xref: /openbmc/linux/kernel/time/tick-sched.c (revision 07b65a80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 #define MAX_STALLED_JIFFIES 5
173 
174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176 	int cpu = smp_processor_id();
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 	/*
180 	 * Check if the do_timer duty was dropped. We don't care about
181 	 * concurrency: This happens only when the CPU in charge went
182 	 * into a long sleep. If two CPUs happen to assign themselves to
183 	 * this duty, then the jiffies update is still serialized by
184 	 * jiffies_lock.
185 	 *
186 	 * If nohz_full is enabled, this should not happen because the
187 	 * tick_do_timer_cpu never relinquishes.
188 	 */
189 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191 		WARN_ON_ONCE(tick_nohz_full_running);
192 #endif
193 		tick_do_timer_cpu = cpu;
194 	}
195 #endif
196 
197 	/* Check, if the jiffies need an update */
198 	if (tick_do_timer_cpu == cpu)
199 		tick_do_update_jiffies64(now);
200 
201 	/*
202 	 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 	 * or VMEXIT'ed for several msecs), force an update.
204 	 */
205 	if (ts->last_tick_jiffies != jiffies) {
206 		ts->stalled_jiffies = 0;
207 		ts->last_tick_jiffies = READ_ONCE(jiffies);
208 	} else {
209 		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 			tick_do_update_jiffies64(now);
211 			ts->stalled_jiffies = 0;
212 			ts->last_tick_jiffies = READ_ONCE(jiffies);
213 		}
214 	}
215 
216 	if (ts->inidle)
217 		ts->got_idle_tick = 1;
218 }
219 
220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223 	/*
224 	 * When we are idle and the tick is stopped, we have to touch
225 	 * the watchdog as we might not schedule for a really long
226 	 * time. This happens on complete idle SMP systems while
227 	 * waiting on the login prompt. We also increment the "start of
228 	 * idle" jiffy stamp so the idle accounting adjustment we do
229 	 * when we go busy again does not account too much ticks.
230 	 */
231 	if (ts->tick_stopped) {
232 		touch_softlockup_watchdog_sched();
233 		if (is_idle_task(current))
234 			ts->idle_jiffies++;
235 		/*
236 		 * In case the current tick fired too early past its expected
237 		 * expiration, make sure we don't bypass the next clock reprogramming
238 		 * to the same deadline.
239 		 */
240 		ts->next_tick = 0;
241 	}
242 #endif
243 	update_process_times(user_mode(regs));
244 	profile_tick(CPU_PROFILING);
245 }
246 #endif
247 
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254 
255 static bool check_tick_dependency(atomic_t *dep)
256 {
257 	int val = atomic_read(dep);
258 
259 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
260 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261 		return true;
262 	}
263 
264 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
265 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266 		return true;
267 	}
268 
269 	if (val & TICK_DEP_MASK_SCHED) {
270 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271 		return true;
272 	}
273 
274 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276 		return true;
277 	}
278 
279 	if (val & TICK_DEP_MASK_RCU) {
280 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 		return true;
282 	}
283 
284 	return false;
285 }
286 
287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289 	lockdep_assert_irqs_disabled();
290 
291 	if (unlikely(!cpu_online(cpu)))
292 		return false;
293 
294 	if (check_tick_dependency(&tick_dep_mask))
295 		return false;
296 
297 	if (check_tick_dependency(&ts->tick_dep_mask))
298 		return false;
299 
300 	if (check_tick_dependency(&current->tick_dep_mask))
301 		return false;
302 
303 	if (check_tick_dependency(&current->signal->tick_dep_mask))
304 		return false;
305 
306 	return true;
307 }
308 
309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313 
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316 
317 /*
318  * Kick this CPU if it's full dynticks in order to force it to
319  * re-evaluate its dependency on the tick and restart it if necessary.
320  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321  * is NMI safe.
322  */
323 static void tick_nohz_full_kick(void)
324 {
325 	if (!tick_nohz_full_cpu(smp_processor_id()))
326 		return;
327 
328 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330 
331 /*
332  * Kick the CPU if it's full dynticks in order to force it to
333  * re-evaluate its dependency on the tick and restart it if necessary.
334  */
335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337 	if (!tick_nohz_full_cpu(cpu))
338 		return;
339 
340 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342 
343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345 	int cpu;
346 
347 	/*
348 	 * If the task is not running, run_posix_cpu_timers()
349 	 * has nothing to elapse, IPI can then be spared.
350 	 *
351 	 * activate_task()                      STORE p->tick_dep_mask
352 	 *   STORE p->on_rq
353 	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
354 	 *   LOCK rq->lock                      LOAD p->on_rq
355 	 *   smp_mb__after_spin_lock()
356 	 *   tick_nohz_task_switch()
357 	 *     LOAD p->tick_dep_mask
358 	 */
359 	if (!sched_task_on_rq(tsk))
360 		return;
361 
362 	/*
363 	 * If the task concurrently migrates to another CPU,
364 	 * we guarantee it sees the new tick dependency upon
365 	 * schedule.
