void)
504 {
505 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
506 
507 	return ts->tick_stopped;
508 }
509 
510 bool tick_nohz_tick_stopped_cpu(int cpu)
511 {
512 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
513 
514 	return ts->tick_stopped;
515 }
516 
517 /**
518  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
519  *
520  * Called from interrupt entry when the CPU was idle
521  *
522  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
523  * must be updated. Otherwise an interrupt handler could use a stale jiffy
524  * value. We do this unconditionally on any CPU, as we don't know whether the
525  * CPU, which has the update task assigned is in a long sleep.
526  */
527 static void tick_nohz_update_jiffies(ktime_t now)
528 {
529 	unsigned long flags;
530 
531 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
532 
533 	local_irq_save(flags);
534 	tick_do_update_jiffies64(now);
535 	local_irq_restore(flags);
536 
537 	touch_softlockup_watchdog_sched();
538 }
539 
540 /*
541  * Updates the per-CPU time idle statistics counters
542  */
543 static void
544 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
545 {
546 	ktime_t delta;
547 
548 	if (ts->idle_active) {
549 		delta = ktime_sub(now, ts->idle_entrytime);
550 		if (nr_iowait_cpu(cpu) > 0)
551 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
552 		else
553 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
554 		ts->idle_entrytime = now;
555 	}
556 
557 	if (last_update_time)
558 		*last_update_time = ktime_to_us(now);
559 
560 }
561 
562 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
563 {
564 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
565 	ts->idle_active = 0;
566 
567 	sched_clock_idle_wakeup_event();
568 }
569 
570 static void tick_nohz_start_idle(struct tick_sched *ts)
571 {
572 	ts->idle_entrytime = ktime_get();
573 	ts->idle_active = 1;
574 	sched_clock_idle_sleep_event();
575 }
576 
577 /**
578  * get_cpu_idle_time_us - get the total idle time of a CPU
579  * @cpu: CPU number to query
580  * @last_update_time: variable to store update time in. Do not update
581  * counters if NULL.
582  *
583  * Return the cumulative idle time (since boot) for a given
584  * CPU, in microseconds.
585  *
586  * This time is measured via accounting rather than sampling,
587  * and is as accurate as ktime_get() is.
588  *
589  * This function returns -1 if NOHZ is not enabled.
590  */
591 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
592 {
593 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
594 	ktime_t now, idle;
595 
596 	if (!tick_nohz_active)
597 		return -1;
598 
599 	now = ktime_get();
600 	if (last_update_time) {
601 		update_ts_time_stats(cpu, ts, now, last_update_time);
602 		idle = ts->idle_sleeptime;
603 	} else {
604 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
605 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
606 
607 			idle = ktime_add(ts->idle_sleeptime, delta);
608 		} else {
609 			idle = ts->idle_sleeptime;
610 		}
611 	}
612 
613 	return ktime_to_us(idle);
614 
615 }
616 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
617 
618 /**
619  * get_cpu_iowait_time_us - get the total iowait time of a CPU
620  * @cpu: CPU number to query
621  * @last_update_time: variable to store update time in. Do not update
622  * counters if NULL.
623  *
624  * Return the cumulative iowait time (since boot) for a given
625  * CPU, in microseconds.
626  *
627  * This time is measured via accounting rather than sampling,
628  * and is as accurate as ktime_get() is.
629  *
630  * This function returns -1 if NOHZ is not enabled.
