1 /* 2 * linux/kernel/time/tick-sched.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * No idle tick implementation for low and high resolution timers 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * Distribute under GPLv2. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/percpu.h> 20 #include <linux/nmi.h> 21 #include <linux/profile.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/stat.h> 25 #include <linux/sched/nohz.h> 26 #include <linux/module.h> 27 #include <linux/irq_work.h> 28 #include <linux/posix-timers.h> 29 #include <linux/context_tracking.h> 30 #include <linux/mm.h> 31 32 #include <asm/irq_regs.h> 33 34 #include "tick-internal.h" 35 36 #include <trace/events/timer.h> 37 38 /* 39 * Per-CPU nohz control structure 40 */ 41 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 42 43 struct tick_sched *tick_get_tick_sched(int cpu) 44 { 45 return &per_cpu(tick_cpu_sched, cpu); 46 } 47 48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 49 /* 50 * The time, when the last jiffy update happened. Protected by jiffies_lock. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 0; 60 ktime_t delta; 61 62 /* 63 * Do a quick check without holding jiffies_lock: 64 */ 65 delta = ktime_sub(now, last_jiffies_update); 66 if (delta < tick_period) 67 return; 68 69 /* Reevaluate with jiffies_lock held */ 70 write_seqlock(&jiffies_lock); 71 72 delta = ktime_sub(now, last_jiffies_update); 73 if (delta >= tick_period) { 74 75 delta = ktime_sub(delta, tick_period); 76 last_jiffies_update = ktime_add(last_jiffies_update, 77 tick_period); 78 79 /* Slow path for long timeouts */ 80 if (unlikely(delta >= tick_period)) { 81 s64 incr = ktime_to_ns(tick_period); 82 83 ticks = ktime_divns(delta, incr); 84 85 last_jiffies_update = ktime_add_ns(last_jiffies_update, 86 incr * ticks); 87 } 88 do_timer(++ticks); 89 90 /* Keep the tick_next_period variable up to date */ 91 tick_next_period = ktime_add(last_jiffies_update, tick_period); 92 } else { 93 write_sequnlock(&jiffies_lock); 94 return; 95 } 96 write_sequnlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 /* 101 * Initialize and return retrieve the jiffies update. 102 */ 103 static ktime_t tick_init_jiffy_update(void) 104 { 105 ktime_t period; 106 107 write_seqlock(&jiffies_lock); 108 /* Did we start the jiffies update yet ? */ 109 if (last_jiffies_update == 0) 110 last_jiffies_update = tick_next_period; 111 period = last_jiffies_update; 112 write_sequnlock(&jiffies_lock); 113 return period; 114 } 115 116 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 117 { 118 int cpu = smp_processor_id(); 119 120 #ifdef CONFIG_NO_HZ_COMMON 121 /* 122 * Check if the do_timer duty was dropped. We don't care about 123 * concurrency: This happens only when the CPU in charge went 124 * into a long sleep. If two CPUs happen to assign themselves to 125 * this duty, then the jiffies update is still serialized by 126 * jiffies_lock. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE) 129 && !tick_nohz_full_cpu(cpu)) 130 tick_do_timer_cpu = cpu; 131 #endif 132 133 /* Check, if the jiffies need an update */ 134 if (tick_do_timer_cpu == cpu) 135 tick_do_update_jiffies64(now); 136 137 if (ts->inidle) 138 ts->got_idle_tick = 1; 139 } 140 141 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 142 { 143 #ifdef CONFIG_NO_HZ_COMMON 144 /* 145 * When we are idle and the tick is stopped, we have to touch 146 * the watchdog as we might not schedule for a really long 147 * time. This happens on complete idle SMP systems while 148 * waiting on the login prompt. We also increment the "start of 149 * idle" jiffy stamp so the idle accounting adjustment we do 150 * when we go busy again does not account too much ticks. 151 */ 152 if (ts->tick_stopped) { 153 touch_softlockup_watchdog_sched(); 154 if (is_idle_task(current)) 155 ts->idle_jiffies++; 156 /* 157 * In case the current tick fired too early past its expected 158 * expiration, make sure we don't bypass the next clock reprogramming 159 * to the same deadline. 