366 	 *
367 	 * set_task_cpu(p, cpu);
368 	 *   STORE p->cpu = @cpu
369 	 * __schedule() (switch to task 'p')
370 	 *   LOCK rq->lock
371 	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
372 	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
373 	 *      LOAD p->tick_dep_mask           LOAD p->cpu
374 	 */
375 	cpu = task_cpu(tsk);
376 
377 	preempt_disable();
378 	if (cpu_online(cpu))
379 		tick_nohz_full_kick_cpu(cpu);
380 	preempt_enable();
381 }
382 
383 /*
384  * Kick all full dynticks CPUs in order to force these to re-evaluate
385  * their dependency on the tick and restart it if necessary.
386  */
387 static void tick_nohz_full_kick_all(void)
388 {
389 	int cpu;
390 
391 	if (!tick_nohz_full_running)
392 		return;
393 
394 	preempt_disable();
395 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 		tick_nohz_full_kick_cpu(cpu);
397 	preempt_enable();
398 }
399 
400 static void tick_nohz_dep_set_all(atomic_t *dep,
401 				  enum tick_dep_bits bit)
402 {
403 	int prev;
404 
405 	prev = atomic_fetch_or(BIT(bit), dep);
406 	if (!prev)
407 		tick_nohz_full_kick_all();
408 }
409 
410 /*
411  * Set a global tick dependency. Used by perf events that rely on freq and
412  * by unstable clock.
413  */
414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418 
419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421 	atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423 
424 /*
425  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426  * manage events throttling.
427  */
428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430 	int prev;
431 	struct tick_sched *ts;
432 
433 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434 
435 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436 	if (!prev) {
437 		preempt_disable();
438 		/* Perf needs local kick that is NMI safe */
439 		if (cpu == smp_processor_id()) {
440 			tick_nohz_full_kick();
441 		} else {
442 			/* Remote irq work not NMI-safe */
443 			if (!WARN_ON_ONCE(in_nmi()))
444 				tick_nohz_full_kick_cpu(cpu);
445 		}
446 		preempt_enable();
447 	}
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450 
451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454 
455 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458 
459 /*
460  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461  * in order to elapse per task timers.
462  */
463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 		tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469 
470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475 
476 /*
477  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478  * per process timers.
479  */
480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 			      enum tick_dep_bits bit)
482 {
483 	int prev;
484 	struct signal_struct *sig = tsk->signal;
485 
486 	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 	if (!prev) {
488 		struct task_struct *t;
489 
490 		lockdep_assert_held(&tsk->sighand->siglock);
491 		__for_each_thread(sig, t)
492 			tick_nohz_kick_task(t);
493 	}
494 }
495 
496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500 
501 /*
502  * Re-evaluate the need for the tick as we switch the current task.
503  * It might need the tick due to per task/process properties:
504  * perf events, posix CPU timers, ...
505  */
506 void __tick_nohz_task_switch(void)
507 {
508 	struct tick_sched *ts;
509 
510 	if (!tick_nohz_full_cpu(smp_processor_id()))
511 		return;
512 
513 	ts = this_cpu_ptr(&tick_cpu_sched);
514 
515 	if (ts->tick_stopped) {
516 		if (atomic_read(&current->tick_dep_mask) ||
517 		    atomic_read(&current->signal->tick_dep_mask))
518 			tick_nohz_full_kick();
519 	}
520 }
521 
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526 	cpumask_copy(tick_nohz_full_mask, cpumask);
527 	tick_nohz_full_running = true;
528 }
529 
530 static int tick_nohz_cpu_down(unsigned int cpu)
531 {
532 	/*
533 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
534 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
535 	 * CPUs. It must remain online when nohz full is enabled.
536 	 */
537 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
538 		return -EBUSY;
539 	return 0;
540 }
541 
542 void __init tick_nohz_init(void)
543 {
544 	int cpu, ret;
545 
546 	if (!tick_nohz_full_running)
547 		return;
548 
549 	/*
550 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
551 	 * locking contexts. But then we need irq work to raise its own
552 	 * interrupts to avoid circular dependency on the tick
553 	 */
554 	if (!arch_irq_work_has_interrupt()) {
555 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
556 		cpumask_clear(tick_nohz_full_mask);
557 		tick_nohz_full_running = false;
558 		return;
559 	}
560 
561 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
562 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
563 		cpu = smp_processor_id();
564 
565 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
566 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
567 				"for timekeeping\n", cpu);
568 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
569 		}
570 	}
571 
572 	for_each_cpu(cpu, tick_nohz_full_mask)
573 		ct_cpu_track_user(cpu);
574 
575 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
576 					"kernel/nohz:predown", NULL,
577 					tick_nohz_cpu_down);
578 	WARN_ON(ret < 0);
579 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
580 		cpumask_pr_args(tick_nohz_full_mask));
581 }
582 #endif
583 
584 /*
585  * NOHZ - aka dynamic tick functionality
586  */
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * NO HZ enabled ?