631  */
632 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
633 {
634 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
635 	ktime_t now, iowait;
636 
637 	if (!tick_nohz_active)
638 		return -1;
639 
640 	now = ktime_get();
641 	if (last_update_time) {
642 		update_ts_time_stats(cpu, ts, now, last_update_time);
643 		iowait = ts->iowait_sleeptime;
644 	} else {
645 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
646 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
647 
648 			iowait = ktime_add(ts->iowait_sleeptime, delta);
649 		} else {
650 			iowait = ts->iowait_sleeptime;
651 		}
652 	}
653 
654 	return ktime_to_us(iowait);
655 }
656 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
657 
658 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
659 {
660 	hrtimer_cancel(&ts->sched_timer);
661 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
662 
663 	/* Forward the time to expire in the future */
664 	hrtimer_forward(&ts->sched_timer, now, tick_period);
665 
666 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
667 		hrtimer_start_expires(&ts->sched_timer,
668 				      HRTIMER_MODE_ABS_PINNED_HARD);
669 	} else {
670 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
671 	}
672 
673 	/*
674 	 * Reset to make sure next tick stop doesn't get fooled by past
675 	 * cached clock deadline.
676 	 */
677 	ts->next_tick = 0;
678 }
679 
680 static inline bool local_timer_softirq_pending(void)
681 {
682 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
683 }
684 
685 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
686 {
687 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
688 	unsigned long basejiff;
689 	unsigned int seq;
690 
691 	/* Read jiffies and the time when jiffies were updated last */
692 	do {
693 		seq = read_seqcount_begin(&jiffies_seq);
694 		basemono = last_jiffies_update;
695 		basejiff = jiffies;
696 	} while (read_seqcount_retry(&jiffies_seq, seq));
697 	ts->last_jiffies = basejiff;
698 	ts->timer_expires_base = basemono;
699 
700 	/*
701 	 * Keep the periodic tick, when RCU, architecture or irq_work
702 	 * requests it.
703 	 * Aside of that check whether the local timer softirq is
704 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
705 	 * because there is an already expired timer, so it will request
706 	 * immeditate expiry, which rearms the hardware timer with a
707 	 * minimal delta which brings us back to this place
708 	 * immediately. Lather, rinse and repeat...
709 	 */
710 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
711 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
712 		next_tick = basemono + TICK_NSEC;
713 	} else {
714 		/*
715 		 * Get the next pending timer. If high resolution
716 		 * timers are enabled this only takes the timer wheel
717 		 * timers into account. If high resolution timers are
718 		 * disabled this also looks at the next expiring
719 		 * hrtimer.
720 		 */
721 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
722 		ts->next_timer = next_tmr;
723 		/* Take the next rcu event into account */
724 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
725 	}
726 
727 	/*
728 	 * If the tick is due in the next period, keep it ticking or
729 	 * force prod the timer.
730 	 */
731 	delta = next_tick - basemono;
732 	if (delta <= (u64)TICK_NSEC) {
733 		/*
734 		 * Tell the timer code that the base is not idle, i.e. undo
735 		 * the effect of get_next_timer_interrupt():
736 		 */
737 		timer_clear_idle();
738 		/*
739 		 * We've not stopped the tick yet, and there's a timer in the
740 		 * next period, so no point in stopping it either, bail.
741 		 */
742 		if (!ts->tick_stopped) {
743 			ts->timer_expires = 0;
744 			goto out;
745 		}
746 	}
747 
748 	/*
749 	 * If this CPU is the one which had the do_timer() duty last, we limit
750 	 * the sleep time to the timekeeping max_deferment value.
751 	 * Otherwise we can sleep as long as we want.
752 	 */
753 	delta = timekeeping_max_deferment();
754 	if (cpu != tick_do_timer_cpu &&
755 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
756 		delta = KTIME_MAX;
757 
758 	/* Calculate the next expiry time */
759 	if (delta < (KTIME_MAX - basemono))
760 		expires = basemono + delta;
761 	else
762 		expires = KTIME_MAX;
763 
764 	ts->timer_expires = min_t(u64, expires, next_tick);
765 
766 out:
767 	return ts->timer_expires;
768 }
769 
770 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
771 {
772 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
773 	u64 basemono = ts->timer_expires_base;
774 	u64 expires = ts->timer_expires;
775 	ktime_t tick = expires;
776 
777 	/* Make sure we won't be trying to stop it twice in a row. */
778 	ts->timer_expires_base = 0;
779 
780 	/*
781 	 * If this CPU is the one which updates jiffies, then give up
782 	 * the assignment and let it be taken by the CPU which runs
783 	 * the tick timer next, which might be this CPU as well. If we
784 	 * don't drop this here the jiffies might be stale and
785 	 * do_timer() never invoked. Keep track of the fact that it
786 	 * was the one which had the do_timer() duty last.