160 */ 161 ts->next_tick = 0; 162 } 163 #endif 164 update_process_times(user_mode(regs)); 165 profile_tick(CPU_PROFILING); 166 } 167 #endif 168 169 #ifdef CONFIG_NO_HZ_FULL 170 cpumask_var_t tick_nohz_full_mask; 171 bool tick_nohz_full_running; 172 static atomic_t tick_dep_mask; 173 174 static bool check_tick_dependency(atomic_t *dep) 175 { 176 int val = atomic_read(dep); 177 178 if (val & TICK_DEP_MASK_POSIX_TIMER) { 179 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 180 return true; 181 } 182 183 if (val & TICK_DEP_MASK_PERF_EVENTS) { 184 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 185 return true; 186 } 187 188 if (val & TICK_DEP_MASK_SCHED) { 189 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 190 return true; 191 } 192 193 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 194 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 195 return true; 196 } 197 198 return false; 199 } 200 201 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 202 { 203 lockdep_assert_irqs_disabled(); 204 205 if (unlikely(!cpu_online(cpu))) 206 return false; 207 208 if (check_tick_dependency(&tick_dep_mask)) 209 return false; 210 211 if (check_tick_dependency(&ts->tick_dep_mask)) 212 return false; 213 214 if (check_tick_dependency(¤t->tick_dep_mask)) 215 return false; 216 217 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 218 return false; 219 220 return true; 221 } 222 223 static void nohz_full_kick_func(struct irq_work *work) 224 { 225 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 226 } 227 228 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 229 .func = nohz_full_kick_func, 230 }; 231 232 /* 233 * Kick this CPU if it's full dynticks in order to force it to 234 * re-evaluate its dependency on the tick and restart it if necessary. 235 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 236 * is NMI safe. 237 */ 238 static void tick_nohz_full_kick(void) 239 { 240 if (!tick_nohz_full_cpu(smp_processor_id())) 241 return; 242 243 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 244 } 245 246 /* 247 * Kick the CPU if it's full dynticks in order to force it to 248 * re-evaluate its dependency on the tick and restart it if necessary. 249 */ 250 void tick_nohz_full_kick_cpu(int cpu) 251 { 252 if (!tick_nohz_full_cpu(cpu)) 253 return; 254 255 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 256 } 257 258 /* 259 * Kick all full dynticks CPUs in order to force these to re-evaluate 260 * their dependency on the tick and restart it if necessary. 261 */ 262 static void tick_nohz_full_kick_all(void) 263 { 264 int cpu; 265 266 if (!tick_nohz_full_running) 267 return; 268 269 preempt_disable(); 270 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 271 tick_nohz_full_kick_cpu(cpu); 272 preempt_enable(); 273 } 274 275 static void tick_nohz_dep_set_all(atomic_t *dep, 276 enum tick_dep_bits bit) 277 { 278 int prev; 279 280 prev = atomic_fetch_or(BIT(bit), dep); 281 if (!prev) 282 tick_nohz_full_kick_all(); 283 } 284 285 /* 286 * Set a global tick dependency. Used by perf events that rely on freq and 287 * by unstable clock. 288 */ 289 void tick_nohz_dep_set(enum tick_dep_bits bit) 290 { 291 tick_nohz_dep_set_all(&tick_dep_mask, bit); 292 } 293 294 void tick_nohz_dep_clear(enum tick_dep_bits bit) 295 { 296 atomic_andnot(BIT(bit), &tick_dep_mask); 297 } 298 299 /* 300 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 301 * manage events throttling. 302 */ 303 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 304 { 305 int prev; 306 struct tick_sched *ts; 307 308 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 309 310 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 311 if (!prev) { 312 preempt_disable(); 313 /* Perf needs local kick that is NMI safe */ 314 if (cpu == smp_processor_id()) { 315 tick_nohz_full_kick(); 316 } else { 317 /* Remote irq work not NMI-safe */ 318 if (!WARN_ON_ONCE(in_nmi())) 319 tick_nohz_full_kick_cpu(cpu); 320 } 321 preempt_enable(); 322 } 323 } 324 325 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 326 { 327 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 328 329 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 330 } 331 332 /* 333 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 334 * per task timers. 335 */ 336 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 337 { 338 /* 339 * We could optimize this with just kicking the target running the task 340 * if that noise matters for nohz full users. 341 */ 342 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 343 } 344 345 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 346 { 347 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 348 } 349 350 /* 351 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 352 * per process timers. 353 */ 354 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 355 { 356 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 357 } 358 359 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 360 { 361 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 362 } 363 364 /* 365 * Re-evaluate the need for the tick as we switch the current task. 366 * It might need the tick due to per task/process properties: 367 * perf events, posix CPU timers, ... 