590  */
591 bool tick_nohz_enabled __read_mostly  = true;
592 unsigned long tick_nohz_active  __read_mostly;
593 /*
594  * Enable / Disable tickless mode
595  */
596 static int __init setup_tick_nohz(char *str)
597 {
598 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
599 }
600 
601 __setup("nohz=", setup_tick_nohz);
602 
603 bool tick_nohz_tick_stopped(void)
604 {
605 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
606 
607 	return ts->tick_stopped;
608 }
609 
610 bool tick_nohz_tick_stopped_cpu(int cpu)
611 {
612 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
613 
614 	return ts->tick_stopped;
615 }
616 
617 /**
618  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
619  *
620  * Called from interrupt entry when the CPU was idle
621  *
622  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
623  * must be updated. Otherwise an interrupt handler could use a stale jiffy
624  * value. We do this unconditionally on any CPU, as we don't know whether the
625  * CPU, which has the update task assigned is in a long sleep.
626  */
627 static void tick_nohz_update_jiffies(ktime_t now)
628 {
629 	unsigned long flags;
630 
631 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
632 
633 	local_irq_save(flags);
634 	tick_do_update_jiffies64(now);
635 	local_irq_restore(flags);
636 
637 	touch_softlockup_watchdog_sched();
638 }
639 
640 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
641 {
642 	ktime_t delta;
643 
644 	if (WARN_ON_ONCE(!ts->idle_active))
645 		return;
646 
647 	delta = ktime_sub(now, ts->idle_entrytime);
648 
649 	if (nr_iowait_cpu(smp_processor_id()) > 0)
650 		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
651 	else
652 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
653 
654 	ts->idle_entrytime = now;
655 	ts->idle_active = 0;
656 
657 	sched_clock_idle_wakeup_event();
658 }
659 
660 static void tick_nohz_start_idle(struct tick_sched *ts)
661 {
662 	ts->idle_entrytime = ktime_get();
663 	ts->idle_active = 1;
664 	sched_clock_idle_sleep_event();
665 }
666 
667 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
668 				 bool compute_delta, u64 *last_update_time)
669 {
670 	ktime_t now, idle;
671 
672 	if (!tick_nohz_active)
673 		return -1;
674 
675 	now = ktime_get();
676 	if (last_update_time)
677 		*last_update_time = ktime_to_us(now);
678 
679 	if (ts->idle_active && compute_delta) {
680 		ktime_t delta = ktime_sub(now, ts->idle_entrytime);
681 
682 		idle = ktime_add(*sleeptime, delta);
683 	} else {
684 		idle = *sleeptime;
685 	}
686 
687 	return ktime_to_us(idle);
688 
689 }
690 
691 /**
692  * get_cpu_idle_time_us - get the total idle time of a CPU
693  * @cpu: CPU number to query
694  * @last_update_time: variable to store update time in. Do not update
695  * counters if NULL.
696  *
697  * Return the cumulative idle time (since boot) for a given
698  * CPU, in microseconds.
699  *
700  * This time is measured via accounting rather than sampling,
701  * and is as accurate as ktime_get() is.
702  *
703  * This function returns -1 if NOHZ is not enabled.
704  */
705 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
706 {
707 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
708 
709 	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
710 				     !nr_iowait_cpu(cpu), last_update_time);
711 }
712 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
713 
714 /**
715  * get_cpu_iowait_time_us - get the total iowait time of a CPU
716  * @cpu: CPU number to query
717  * @last_update_time: variable to store update time in. Do not update
718  * counters if NULL.
719  *
720  * Return the cumulative iowait time (since boot) for a given
721  * CPU, in microseconds.
722  *
723  * This time is measured via accounting rather than sampling,
724  * and is as accurate as ktime_get() is.
725  *
726  * This function returns -1 if NOHZ is not enabled.
727  */
728 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
729 {
730 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
731 
732 	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
733 				     nr_iowait_cpu(cpu), last_update_time);
734 }
735 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
736 
737 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
738 {
739 	hrtimer_cancel(&ts->sched_timer);
740 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
741 
742 	/* Forward the time to expire in the future */
743 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
744 
745 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
746 		hrtimer_start_expires(&ts->sched_timer,
747 				      HRTIMER_MODE_ABS_PINNED_HARD);
748 	} else {
749 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
750 	}
751 
752 	/*
753 	 * Reset to make sure next tick stop doesn't get fooled by past
754 	 * cached clock deadline.