787 	 */
788 	if (cpu == tick_do_timer_cpu) {
789 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
790 		ts->do_timer_last = 1;
791 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
792 		ts->do_timer_last = 0;
793 	}
794 
795 	/* Skip reprogram of event if its not changed */
796 	if (ts->tick_stopped && (expires == ts->next_tick)) {
797 		/* Sanity check: make sure clockevent is actually programmed */
798 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
799 			return;
800 
801 		WARN_ON_ONCE(1);
802 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
803 			    basemono, ts->next_tick, dev->next_event,
804 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
805 	}
806 
807 	/*
808 	 * nohz_stop_sched_tick can be called several times before
809 	 * the nohz_restart_sched_tick is called. This happens when
810 	 * interrupts arrive which do not cause a reschedule. In the
811 	 * first call we save the current tick time, so we can restart
812 	 * the scheduler tick in nohz_restart_sched_tick.
813 	 */
814 	if (!ts->tick_stopped) {
815 		calc_load_nohz_start();
816 		quiet_vmstat();
817 
818 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
819 		ts->tick_stopped = 1;
820 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
821 	}
822 
823 	ts->next_tick = tick;
824 
825 	/*
826 	 * If the expiration time == KTIME_MAX, then we simply stop
827 	 * the tick timer.
828 	 */
829 	if (unlikely(expires == KTIME_MAX)) {
830 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
831 			hrtimer_cancel(&ts->sched_timer);
832 		return;
833 	}
834 
835 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
836 		hrtimer_start(&ts->sched_timer, tick,
837 			      HRTIMER_MODE_ABS_PINNED_HARD);
838 	} else {
839 		hrtimer_set_expires(&ts->sched_timer, tick);
840 		tick_program_event(tick, 1);
841 	}
842 }
843 
844 static void tick_nohz_retain_tick(struct tick_sched *ts)
845 {
846 	ts->timer_expires_base = 0;
847 }
848 
849 #ifdef CONFIG_NO_HZ_FULL
850 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
851 {
852 	if (tick_nohz_next_event(ts, cpu))
853 		tick_nohz_stop_tick(ts, cpu);
854 	else
855 		tick_nohz_retain_tick(ts);
856 }
857 #endif /* CONFIG_NO_HZ_FULL */
858 
859 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
860 {
861 	/* Update jiffies first */
862 	tick_do_update_jiffies64(now);
863 
864 	/*
865 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
866 	 * the clock forward checks in the enqueue path:
867 	 */
868 	timer_clear_idle();
869 
870 	calc_load_nohz_stop();
871 	touch_softlockup_watchdog_sched();
872 	/*
873 	 * Cancel the scheduled timer and restore the tick
874 	 */
875 	ts->tick_stopped  = 0;
876 	ts->idle_exittime = now;
877 
878 	tick_nohz_restart(ts, now);
879 }
880 
881 static void tick_nohz_full_update_tick(struct tick_sched *ts)
882 {
883 #ifdef CONFIG_NO_HZ_FULL
884 	int cpu = smp_processor_id();
885 
886 	if (!tick_nohz_full_cpu(cpu))
887 		return;
888 
889 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
890 		return;
891 
892 	if (can_stop_full_tick(cpu, ts))
893 		tick_nohz_stop_sched_tick(ts, cpu);
894 	else if (ts->tick_stopped)
895 		tick_nohz_restart_sched_tick(ts, ktime_get());
896 #endif
897 }
898 
899 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
900 {
901 	/*
902 	 * If this CPU is offline and it is the one which updates
903 	 * jiffies, then give up the assignment and let it be taken by
904 	 * the CPU which runs the tick timer next. If we don't drop
905 	 * this here the jiffies might be stale and do_timer() never
906 	 * invoked.