368 */ 369 void __tick_nohz_task_switch(void) 370 { 371 unsigned long flags; 372 struct tick_sched *ts; 373 374 local_irq_save(flags); 375 376 if (!tick_nohz_full_cpu(smp_processor_id())) 377 goto out; 378 379 ts = this_cpu_ptr(&tick_cpu_sched); 380 381 if (ts->tick_stopped) { 382 if (atomic_read(¤t->tick_dep_mask) || 383 atomic_read(¤t->signal->tick_dep_mask)) 384 tick_nohz_full_kick(); 385 } 386 out: 387 local_irq_restore(flags); 388 } 389 390 /* Get the boot-time nohz CPU list from the kernel parameters. */ 391 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 392 { 393 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 394 cpumask_copy(tick_nohz_full_mask, cpumask); 395 tick_nohz_full_running = true; 396 } 397 398 static int tick_nohz_cpu_down(unsigned int cpu) 399 { 400 /* 401 * The boot CPU handles housekeeping duty (unbound timers, 402 * workqueues, timekeeping, ...) on behalf of full dynticks 403 * CPUs. It must remain online when nohz full is enabled. 404 */ 405 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 406 return -EBUSY; 407 return 0; 408 } 409 410 void __init tick_nohz_init(void) 411 { 412 int cpu, ret; 413 414 if (!tick_nohz_full_running) 415 return; 416 417 /* 418 * Full dynticks uses irq work to drive the tick rescheduling on safe 419 * locking contexts. But then we need irq work to raise its own 420 * interrupts to avoid circular dependency on the tick 421 */ 422 if (!arch_irq_work_has_interrupt()) { 423 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 424 cpumask_clear(tick_nohz_full_mask); 425 tick_nohz_full_running = false; 426 return; 427 } 428 429 cpu = smp_processor_id(); 430 431 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 432 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", 433 cpu); 434 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 435 } 436 437 for_each_cpu(cpu, tick_nohz_full_mask) 438 context_tracking_cpu_set(cpu); 439 440 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 441 "kernel/nohz:predown", NULL, 442 tick_nohz_cpu_down); 443 WARN_ON(ret < 0); 444 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 445 cpumask_pr_args(tick_nohz_full_mask)); 446 } 447 #endif 448 449 /* 450 * NOHZ - aka dynamic tick functionality 451 */ 452 #ifdef CONFIG_NO_HZ_COMMON 453 /* 454 * NO HZ enabled ? 455 */ 456 bool tick_nohz_enabled __read_mostly = true; 457 unsigned long tick_nohz_active __read_mostly; 458 /* 459 * Enable / Disable tickless mode 460 */ 461 static int __init setup_tick_nohz(char *str) 462 { 463 return (kstrtobool(str, &tick_nohz_enabled) == 0); 464 } 465 466 __setup("nohz=", setup_tick_nohz); 467 468 bool tick_nohz_tick_stopped(void) 469 { 470 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 471 472 return ts->tick_stopped; 473 } 474 475 bool tick_nohz_tick_stopped_cpu(int cpu) 476 { 477 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 478 479 return ts->tick_stopped; 480 } 481 482 /** 483 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 484 * 485 * Called from interrupt entry when the CPU was idle 486 * 487 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 488 * must be updated. Otherwise an interrupt handler could use a stale jiffy 489 * value. We do this unconditionally on any CPU, as we don't know whether the 490 * CPU, which has the update task assigned is in a long sleep. 491 */ 492 static void tick_nohz_update_jiffies(ktime_t now) 493 { 494 unsigned long flags; 495 496 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 497 498 local_irq_save(flags); 499 tick_do_update_jiffies64(now); 500 local_irq_restore(flags); 501 502 touch_softlockup_watchdog_sched(); 503 } 504 505 /* 506 * Updates the per-CPU time idle statistics counters 507 */ 508 static void 509 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 510 { 511 ktime_t delta; 512 513 if (ts->idle_active) { 514 delta = ktime_sub(now, ts->idle_entrytime); 515 if (nr_iowait_cpu(cpu) > 0) 516 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 517 else 518 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 519 ts->idle_entrytime = now; 520 } 521 522 if (last_update_time) 523 *last_update_time = ktime_to_us(now); 524 525 } 526 527 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 528 { 529 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 530 ts->idle_active = 0; 531 532 sched_clock_idle_wakeup_event(); 533 } 534 535 static void tick_nohz_start_idle(struct tick_sched *ts) 536 { 537 ts->idle_entrytime = ktime_get(); 538 ts->idle_active = 1; 539 sched_clock_idle_sleep_event(); 540 } 541 542 /** 543 * get_cpu_idle_time_us - get the total idle time of a CPU 544 * @cpu: CPU number to query 545 * @last_update_time: variable to store update time in. Do not update 546 * counters if NULL. 547 * 548 * Return the cumulative idle time (since boot) for a given 549 * CPU, in microseconds. 