755 	 */
756 	ts->next_tick = 0;
757 }
758 
759 static inline bool local_timer_softirq_pending(void)
760 {
761 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
762 }
763 
764 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
765 {
766 	u64 basemono, next_tick, delta, expires;
767 	unsigned long basejiff;
768 	unsigned int seq;
769 
770 	/* Read jiffies and the time when jiffies were updated last */
771 	do {
772 		seq = read_seqcount_begin(&jiffies_seq);
773 		basemono = last_jiffies_update;
774 		basejiff = jiffies;
775 	} while (read_seqcount_retry(&jiffies_seq, seq));
776 	ts->last_jiffies = basejiff;
777 	ts->timer_expires_base = basemono;
778 
779 	/*
780 	 * Keep the periodic tick, when RCU, architecture or irq_work
781 	 * requests it.
782 	 * Aside of that check whether the local timer softirq is
783 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
784 	 * because there is an already expired timer, so it will request
785 	 * immediate expiry, which rearms the hardware timer with a
786 	 * minimal delta which brings us back to this place
787 	 * immediately. Lather, rinse and repeat...
788 	 */
789 	if (rcu_needs_cpu() || arch_needs_cpu() ||
790 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
791 		next_tick = basemono + TICK_NSEC;
792 	} else {
793 		/*
794 		 * Get the next pending timer. If high resolution
795 		 * timers are enabled this only takes the timer wheel
796 		 * timers into account. If high resolution timers are
797 		 * disabled this also looks at the next expiring
798 		 * hrtimer.
799 		 */
800 		next_tick = get_next_timer_interrupt(basejiff, basemono);
801 		ts->next_timer = next_tick;
802 	}
803 
804 	/*
805 	 * If the tick is due in the next period, keep it ticking or
806 	 * force prod the timer.
807 	 */
808 	delta = next_tick - basemono;
809 	if (delta <= (u64)TICK_NSEC) {
810 		/*
811 		 * Tell the timer code that the base is not idle, i.e. undo
812 		 * the effect of get_next_timer_interrupt():
813 		 */
814 		timer_clear_idle();
815 		/*
816 		 * We've not stopped the tick yet, and there's a timer in the
817 		 * next period, so no point in stopping it either, bail.
818 		 */
819 		if (!ts->tick_stopped) {
820 			ts->timer_expires = 0;
821 			goto out;
822 		}
823 	}
824 
825 	/*
826 	 * If this CPU is the one which had the do_timer() duty last, we limit
827 	 * the sleep time to the timekeeping max_deferment value.
828 	 * Otherwise we can sleep as long as we want.
829 	 */
830 	delta = timekeeping_max_deferment();
831 	if (cpu != tick_do_timer_cpu &&
832 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
833 		delta = KTIME_MAX;
834 
835 	/* Calculate the next expiry time */
836 	if (delta < (KTIME_MAX - basemono))
837 		expires = basemono + delta;
838 	else
839 		expires = KTIME_MAX;
840 
841 	ts->timer_expires = min_t(u64, expires, next_tick);
842 
843 out:
844 	return ts->timer_expires;
845 }
846 
847 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
848 {
849 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
850 	u64 basemono = ts->timer_expires_base;
851 	u64 expires = ts->timer_expires;
852 	ktime_t tick = expires;
853 
854 	/* Make sure we won't be trying to stop it twice in a row. */
855 	ts->timer_expires_base = 0;
856 
857 	/*
858 	 * If this CPU is the one which updates jiffies, then give up
859 	 * the assignment and let it be taken by the CPU which runs
860 	 * the tick timer next, which might be this CPU as well. If we
861 	 * don't drop this here the jiffies might be stale and
862 	 * do_timer() never invoked. Keep track of the fact that it
863 	 * was the one which had the do_timer() duty last.
864 	 */
865 	if (cpu == tick_do_timer_cpu) {
866 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
867 		ts->do_timer_last = 1;
868 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
869 		ts->do_timer_last = 0;
870 	}
871 
872 	/* Skip reprogram of event if its not changed */
873 	if (ts->tick_stopped && (expires == ts->next_tick)) {
874 		/* Sanity check: make sure clockevent is actually programmed */
875 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
876 			return;
877 
878 		WARN_ON_ONCE(1);
879 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
880 			    basemono, ts->next_tick, dev->next_event,
881 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
882 	}
883 
884 	/*
885 	 * nohz_stop_sched_tick can be called several times before
886 	 * the nohz_restart_sched_tick is called. This happens when
887 	 * interrupts arrive which do not cause a reschedule. In the
888 	 * first call we save the current tick time, so we can restart
889 	 * the scheduler tick in nohz_restart_sched_tick.
890 	 */
891 	if (!ts->tick_stopped) {
892 		calc_load_nohz_start();
893 		quiet_vmstat();
894 
895 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
896 		ts->tick_stopped = 1;
897 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
898 	}
899 
900 	ts->next_tick = tick;
901 
902 	/*
903 	 * If the expiration time == KTIME_MAX, then we simply stop
904 	 * the tick timer.