907 	 */
908 	if (unlikely(!cpu_online(cpu))) {
909 		if (cpu == tick_do_timer_cpu)
910 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
911 		/*
912 		 * Make sure the CPU doesn't get fooled by obsolete tick
913 		 * deadline if it comes back online later.
914 		 */
915 		ts->next_tick = 0;
916 		return false;
917 	}
918 
919 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
920 		return false;
921 
922 	if (need_resched())
923 		return false;
924 
925 	if (unlikely(local_softirq_pending())) {
926 		static int ratelimit;
927 
928 		if (ratelimit < 10 &&
929 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
930 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
931 				(unsigned int) local_softirq_pending());
932 			ratelimit++;
933 		}
934 		return false;
935 	}
936 
937 	if (tick_nohz_full_enabled()) {
938 		/*
939 		 * Keep the tick alive to guarantee timekeeping progression
940 		 * if there are full dynticks CPUs around
941 		 */
942 		if (tick_do_timer_cpu == cpu)
943 			return false;
944 		/*
945 		 * Boot safety: make sure the timekeeping duty has been
946 		 * assigned before entering dyntick-idle mode,
947 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
948 		 */
949 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
950 			return false;
951 
952 		/* Should not happen for nohz-full */
953 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
954 			return false;
955 	}
956 
957 	return true;
958 }
959 
960 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
961 {
962 	ktime_t expires;
963 	int cpu = smp_processor_id();
964 
965 	/*
966 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
967 	 * tick timer expiration time is known already.
968 	 */
969 	if (ts->timer_expires_base)
970 		expires = ts->timer_expires;
971 	else if (can_stop_idle_tick(cpu, ts))
972 		expires = tick_nohz_next_event(ts, cpu);
973 	else
974 		return;
975 
976 	ts->idle_calls++;
977 
978 	if (expires > 0LL) {
979 		int was_stopped = ts->tick_stopped;
980 
981 		tick_nohz_stop_tick(ts, cpu);
982 
983 		ts->idle_sleeps++;
984 		ts->idle_expires = expires;
985 
986 		if (!was_stopped && ts->tick_stopped) {
987 			ts->idle_jiffies = ts->last_jiffies;
988 			nohz_balance_enter_idle(cpu);
989 		}
990 	} else {
991 		tick_nohz_retain_tick(ts);
992 	}
993 }
994 
995 /**
996  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
997  *
998  * When the next event is more than a tick into the future, stop the idle tick
999  */
1000 void tick_nohz_idle_stop_tick(void)
1001 {
1002 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1003 }
1004 
1005 void tick_nohz_idle_retain_tick(void)
1006 {
1007 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1008 	/*
1009 	 * Undo the effect of get_next_timer_interrupt() called from
1010 	 * tick_nohz_next_event().
1011 	 */
1012 	timer_clear_idle();
1013 }
1014 
1015 /**
1016  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1017  *
1018  * Called when we start the idle loop.
1019  */
1020 void tick_nohz_idle_enter(void)
1021 {
1022 	struct tick_sched *ts;
1023 
1024 	lockdep_assert_irqs_enabled();
1025 
1026 	local_irq_disable();
1027 
1028 	ts = this_cpu_ptr(&tick_cpu_sched);
1029 
1030 	WARN_ON_ONCE(ts->timer_expires_base);
1031 
1032 	ts->inidle = 1;
1033 	tick_nohz_start_idle(ts);
1034 
1035 	local_irq_enable();
1036 }
1037 
1038 /**
1039  * tick_nohz_irq_exit - update next tick event from interrupt exit
1040  *
1041  * When an interrupt fires while we are idle and it doesn't cause
1042  * a reschedule, it may still add, modify or delete a timer, enqueue
1043  * an RCU callback, etc...