550 * 551 * This time is measured via accounting rather than sampling, 552 * and is as accurate as ktime_get() is. 553 * 554 * This function returns -1 if NOHZ is not enabled. 555 */ 556 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 557 { 558 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 559 ktime_t now, idle; 560 561 if (!tick_nohz_active) 562 return -1; 563 564 now = ktime_get(); 565 if (last_update_time) { 566 update_ts_time_stats(cpu, ts, now, last_update_time); 567 idle = ts->idle_sleeptime; 568 } else { 569 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 570 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 571 572 idle = ktime_add(ts->idle_sleeptime, delta); 573 } else { 574 idle = ts->idle_sleeptime; 575 } 576 } 577 578 return ktime_to_us(idle); 579 580 } 581 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 582 583 /** 584 * get_cpu_iowait_time_us - get the total iowait time of a CPU 585 * @cpu: CPU number to query 586 * @last_update_time: variable to store update time in. Do not update 587 * counters if NULL. 588 * 589 * Return the cumulative iowait time (since boot) for a given 590 * CPU, in microseconds. 591 * 592 * This time is measured via accounting rather than sampling, 593 * and is as accurate as ktime_get() is. 594 * 595 * This function returns -1 if NOHZ is not enabled. 596 */ 597 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 598 { 599 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 600 ktime_t now, iowait; 601 602 if (!tick_nohz_active) 603 return -1; 604 605 now = ktime_get(); 606 if (last_update_time) { 607 update_ts_time_stats(cpu, ts, now, last_update_time); 608 iowait = ts->iowait_sleeptime; 609 } else { 610 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 611 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 612 613 iowait = ktime_add(ts->iowait_sleeptime, delta); 614 } else { 615 iowait = ts->iowait_sleeptime; 616 } 617 } 618 619 return ktime_to_us(iowait); 620 } 621 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 622 623 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 624 { 625 hrtimer_cancel(&ts->sched_timer); 626 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 627 628 /* Forward the time to expire in the future */ 629 hrtimer_forward(&ts->sched_timer, now, tick_period); 630 631 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 632 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 633 else 634 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 635 636 /* 637 * Reset to make sure next tick stop doesn't get fooled by past 638 * cached clock deadline. 639 */ 640 ts->next_tick = 0; 641 } 642 643 static inline bool local_timer_softirq_pending(void) 644 { 645 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 646 } 647 648 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 649 { 650 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 651 unsigned long seq, basejiff; 652 653 /* Read jiffies and the time when jiffies were updated last */ 654 do { 655 seq = read_seqbegin(&jiffies_lock); 656 basemono = last_jiffies_update; 657 basejiff = jiffies; 658 } while (read_seqretry(&jiffies_lock, seq)); 659 ts->last_jiffies = basejiff; 660 ts->timer_expires_base = basemono; 661 662 /* 663 * Keep the periodic tick, when RCU, architecture or irq_work 664 * requests it. 665 * Aside of that check whether the local timer softirq is 666 * pending. If so its a bad idea to call get_next_timer_interrupt() 667 * because there is an already expired timer, so it will request 668 * immeditate expiry, which rearms the hardware timer with a 669 * minimal delta which brings us back to this place 670 * immediately. Lather, rinse and repeat... 671 */ 672 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 673 irq_work_needs_cpu() || local_timer_softirq_pending()) { 674 next_tick = basemono + TICK_NSEC; 675 } else { 676 /* 677 * Get the next pending timer. If high resolution 678 * timers are enabled this only takes the timer wheel 679 * timers into account. If high resolution timers are 680 * disabled this also looks at the next expiring 681 * hrtimer. 682 */ 683 next_tmr = get_next_timer_interrupt(basejiff, basemono); 684 ts->next_timer = next_tmr; 685 /* Take the next rcu event into account */ 686 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 687 } 688 689 /* 690 * If the tick is due in the next period, keep it ticking or 691 * force prod the timer. 