905 	 */
906 	if (unlikely(expires == KTIME_MAX)) {
907 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
908 			hrtimer_cancel(&ts->sched_timer);
909 		else
910 			tick_program_event(KTIME_MAX, 1);
911 		return;
912 	}
913 
914 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
915 		hrtimer_start(&ts->sched_timer, tick,
916 			      HRTIMER_MODE_ABS_PINNED_HARD);
917 	} else {
918 		hrtimer_set_expires(&ts->sched_timer, tick);
919 		tick_program_event(tick, 1);
920 	}
921 }
922 
923 static void tick_nohz_retain_tick(struct tick_sched *ts)
924 {
925 	ts->timer_expires_base = 0;
926 }
927 
928 #ifdef CONFIG_NO_HZ_FULL
929 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
930 {
931 	if (tick_nohz_next_event(ts, cpu))
932 		tick_nohz_stop_tick(ts, cpu);
933 	else
934 		tick_nohz_retain_tick(ts);
935 }
936 #endif /* CONFIG_NO_HZ_FULL */
937 
938 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
939 {
940 	/* Update jiffies first */
941 	tick_do_update_jiffies64(now);
942 
943 	/*
944 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
945 	 * the clock forward checks in the enqueue path:
946 	 */
947 	timer_clear_idle();
948 
949 	calc_load_nohz_stop();
950 	touch_softlockup_watchdog_sched();
951 	/*
952 	 * Cancel the scheduled timer and restore the tick
953 	 */
954 	ts->tick_stopped  = 0;
955 	tick_nohz_restart(ts, now);
956 }
957 
958 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
959 					 ktime_t now)
960 {
961 #ifdef CONFIG_NO_HZ_FULL
962 	int cpu = smp_processor_id();
963 
964 	if (can_stop_full_tick(cpu, ts))
965 		tick_nohz_stop_sched_tick(ts, cpu);
966 	else if (ts->tick_stopped)
967 		tick_nohz_restart_sched_tick(ts, now);
968 #endif
969 }
970 
971 static void tick_nohz_full_update_tick(struct tick_sched *ts)
972 {
973 	if (!tick_nohz_full_cpu(smp_processor_id()))
974 		return;
975 
976 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
977 		return;
978 
979 	__tick_nohz_full_update_tick(ts, ktime_get());
980 }
981 
982 /*
983  * A pending softirq outside an IRQ (or softirq disabled section) context
984  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
985  * reach here due to the need_resched() early check in can_stop_idle_tick().
986  *
987  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
988  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
989  * triggering the below since wakep_softirqd() is ignored.
990  *
991  */
992 static bool report_idle_softirq(void)
993 {
994 	static int ratelimit;
995 	unsigned int pending = local_softirq_pending();
996 
997 	if (likely(!pending))
998 		return false;
999 
1000 	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1001 	if (!cpu_active(smp_processor_id())) {
1002 		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1003 		if (!pending)
1004 			return false;
1005 	}
1006 
1007 	if (ratelimit < 10)
1008 		return false;
1009 
1010 	/* On RT, softirqs handling may be waiting on some lock */
1011 	if (!local_bh_blocked())
1012 		return false;
1013 
1014 	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1015 		pending);
1016 	ratelimit++;
1017 
1018 	return true;
1019 }
1020 
1021 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1022 {
1023 	/*
1024 	 * If this CPU is offline and it is the one which updates
1025 	 * jiffies, then give up the assignment and let it be taken by
1026 	 * the CPU which runs the tick timer next. If we don't drop
1027 	 * this here the jiffies might be stale and do_timer() never
1028 	 * invoked.
1029 	 */
1030 	if (unlikely(!cpu_online(cpu))) {
1031 		if (cpu == tick_do_timer_cpu)
1032 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1033 		/*
1034 		 * Make sure the CPU doesn't get fooled by obsolete tick
1035 		 * deadline if it comes back online later.
1036 		 */
1037 		ts->next_tick = 0;
1038 		return false;
1039 	}
1040 
1041 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1042 		return false;
1043 
1044 	if (need_resched())
1045 		return false;
1046 
1047 	if (unlikely(report_idle_softirq()))
1048 		return false;
1049 
1050 	if (tick_nohz_full_enabled()) {
1051 		/*
1052 		 * Keep the tick alive to guarantee timekeeping progression
1053 		 * if there are full dynticks CPUs around
1054 		 */
1055 		if (tick_do_timer_cpu == cpu)
1056 			return false;
1057 
1058 		/* Should not happen for nohz-full */
1059 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1060 			return false;
1061 	}
1062 
1063 	return true;
1064 }
1065 
1066 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1067 {
1068 	ktime_t expires;
1069 	int cpu = smp_processor_id();
1070 
1071 	/*
1072 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1073 	 * tick timer expiration time is known already.