1044  * So we need to re-calculate and reprogram the next tick event.
1045  */
1046 void tick_nohz_irq_exit(void)
1047 {
1048 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1049 
1050 	if (ts->inidle)
1051 		tick_nohz_start_idle(ts);
1052 	else
1053 		tick_nohz_full_update_tick(ts);
1054 }
1055 
1056 /**
1057  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1058  */
1059 bool tick_nohz_idle_got_tick(void)
1060 {
1061 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062 
1063 	if (ts->got_idle_tick) {
1064 		ts->got_idle_tick = 0;
1065 		return true;
1066 	}
1067 	return false;
1068 }
1069 
1070 /**
1071  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1072  * or the tick, whatever that expires first. Note that, if the tick has been
1073  * stopped, it returns the next hrtimer.
1074  *
1075  * Called from power state control code with interrupts disabled
1076  */
1077 ktime_t tick_nohz_get_next_hrtimer(void)
1078 {
1079 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1080 }
1081 
1082 /**
1083  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1084  * @delta_next: duration until the next event if the tick cannot be stopped
1085  *
1086  * Called from power state control code with interrupts disabled
1087  */
1088 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1089 {
1090 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1091 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1092 	int cpu = smp_processor_id();
1093 	/*
1094 	 * The idle entry time is expected to be a sufficient approximation of
1095 	 * the current time at this point.
1096 	 */
1097 	ktime_t now = ts->idle_entrytime;
1098 	ktime_t next_event;
1099 
1100 	WARN_ON_ONCE(!ts->inidle);
1101 
1102 	*delta_next = ktime_sub(dev->next_event, now);
1103 
1104 	if (!can_stop_idle_tick(cpu, ts))
1105 		return *delta_next;
1106 
1107 	next_event = tick_nohz_next_event(ts, cpu);
1108 	if (!next_event)
1109 		return *delta_next;
1110 
1111 	/*
1112 	 * If the next highres timer to expire is earlier than next_event, the
1113 	 * idle governor needs to know that.
1114 	 */
1115 	next_event = min_t(u64, next_event,
1116 			   hrtimer_next_event_without(&ts->sched_timer));
1117 
1118 	return ktime_sub(next_event, now);
1119 }
1120 
1121 /**
1122  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1123  * for a particular CPU.
1124  *
1125  * Called from the schedutil frequency scaling governor in scheduler context.
1126  */
1127 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1128 {
1129 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1130 
1131 	return ts->idle_calls;
1132 }
1133 
1134 /**
1135  * tick_nohz_get_idle_calls - return the current idle calls counter value
1136  *
1137  * Called from the schedutil frequency scaling governor in scheduler context.
1138  */
1139 unsigned long tick_nohz_get_idle_calls(void)
1140 {
1141 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142 
1143 	return ts->idle_calls;
1144 }
1145 
1146 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1147 {
1148 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1149 	unsigned long ticks;
1150 
1151 	if (vtime_accounting_enabled_this_cpu())
1152 		return;
1153 	/*
1154 	 * We stopped the tick in idle. Update process times would miss the
1155 	 * time we slept as update_process_times does only a 1 tick
1156 	 * accounting. Enforce that this is accounted to idle !
1157 	 */
1158 	ticks = jiffies - ts->idle_jiffies;
1159 	/*
1160 	 * We might be one off. Do not randomly account a huge number of ticks!
1161 	 */
1162 	if (ticks && ticks < LONG_MAX)
1163 		account_idle_ticks(ticks);
1164 #endif
1165 }
1166 
1167 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1168 {
1169 	tick_nohz_restart_sched_tick(ts, now);
1170 	tick_nohz_account_idle_ticks(ts);
1171 }
1172 
1173 void tick_nohz_idle_restart_tick(void)
1174 {
1175 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176 
1177 	if (ts->tick_stopped)
1178 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1179 }
1180 
1181 /**
1182  * tick_nohz_idle_exit - restart the idle tick from the idle task
1183  *
1184  * Restart the idle tick when the CPU is woken up from idle
1185  * This also exit the RCU extended quiescent state. The CPU
1186  * can use RCU again after this function is called.