692 */ 693 delta = next_tick - basemono; 694 if (delta <= (u64)TICK_NSEC) { 695 /* 696 * Tell the timer code that the base is not idle, i.e. undo 697 * the effect of get_next_timer_interrupt(): 698 */ 699 timer_clear_idle(); 700 /* 701 * We've not stopped the tick yet, and there's a timer in the 702 * next period, so no point in stopping it either, bail. 703 */ 704 if (!ts->tick_stopped) { 705 ts->timer_expires = 0; 706 goto out; 707 } 708 } 709 710 /* 711 * If this CPU is the one which had the do_timer() duty last, we limit 712 * the sleep time to the timekeeping max_deferment value. 713 * Otherwise we can sleep as long as we want. 714 */ 715 delta = timekeeping_max_deferment(); 716 if (cpu != tick_do_timer_cpu && 717 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 718 delta = KTIME_MAX; 719 720 /* Calculate the next expiry time */ 721 if (delta < (KTIME_MAX - basemono)) 722 expires = basemono + delta; 723 else 724 expires = KTIME_MAX; 725 726 ts->timer_expires = min_t(u64, expires, next_tick); 727 728 out: 729 return ts->timer_expires; 730 } 731 732 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 733 { 734 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 735 u64 basemono = ts->timer_expires_base; 736 u64 expires = ts->timer_expires; 737 ktime_t tick = expires; 738 739 /* Make sure we won't be trying to stop it twice in a row. */ 740 ts->timer_expires_base = 0; 741 742 /* 743 * If this CPU is the one which updates jiffies, then give up 744 * the assignment and let it be taken by the CPU which runs 745 * the tick timer next, which might be this CPU as well. If we 746 * don't drop this here the jiffies might be stale and 747 * do_timer() never invoked. Keep track of the fact that it 748 * was the one which had the do_timer() duty last. 749 */ 750 if (cpu == tick_do_timer_cpu) { 751 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 752 ts->do_timer_last = 1; 753 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 754 ts->do_timer_last = 0; 755 } 756 757 /* Skip reprogram of event if its not changed */ 758 if (ts->tick_stopped && (expires == ts->next_tick)) { 759 /* Sanity check: make sure clockevent is actually programmed */ 760 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 761 return; 762 763 WARN_ON_ONCE(1); 764 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 765 basemono, ts->next_tick, dev->next_event, 766 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 767 } 768 769 /* 770 * nohz_stop_sched_tick can be called several times before 771 * the nohz_restart_sched_tick is called. This happens when 772 * interrupts arrive which do not cause a reschedule. In the 773 * first call we save the current tick time, so we can restart 774 * the scheduler tick in nohz_restart_sched_tick. 775 */ 776 if (!ts->tick_stopped) { 777 calc_load_nohz_start(); 778 cpu_load_update_nohz_start(); 779 quiet_vmstat(); 780 781 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 782 ts->tick_stopped = 1; 783 trace_tick_stop(1, TICK_DEP_MASK_NONE); 784 } 785 786 ts->next_tick = tick; 787 788 /* 789 * If the expiration time == KTIME_MAX, then we simply stop 790 * the tick timer. 791 */ 792 if (unlikely(expires == KTIME_MAX)) { 793 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 794 hrtimer_cancel(&ts->sched_timer); 795 return; 796 } 797 798 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 799 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 800 } else { 801 hrtimer_set_expires(&ts->sched_timer, tick); 802 tick_program_event(tick, 1); 803 } 804 } 805 806 static void tick_nohz_retain_tick(struct tick_sched *ts) 807 { 808 ts->timer_expires_base = 0; 809 } 810 811 #ifdef CONFIG_NO_HZ_FULL 812 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 813 { 814 if (tick_nohz_next_event(ts, cpu)) 815 tick_nohz_stop_tick(ts, cpu); 816 else 817 tick_nohz_retain_tick(ts); 818 } 819 #endif /* CONFIG_NO_HZ_FULL */ 820 821 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 822 { 823 /* Update jiffies first */ 824 tick_do_update_jiffies64(now); 825 cpu_load_update_nohz_stop(); 826 827 /* 828 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 829 * the clock forward checks in the enqueue path: 830 */ 831 timer_clear_idle(); 832 833 calc_load_nohz_stop(); 834 touch_softlockup_watchdog_sched(); 835 /* 836 * Cancel the scheduled timer and restore the tick 837 */ 838 ts->tick_stopped = 0; 839 ts->idle_exittime = now; 840 841 tick_nohz_restart(ts, now); 842 } 843 844 static void tick_nohz_full_update_tick(struct tick_sched *ts) 845 { 846 #ifdef CONFIG_NO_HZ_FULL 847 int cpu = smp_processor_id(); 848 849 if (!tick_nohz_full_cpu(cpu)) 850 return; 851 852 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 853 return; 854 855 if (can_stop_full_tick(cpu, ts)) 856 tick_nohz_stop_sched_tick(ts, cpu); 857 else if (ts->tick_stopped) 858 tick_nohz_restart_sched_tick(ts, ktime_get()); 859 #endif 860 } 861 862 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 863 { 864 /* 865 * If this CPU is offline and it is the one which updates 866 * jiffies, then give up the assignment and let it be taken by 867 * the CPU which runs the tick timer next. If we don't drop 868 * this here the jiffies might be stale and do_timer() never 869 * invoked. 