1074 	 */
1075 	if (ts->timer_expires_base)
1076 		expires = ts->timer_expires;
1077 	else if (can_stop_idle_tick(cpu, ts))
1078 		expires = tick_nohz_next_event(ts, cpu);
1079 	else
1080 		return;
1081 
1082 	ts->idle_calls++;
1083 
1084 	if (expires > 0LL) {
1085 		int was_stopped = ts->tick_stopped;
1086 
1087 		tick_nohz_stop_tick(ts, cpu);
1088 
1089 		ts->idle_sleeps++;
1090 		ts->idle_expires = expires;
1091 
1092 		if (!was_stopped && ts->tick_stopped) {
1093 			ts->idle_jiffies = ts->last_jiffies;
1094 			nohz_balance_enter_idle(cpu);
1095 		}
1096 	} else {
1097 		tick_nohz_retain_tick(ts);
1098 	}
1099 }
1100 
1101 /**
1102  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1103  *
1104  * When the next event is more than a tick into the future, stop the idle tick
1105  */
1106 void tick_nohz_idle_stop_tick(void)
1107 {
1108 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1109 }
1110 
1111 void tick_nohz_idle_retain_tick(void)
1112 {
1113 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1114 	/*
1115 	 * Undo the effect of get_next_timer_interrupt() called from
1116 	 * tick_nohz_next_event().
1117 	 */
1118 	timer_clear_idle();
1119 }
1120 
1121 /**
1122  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1123  *
1124  * Called when we start the idle loop.
1125  */
1126 void tick_nohz_idle_enter(void)
1127 {
1128 	struct tick_sched *ts;
1129 
1130 	lockdep_assert_irqs_enabled();
1131 
1132 	local_irq_disable();
1133 
1134 	ts = this_cpu_ptr(&tick_cpu_sched);
1135 
1136 	WARN_ON_ONCE(ts->timer_expires_base);
1137 
1138 	ts->inidle = 1;
1139 	tick_nohz_start_idle(ts);
1140 
1141 	local_irq_enable();
1142 }
1143 
1144 /**
1145  * tick_nohz_irq_exit - update next tick event from interrupt exit
1146  *
1147  * When an interrupt fires while we are idle and it doesn't cause
1148  * a reschedule, it may still add, modify or delete a timer, enqueue
1149  * an RCU callback, etc...
1150  * So we need to re-calculate and reprogram the next tick event.
1151  */
1152 void tick_nohz_irq_exit(void)
1153 {
1154 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1155 
1156 	if (ts->inidle)
1157 		tick_nohz_start_idle(ts);
1158 	else
1159 		tick_nohz_full_update_tick(ts);
1160 }
1161 
1162 /**
1163  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1164  */
1165 bool tick_nohz_idle_got_tick(void)
1166 {
1167 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168 
1169 	if (ts->got_idle_tick) {
1170 		ts->got_idle_tick = 0;
1171 		return true;
1172 	}
1173 	return false;
1174 }
1175 
1176 /**
1177  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1178  * or the tick, whatever that expires first. Note that, if the tick has been
1179  * stopped, it returns the next hrtimer.
1180  *
1181  * Called from power state control code with interrupts disabled
1182  */
1183 ktime_t tick_nohz_get_next_hrtimer(void)
1184 {
1185 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1186 }
1187 
1188 /**
1189  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1190  * @delta_next: duration until the next event if the tick cannot be stopped
1191  *
1192  * Called from power state control code with interrupts disabled.
1193  *
1194  * The return value of this function and/or the value returned by it through the
1195  * @delta_next pointer can be negative which must be taken into account by its
1196  * callers.
1197  */
1198 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1199 {
1200 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1201 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1202 	int cpu = smp_processor_id();
1203 	/*
1204 	 * The idle entry time is expected to be a sufficient approximation of
1205 	 * the current time at this point.
1206 	 */
1207 	ktime_t now = ts->idle_entrytime;
1208 	ktime_t next_event;
1209 
1210 	WARN_ON_ONCE(!ts->inidle);
1211 
1212 	*delta_next = ktime_sub(dev->next_event, now);
1213 
1214 	if (!can_stop_idle_tick(cpu, ts))
1215 		return *delta_next;
1216 
1217 	next_event = tick_nohz_next_event(ts, cpu);
1218 	if (!next_event)
1219 		return *delta_next;
1220 
1221 	/*
1222 	 * If the next highres timer to expire is earlier than next_event, the
1223 	 * idle governor needs to know that.
1224 	 */
1225 	next_event = min_t(u64, next_event,
1226 			   hrtimer_next_event_without(&ts->sched_timer));
1227 
1228 	return ktime_sub(next_event, now);
1229 }
1230 
1231 /**
1232  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1233  * for a particular CPU.
1234  *
1235  * Called from the schedutil frequency scaling governor in scheduler context.
1236  */
1237 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1238 {
1239 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1240 
1241 	return ts->idle_calls;
1242 }
1243 
1244 /**
1245  * tick_nohz_get_idle_calls - return the current idle calls counter value
1246  *
1247  * Called from the schedutil frequency scaling governor in scheduler context.