1187  */
1188 void tick_nohz_idle_exit(void)
1189 {
1190 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191 	bool idle_active, tick_stopped;
1192 	ktime_t now;
1193 
1194 	local_irq_disable();
1195 
1196 	WARN_ON_ONCE(!ts->inidle);
1197 	WARN_ON_ONCE(ts->timer_expires_base);
1198 
1199 	ts->inidle = 0;
1200 	idle_active = ts->idle_active;
1201 	tick_stopped = ts->tick_stopped;
1202 
1203 	if (idle_active || tick_stopped)
1204 		now = ktime_get();
1205 
1206 	if (idle_active)
1207 		tick_nohz_stop_idle(ts, now);
1208 
1209 	if (tick_stopped)
1210 		__tick_nohz_idle_restart_tick(ts, now);
1211 
1212 	local_irq_enable();
1213 }
1214 
1215 /*
1216  * The nohz low res interrupt handler
1217  */
1218 static void tick_nohz_handler(struct clock_event_device *dev)
1219 {
1220 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 	struct pt_regs *regs = get_irq_regs();
1222 	ktime_t now = ktime_get();
1223 
1224 	dev->next_event = KTIME_MAX;
1225 
1226 	tick_sched_do_timer(ts, now);
1227 	tick_sched_handle(ts, regs);
1228 
1229 	/* No need to reprogram if we are running tickless  */
1230 	if (unlikely(ts->tick_stopped))
1231 		return;
1232 
1233 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1234 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1235 }
1236 
1237 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1238 {
1239 	if (!tick_nohz_enabled)
1240 		return;
1241 	ts->nohz_mode = mode;
1242 	/* One update is enough */
1243 	if (!test_and_set_bit(0, &tick_nohz_active))
1244 		timers_update_nohz();
1245 }
1246 
1247 /**
1248  * tick_nohz_switch_to_nohz - switch to nohz mode
1249  */
1250 static void tick_nohz_switch_to_nohz(void)
1251 {
1252 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253 	ktime_t next;
1254 
1255 	if (!tick_nohz_enabled)
1256 		return;
1257 
1258 	if (tick_switch_to_oneshot(tick_nohz_handler))
1259 		return;
1260 
1261 	/*
1262 	 * Recycle the hrtimer in ts, so we can share the
1263 	 * hrtimer_forward with the highres code.
1264 	 */
1265 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1266 	/* Get the next period */
1267 	next = tick_init_jiffy_update();
1268 
1269 	hrtimer_set_expires(&ts->sched_timer, next);
1270 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1271 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1272 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1273 }
1274 
1275 static inline void tick_nohz_irq_enter(void)
1276 {
1277 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278 	ktime_t now;
1279 
1280 	if (!ts->idle_active && !ts->tick_stopped)
1281 		return;
1282 	now = ktime_get();
1283 	if (ts->idle_active)
1284 		tick_nohz_stop_idle(ts, now);
1285 	if (ts->tick_stopped)
1286 		tick_nohz_update_jiffies(now);
1287 }
1288 
1289 #else
1290 
1291 static inline void tick_nohz_switch_to_nohz(void) { }
1292 static inline void tick_nohz_irq_enter(void) { }
1293 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1294 
1295 #endif /* CONFIG_NO_HZ_COMMON */
1296 
1297 /*
1298  * Called from irq_enter to notify about the possible interruption of idle()
1299  */
1300 void tick_irq_enter(void)
1301 {
1302 	tick_check_oneshot_broadcast_this_cpu();
1303 	tick_nohz_irq_enter();
1304 }
1305 
1306 /*
1307  * High resolution timer specific code
1308  */
1309 #ifdef CONFIG_HIGH_RES_TIMERS
1310 /*
1311  * We rearm the timer until we get disabled by the idle code.