870 */ 871 if (unlikely(!cpu_online(cpu))) { 872 if (cpu == tick_do_timer_cpu) 873 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 874 /* 875 * Make sure the CPU doesn't get fooled by obsolete tick 876 * deadline if it comes back online later. 877 */ 878 ts->next_tick = 0; 879 return false; 880 } 881 882 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 883 return false; 884 885 if (need_resched()) 886 return false; 887 888 if (unlikely(local_softirq_pending())) { 889 static int ratelimit; 890 891 if (ratelimit < 10 && 892 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 893 pr_warn("NOHZ: local_softirq_pending %02x\n", 894 (unsigned int) local_softirq_pending()); 895 ratelimit++; 896 } 897 return false; 898 } 899 900 if (tick_nohz_full_enabled()) { 901 /* 902 * Keep the tick alive to guarantee timekeeping progression 903 * if there are full dynticks CPUs around 904 */ 905 if (tick_do_timer_cpu == cpu) 906 return false; 907 /* 908 * Boot safety: make sure the timekeeping duty has been 909 * assigned before entering dyntick-idle mode, 910 */ 911 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE) 912 return false; 913 } 914 915 return true; 916 } 917 918 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 919 { 920 ktime_t expires; 921 int cpu = smp_processor_id(); 922 923 /* 924 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 925 * tick timer expiration time is known already. 926 */ 927 if (ts->timer_expires_base) 928 expires = ts->timer_expires; 929 else if (can_stop_idle_tick(cpu, ts)) 930 expires = tick_nohz_next_event(ts, cpu); 931 else 932 return; 933 934 ts->idle_calls++; 935 936 if (expires > 0LL) { 937 int was_stopped = ts->tick_stopped; 938 939 tick_nohz_stop_tick(ts, cpu); 940 941 ts->idle_sleeps++; 942 ts->idle_expires = expires; 943 944 if (!was_stopped && ts->tick_stopped) { 945 ts->idle_jiffies = ts->last_jiffies; 946 nohz_balance_enter_idle(cpu); 947 } 948 } else { 949 tick_nohz_retain_tick(ts); 950 } 951 } 952 953 /** 954 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 955 * 956 * When the next event is more than a tick into the future, stop the idle tick 957 */ 958 void tick_nohz_idle_stop_tick(void) 959 { 960 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 961 } 962 963 void tick_nohz_idle_retain_tick(void) 964 { 965 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 966 /* 967 * Undo the effect of get_next_timer_interrupt() called from 968 * tick_nohz_next_event(). 969 */ 970 timer_clear_idle(); 971 } 972 973 /** 974 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 975 * 976 * Called when we start the idle loop. 977 */ 978 void tick_nohz_idle_enter(void) 979 { 980 struct tick_sched *ts; 981 982 lockdep_assert_irqs_enabled(); 983 984 local_irq_disable(); 985 986 ts = this_cpu_ptr(&tick_cpu_sched); 987 988 WARN_ON_ONCE(ts->timer_expires_base); 989 990 ts->inidle = 1; 991 tick_nohz_start_idle(ts); 992 993 local_irq_enable(); 994 } 995 996 /** 997 * tick_nohz_irq_exit - update next tick event from interrupt exit 998 * 999 * When an interrupt fires while we are idle and it doesn't cause 1000 * a reschedule, it may still add, modify or delete a timer, enqueue 1001 * an RCU callback, etc... 1002 * So we need to re-calculate and reprogram the next tick event. 1003 */ 1004 void tick_nohz_irq_exit(void) 1005 { 1006 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1007 1008 if (ts->inidle) 1009 tick_nohz_start_idle(ts); 1010 else 1011 tick_nohz_full_update_tick(ts); 1012 } 1013 1014 /** 1015 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1016 */ 1017 bool tick_nohz_idle_got_tick(void) 1018 { 1019 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1020 1021 if (ts->got_idle_tick) { 1022 ts->got_idle_tick = 0; 1023 return true; 1024 } 1025 return false; 1026 } 1027 1028 /** 1029 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1030 * @delta_next: duration until the next event if the tick cannot be stopped 1031 * 1032 * Called from power state control code with interrupts disabled 1033 */ 1034 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1035 { 1036 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1037 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1038 int cpu = smp_processor_id(); 1039 /* 1040 * The idle entry time is expected to be a sufficient approximation of 1041 * the current time at this point. 