1248  */
1249 unsigned long tick_nohz_get_idle_calls(void)
1250 {
1251 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1252 
1253 	return ts->idle_calls;
1254 }
1255 
1256 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1257 					ktime_t now)
1258 {
1259 	unsigned long ticks;
1260 
1261 	ts->idle_exittime = now;
1262 
1263 	if (vtime_accounting_enabled_this_cpu())
1264 		return;
1265 	/*
1266 	 * We stopped the tick in idle. Update process times would miss the
1267 	 * time we slept as update_process_times does only a 1 tick
1268 	 * accounting. Enforce that this is accounted to idle !
1269 	 */
1270 	ticks = jiffies - ts->idle_jiffies;
1271 	/*
1272 	 * We might be one off. Do not randomly account a huge number of ticks!
1273 	 */
1274 	if (ticks && ticks < LONG_MAX)
1275 		account_idle_ticks(ticks);
1276 }
1277 
1278 void tick_nohz_idle_restart_tick(void)
1279 {
1280 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1281 
1282 	if (ts->tick_stopped) {
1283 		ktime_t now = ktime_get();
1284 		tick_nohz_restart_sched_tick(ts, now);
1285 		tick_nohz_account_idle_time(ts, now);
1286 	}
1287 }
1288 
1289 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1290 {
1291 	if (tick_nohz_full_cpu(smp_processor_id()))
1292 		__tick_nohz_full_update_tick(ts, now);
1293 	else
1294 		tick_nohz_restart_sched_tick(ts, now);
1295 
1296 	tick_nohz_account_idle_time(ts, now);
1297 }
1298 
1299 /**
1300  * tick_nohz_idle_exit - restart the idle tick from the idle task
1301  *
1302  * Restart the idle tick when the CPU is woken up from idle
1303  * This also exit the RCU extended quiescent state. The CPU
1304  * can use RCU again after this function is called.
1305  */
1306 void tick_nohz_idle_exit(void)
1307 {
1308 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1309 	bool idle_active, tick_stopped;
1310 	ktime_t now;
1311 
1312 	local_irq_disable();
1313 
1314 	WARN_ON_ONCE(!ts->inidle);
1315 	WARN_ON_ONCE(ts->timer_expires_base);
1316 
1317 	ts->inidle = 0;
1318 	idle_active = ts->idle_active;
1319 	tick_stopped = ts->tick_stopped;
1320 
1321 	if (idle_active || tick_stopped)
1322 		now = ktime_get();
1323 
1324 	if (idle_active)
1325 		tick_nohz_stop_idle(ts, now);
1326 
1327 	if (tick_stopped)
1328 		tick_nohz_idle_update_tick(ts, now);
1329 
1330 	local_irq_enable();
1331 }
1332 
1333 /*
1334  * The nohz low res interrupt handler
1335  */
1336 static void tick_nohz_handler(struct clock_event_device *dev)
1337 {
1338 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1339 	struct pt_regs *regs = get_irq_regs();
1340 	ktime_t now = ktime_get();
1341 
1342 	dev->next_event = KTIME_MAX;
1343 
1344 	tick_sched_do_timer(ts, now);
1345 	tick_sched_handle(ts, regs);
1346 
1347 	if (unlikely(ts->tick_stopped)) {
1348 		/*
1349 		 * The clockevent device is not reprogrammed, so change the
1350 		 * clock event device to ONESHOT_STOPPED to avoid spurious
1351 		 * interrupts on devices which might not be truly one shot.
1352 		 */
1353 		tick_program_event(KTIME_MAX, 1);
1354 		return;
1355 	}
1356 
1357 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1358 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1359 }
1360 
1361 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1362 {
1363 	if (!tick_nohz_enabled)
1364 		return;
1365 	ts->nohz_mode = mode;
1366 	/* One update is enough */
1367 	if (!test_and_set_bit(0, &tick_nohz_active))
1368 		timers_update_nohz();
1369 }
1370 
1371 /**
1372  * tick_nohz_switch_to_nohz - switch to nohz mode
1373  */
1374 static void tick_nohz_switch_to_nohz(void)
1375 {
1376 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1377 	ktime_t next;
1378 
1379 	if (!tick_nohz_enabled)
1380 		return;
1381 
1382 	if (tick_switch_to_oneshot(tick_nohz_handler))
1383 		return;
1384 
1385 	/*
1386 	 * Recycle the hrtimer in ts, so we can share the
1387 	 * hrtimer_forward with the highres code.
1388 	 */
1389 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1390 	/* Get the next period */
1391 	next = tick_init_jiffy_update();
1392 
1393 	hrtimer_set_expires(&ts->sched_timer, next);
1394 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1395 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1396 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1397 }
1398 
1399 static inline void tick_nohz_irq_enter(void)
1400 {
1401 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1402 	ktime_t now;
1403 
1404 	if (!ts->idle_active && !ts->tick_stopped)
1405 		return;
1406 	now = ktime_get();
1407 	if (ts->idle_active)
1408 		tick_nohz_stop_idle(ts, now);
1409 	/*
1410 	 * If all CPUs are idle. We may need to update a stale jiffies value.