1312  * Called with interrupts disabled.
1313  */
1314 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1315 {
1316 	struct tick_sched *ts =
1317 		container_of(timer, struct tick_sched, sched_timer);
1318 	struct pt_regs *regs = get_irq_regs();
1319 	ktime_t now = ktime_get();
1320 
1321 	tick_sched_do_timer(ts, now);
1322 
1323 	/*
1324 	 * Do not call, when we are not in irq context and have
1325 	 * no valid regs pointer
1326 	 */
1327 	if (regs)
1328 		tick_sched_handle(ts, regs);
1329 	else
1330 		ts->next_tick = 0;
1331 
1332 	/* No need to reprogram if we are in idle or full dynticks mode */
1333 	if (unlikely(ts->tick_stopped))
1334 		return HRTIMER_NORESTART;
1335 
1336 	hrtimer_forward(timer, now, tick_period);
1337 
1338 	return HRTIMER_RESTART;
1339 }
1340 
1341 static int sched_skew_tick;
1342 
1343 static int __init skew_tick(char *str)
1344 {
1345 	get_option(&str, &sched_skew_tick);
1346 
1347 	return 0;
1348 }
1349 early_param("skew_tick", skew_tick);
1350 
1351 /**
1352  * tick_setup_sched_timer - setup the tick emulation timer
1353  */
1354 void tick_setup_sched_timer(void)
1355 {
1356 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1357 	ktime_t now = ktime_get();
1358 
1359 	/*
1360 	 * Emulate tick processing via per-CPU hrtimers:
1361 	 */
1362 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363 	ts->sched_timer.function = tick_sched_timer;
1364 
1365 	/* Get the next period (per-CPU) */
1366 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1367 
1368 	/* Offset the tick to avert jiffies_lock contention. */
1369 	if (sched_skew_tick) {
1370 		u64 offset = ktime_to_ns(tick_period) >> 1;
1371 		do_div(offset, num_possible_cpus());
1372 		offset *= smp_processor_id();
1373 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1374 	}
1375 
1376 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1377 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1378 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1379 }
1380 #endif /* HIGH_RES_TIMERS */
1381 
1382 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1383 void tick_cancel_sched_timer(int cpu)
1384 {
1385 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1386 
1387 # ifdef CONFIG_HIGH_RES_TIMERS
1388 	if (ts->sched_timer.base)
1389 		hrtimer_cancel(&ts->sched_timer);
1390 # endif
1391 
1392 	memset(ts, 0, sizeof(*ts));
1393 }
1394 #endif
1395 
1396 /**
1397  * Async notification about clocksource changes
1398  */
1399 void tick_clock_notify(void)
1400 {
1401 	int cpu;
1402 
1403 	for_each_possible_cpu(cpu)
1404 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1405 }
1406 
1407 /*
1408  * Async notification about clock event changes
1409  */
1410 void tick_oneshot_notify(void)
1411 {
1412 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413 
1414 	set_bit(0, &ts->check_clocks);
1415 }
1416 
1417 /**
1418  * Check, if a change happened, which makes oneshot possible.
1419  *
1420  * Called cyclic from the hrtimer softirq (driven by the timer
1421  * softirq) allow_nohz signals, that we can switch into low-res nohz
1422  * mode, because high resolution timers are disabled (either compile
1423  * or runtime). Called with interrupts disabled.
1424  */
1425 int tick_check_oneshot_change(int allow_nohz)
1426 {
1427 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428 
1429 	if (!test_and_clear_bit(0, &ts->check_clocks))
1430 		return 0;
1431 
1432 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1433 		return 0;
1434 
1435 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1436 		return 0;
1437 
1438 	if (!allow_nohz)
1439 		return 1;
1440 
1441 	tick_nohz_switch_to_nohz();
1442 	return 0;
1443 }
1444