1042 */ 1043 ktime_t now = ts->idle_entrytime; 1044 ktime_t next_event; 1045 1046 WARN_ON_ONCE(!ts->inidle); 1047 1048 *delta_next = ktime_sub(dev->next_event, now); 1049 1050 if (!can_stop_idle_tick(cpu, ts)) 1051 return *delta_next; 1052 1053 next_event = tick_nohz_next_event(ts, cpu); 1054 if (!next_event) 1055 return *delta_next; 1056 1057 /* 1058 * If the next highres timer to expire is earlier than next_event, the 1059 * idle governor needs to know that. 1060 */ 1061 next_event = min_t(u64, next_event, 1062 hrtimer_next_event_without(&ts->sched_timer)); 1063 1064 return ktime_sub(next_event, now); 1065 } 1066 1067 /** 1068 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1069 * for a particular CPU. 1070 * 1071 * Called from the schedutil frequency scaling governor in scheduler context. 1072 */ 1073 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1074 { 1075 struct tick_sched *ts = tick_get_tick_sched(cpu); 1076 1077 return ts->idle_calls; 1078 } 1079 1080 /** 1081 * tick_nohz_get_idle_calls - return the current idle calls counter value 1082 * 1083 * Called from the schedutil frequency scaling governor in scheduler context. 1084 */ 1085 unsigned long tick_nohz_get_idle_calls(void) 1086 { 1087 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1088 1089 return ts->idle_calls; 1090 } 1091 1092 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1093 { 1094 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1095 unsigned long ticks; 1096 1097 if (vtime_accounting_cpu_enabled()) 1098 return; 1099 /* 1100 * We stopped the tick in idle. Update process times would miss the 1101 * time we slept as update_process_times does only a 1 tick 1102 * accounting. Enforce that this is accounted to idle ! 1103 */ 1104 ticks = jiffies - ts->idle_jiffies; 1105 /* 1106 * We might be one off. Do not randomly account a huge number of ticks! 1107 */ 1108 if (ticks && ticks < LONG_MAX) 1109 account_idle_ticks(ticks); 1110 #endif 1111 } 1112 1113 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1114 { 1115 tick_nohz_restart_sched_tick(ts, now); 1116 tick_nohz_account_idle_ticks(ts); 1117 } 1118 1119 void tick_nohz_idle_restart_tick(void) 1120 { 1121 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1122 1123 if (ts->tick_stopped) 1124 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1125 } 1126 1127 /** 1128 * tick_nohz_idle_exit - restart the idle tick from the idle task 1129 * 1130 * Restart the idle tick when the CPU is woken up from idle 1131 * This also exit the RCU extended quiescent state. The CPU 1132 * can use RCU again after this function is called. 1133 */ 1134 void tick_nohz_idle_exit(void) 1135 { 1136 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1137 bool idle_active, tick_stopped; 1138 ktime_t now; 1139 1140 local_irq_disable(); 1141 1142 WARN_ON_ONCE(!ts->inidle); 1143 WARN_ON_ONCE(ts->timer_expires_base); 1144 1145 ts->inidle = 0; 1146 idle_active = ts->idle_active; 1147 tick_stopped = ts->tick_stopped; 1148 1149 if (idle_active || tick_stopped) 1150 now = ktime_get(); 1151 1152 if (idle_active) 1153 tick_nohz_stop_idle(ts, now); 1154 1155 if (tick_stopped) 1156 __tick_nohz_idle_restart_tick(ts, now); 1157 1158 local_irq_enable(); 1159 } 1160 1161 /* 1162 * The nohz low res interrupt handler 1163 */ 1164 static void tick_nohz_handler(struct clock_event_device *dev) 1165 { 1166 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1167 struct pt_regs *regs = get_irq_regs(); 1168 ktime_t now = ktime_get(); 1169 1170 dev->next_event = KTIME_MAX; 1171 1172 tick_sched_do_timer(ts, now); 1173 tick_sched_handle(ts, regs); 1174 1175 /* No need to reprogram if we are running tickless */ 1176 if (unlikely(ts->tick_stopped)) 1177 return; 1178 1179 hrtimer_forward(&ts->sched_timer, now, tick_period); 1180 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1181 } 1182 1183 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1184 { 1185 if (!tick_nohz_enabled) 1186 return; 1187 ts->nohz_mode = mode; 1188 /* One update is enough */ 1189 if (!test_and_set_bit(0, &tick_nohz_active)) 1190 timers_update_nohz(); 1191 } 1192 1193 /** 1194 * tick_nohz_switch_to_nohz - switch to nohz mode 1195 */ 1196 static void tick_nohz_switch_to_nohz(void) 1197 { 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1199 ktime_t next; 1200 1201 if (!tick_nohz_enabled) 1202 return; 1203 1204 if (tick_switch_to_oneshot(tick_nohz_handler)) 1205 return; 1206 1207 /* 1208 * Recycle the hrtimer in ts, so we can share the 1209 * hrtimer_forward with the highres code. 1210 */ 1211 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1212 /* Get the next period */ 1213 next = tick_init_jiffy_update(); 1214 1215 hrtimer_set_expires(&ts->sched_timer, next); 1216 hrtimer_forward_now(&ts->sched_timer, tick_period); 