1411 	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1412 	 * alive but it might be busy looping with interrupts disabled in some
1413 	 * rare case (typically stop machine). So we must make sure we have a
1414 	 * last resort.
1415 	 */
1416 	if (ts->tick_stopped)
1417 		tick_nohz_update_jiffies(now);
1418 }
1419 
1420 #else
1421 
1422 static inline void tick_nohz_switch_to_nohz(void) { }
1423 static inline void tick_nohz_irq_enter(void) { }
1424 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1425 
1426 #endif /* CONFIG_NO_HZ_COMMON */
1427 
1428 /*
1429  * Called from irq_enter to notify about the possible interruption of idle()
1430  */
1431 void tick_irq_enter(void)
1432 {
1433 	tick_check_oneshot_broadcast_this_cpu();
1434 	tick_nohz_irq_enter();
1435 }
1436 
1437 /*
1438  * High resolution timer specific code
1439  */
1440 #ifdef CONFIG_HIGH_RES_TIMERS
1441 /*
1442  * We rearm the timer until we get disabled by the idle code.
1443  * Called with interrupts disabled.
1444  */
1445 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1446 {
1447 	struct tick_sched *ts =
1448 		container_of(timer, struct tick_sched, sched_timer);
1449 	struct pt_regs *regs = get_irq_regs();
1450 	ktime_t now = ktime_get();
1451 
1452 	tick_sched_do_timer(ts, now);
1453 
1454 	/*
1455 	 * Do not call, when we are not in irq context and have
1456 	 * no valid regs pointer
1457 	 */
1458 	if (regs)
1459 		tick_sched_handle(ts, regs);
1460 	else
1461 		ts->next_tick = 0;
1462 
1463 	/* No need to reprogram if we are in idle or full dynticks mode */
1464 	if (unlikely(ts->tick_stopped))
1465 		return HRTIMER_NORESTART;
1466 
1467 	hrtimer_forward(timer, now, TICK_NSEC);
1468 
1469 	return HRTIMER_RESTART;
1470 }
1471 
1472 static int sched_skew_tick;
1473 
1474 static int __init skew_tick(char *str)
1475 {
1476 	get_option(&str, &sched_skew_tick);
1477 
1478 	return 0;
1479 }
1480 early_param("skew_tick", skew_tick);
1481 
1482 /**
1483  * tick_setup_sched_timer - setup the tick emulation timer
1484  */
1485 void tick_setup_sched_timer(void)
1486 {
1487 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1488 	ktime_t now = ktime_get();
1489 
1490 	/*
1491 	 * Emulate tick processing via per-CPU hrtimers:
1492 	 */
1493 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1494 	ts->sched_timer.function = tick_sched_timer;
1495 
1496 	/* Get the next period (per-CPU) */
1497 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1498 
1499 	/* Offset the tick to avert jiffies_lock contention. */
1500 	if (sched_skew_tick) {
1501 		u64 offset = TICK_NSEC >> 1;
1502 		do_div(offset, num_possible_cpus());
1503 		offset *= smp_processor_id();
1504 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1505 	}
1506 
1507 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1508 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1509 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1510 }
1511 #endif /* HIGH_RES_TIMERS */
1512 
1513 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1514 void tick_cancel_sched_timer(int cpu)
1515 {
1516 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1517 
1518 # ifdef CONFIG_HIGH_RES_TIMERS
1519 	if (ts->sched_timer.base)
1520 		hrtimer_cancel(&ts->sched_timer);
1521 # endif
1522 
1523 	memset(ts, 0, sizeof(*ts));
1524 }
1525 #endif
1526 
1527 /*
1528  * Async notification about clocksource changes
1529  */
1530 void tick_clock_notify(void)
1531 {
1532 	int cpu;
1533 
1534 	for_each_possible_cpu(cpu)
1535 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1536 }
1537 
1538 /*
1539  * Async notification about clock event changes
1540  */
1541 void tick_oneshot_notify(void)
1542 {
1543 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1544 
1545 	set_bit(0, &ts->check_clocks);
1546 }
1547 
1548 /*
1549  * Check, if a change happened, which makes oneshot possible.
1550  *
1551  * Called cyclic from the hrtimer softirq (driven by the timer
1552  * softirq) allow_nohz signals, that we can switch into low-res nohz
1553  * mode, because high resolution timers are disabled (either compile
1554  * or runtime). Called with interrupts disabled.
1555  */
1556 int tick_check_oneshot_change(int allow_nohz)
1557 {
1558 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1559 
1560 	if (!test_and_clear_bit(0, &ts->check_clocks))
1561 		return 0;
1562 
1563 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1564 		return 0;
1565 
1566 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1567 		return 0;
1568 
1569 	if (!allow_nohz)
1570 		return 1;
1571 
1572 	tick_nohz_switch_to_nohz();
1573 	return 0;
1574 }
1575