1217 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1218 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1219 } 1220 1221 static inline void tick_nohz_irq_enter(void) 1222 { 1223 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1224 ktime_t now; 1225 1226 if (!ts->idle_active && !ts->tick_stopped) 1227 return; 1228 now = ktime_get(); 1229 if (ts->idle_active) 1230 tick_nohz_stop_idle(ts, now); 1231 if (ts->tick_stopped) 1232 tick_nohz_update_jiffies(now); 1233 } 1234 1235 #else 1236 1237 static inline void tick_nohz_switch_to_nohz(void) { } 1238 static inline void tick_nohz_irq_enter(void) { } 1239 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1240 1241 #endif /* CONFIG_NO_HZ_COMMON */ 1242 1243 /* 1244 * Called from irq_enter to notify about the possible interruption of idle() 1245 */ 1246 void tick_irq_enter(void) 1247 { 1248 tick_check_oneshot_broadcast_this_cpu(); 1249 tick_nohz_irq_enter(); 1250 } 1251 1252 /* 1253 * High resolution timer specific code 1254 */ 1255 #ifdef CONFIG_HIGH_RES_TIMERS 1256 /* 1257 * We rearm the timer until we get disabled by the idle code. 1258 * Called with interrupts disabled. 1259 */ 1260 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1261 { 1262 struct tick_sched *ts = 1263 container_of(timer, struct tick_sched, sched_timer); 1264 struct pt_regs *regs = get_irq_regs(); 1265 ktime_t now = ktime_get(); 1266 1267 tick_sched_do_timer(ts, now); 1268 1269 /* 1270 * Do not call, when we are not in irq context and have 1271 * no valid regs pointer 1272 */ 1273 if (regs) 1274 tick_sched_handle(ts, regs); 1275 else 1276 ts->next_tick = 0; 1277 1278 /* No need to reprogram if we are in idle or full dynticks mode */ 1279 if (unlikely(ts->tick_stopped)) 1280 return HRTIMER_NORESTART; 1281 1282 hrtimer_forward(timer, now, tick_period); 1283 1284 return HRTIMER_RESTART; 1285 } 1286 1287 static int sched_skew_tick; 1288 1289 static int __init skew_tick(char *str) 1290 { 1291 get_option(&str, &sched_skew_tick); 1292 1293 return 0; 1294 } 1295 early_param("skew_tick", skew_tick); 1296 1297 /** 1298 * tick_setup_sched_timer - setup the tick emulation timer 1299 */ 1300 void tick_setup_sched_timer(void) 1301 { 1302 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1303 ktime_t now = ktime_get(); 1304 1305 /* 1306 * Emulate tick processing via per-CPU hrtimers: 1307 */ 1308 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1309 ts->sched_timer.function = tick_sched_timer; 1310 1311 /* Get the next period (per-CPU) */ 1312 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1313 1314 /* Offset the tick to avert jiffies_lock contention. */ 1315 if (sched_skew_tick) { 1316 u64 offset = ktime_to_ns(tick_period) >> 1; 1317 do_div(offset, num_possible_cpus()); 1318 offset *= smp_processor_id(); 1319 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1320 } 1321 1322 hrtimer_forward(&ts->sched_timer, now, tick_period); 1323 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1324 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1325 } 1326 #endif /* HIGH_RES_TIMERS */ 1327 1328 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1329 void tick_cancel_sched_timer(int cpu) 1330 { 1331 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1332 1333 # ifdef CONFIG_HIGH_RES_TIMERS 1334 if (ts->sched_timer.base) 1335 hrtimer_cancel(&ts->sched_timer); 1336 # endif 1337 1338 memset(ts, 0, sizeof(*ts)); 1339 } 1340 #endif 1341 1342 /** 1343 * Async notification about clocksource changes 1344 */ 1345 void tick_clock_notify(void) 1346 { 1347 int cpu; 1348 1349 for_each_possible_cpu(cpu) 1350 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1351 } 1352 1353 /* 1354 * Async notification about clock event changes 1355 */ 1356 void tick_oneshot_notify(void) 1357 { 1358 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1359 1360 set_bit(0, &ts->check_clocks); 1361 } 1362 1363 /** 1364 * Check, if a change happened, which makes oneshot possible. 1365 * 1366 * Called cyclic from the hrtimer softirq (driven by the timer 1367 * softirq) allow_nohz signals, that we can switch into low-res nohz 1368 * mode, because high resolution timers are disabled (either compile 1369 * or runtime). Called with interrupts disabled. 1370 */ 1371 int tick_check_oneshot_change(int allow_nohz) 1372 { 1373 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1374 1375 if (!test_and_clear_bit(0, &ts->check_clocks)) 1376 return 0; 1377 1378 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1379 return 0; 1380 1381 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1382 return 0; 1383 1384 if (!allow_nohz) 1385 return 1; 1386 1387 tick_nohz_switch_to_nohz(); 1388 return 0; 1389 } 1390