1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/sched/loadavg.h> 24 #include <linux/module.h> 25 #include <linux/irq_work.h> 26 #include <linux/posix-timers.h> 27 #include <linux/context_tracking.h> 28 #include <linux/mm.h> 29 30 #include <asm/irq_regs.h> 31 32 #include "tick-internal.h" 33 34 #include <trace/events/timer.h> 35 36 /* 37 * Per-CPU nohz control structure 38 */ 39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 40 41 struct tick_sched *tick_get_tick_sched(int cpu) 42 { 43 return &per_cpu(tick_cpu_sched, cpu); 44 } 45 46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 47 /* 48 * The time, when the last jiffy update happened. Write access must hold 49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a 50 * consistent view of jiffies and last_jiffies_update. 51 */ 52 static ktime_t last_jiffies_update; 53 54 /* 55 * Must be called with interrupts disabled ! 56 */ 57 static void tick_do_update_jiffies64(ktime_t now) 58 { 59 unsigned long ticks = 1; 60 ktime_t delta, nextp; 61 62 /* 63 * 64bit can do a quick check without holding jiffies lock and 64 * without looking at the sequence count. The smp_load_acquire() 65 * pairs with the update done later in this function. 66 * 67 * 32bit cannot do that because the store of tick_next_period 68 * consists of two 32bit stores and the first store could move it 69 * to a random point in the future. 70 */ 71 if (IS_ENABLED(CONFIG_64BIT)) { 72 if (ktime_before(now, smp_load_acquire(&tick_next_period))) 73 return; 74 } else { 75 unsigned int seq; 76 77 /* 78 * Avoid contention on jiffies_lock and protect the quick 79 * check with the sequence count. 80 */ 81 do { 82 seq = read_seqcount_begin(&jiffies_seq); 83 nextp = tick_next_period; 84 } while (read_seqcount_retry(&jiffies_seq, seq)); 85 86 if (ktime_before(now, nextp)) 87 return; 88 } 89 90 /* Quick check failed, i.e. update is required. */ 91 raw_spin_lock(&jiffies_lock); 92 /* 93 * Reevaluate with the lock held. Another CPU might have done the 94 * update already. 95 */ 96 if (ktime_before(now, tick_next_period)) { 97 raw_spin_unlock(&jiffies_lock); 98 return; 99 } 100 101 write_seqcount_begin(&jiffies_seq); 102 103 delta = ktime_sub(now, tick_next_period); 104 if (unlikely(delta >= TICK_NSEC)) { 105 /* Slow path for long idle sleep times */ 106 s64 incr = TICK_NSEC; 107 108 ticks += ktime_divns(delta, incr); 109 110 last_jiffies_update = ktime_add_ns(last_jiffies_update, 111 incr * ticks); 112 } else { 113 last_jiffies_update = ktime_add_ns(last_jiffies_update, 114 TICK_NSEC); 115 } 116 117 /* Advance jiffies to complete the jiffies_seq protected job */ 118 jiffies_64 += ticks; 119 120 /* 121 * Keep the tick_next_period variable up to date. 122 */ 123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); 124 125 if (IS_ENABLED(CONFIG_64BIT)) { 126 /* 127 * Pairs with smp_load_acquire() in the lockless quick 128 * check above and ensures that the update to jiffies_64 is 129 * not reordered vs. the store to tick_next_period, neither 130 * by the compiler nor by the CPU. 131 */ 132 smp_store_release(&tick_next_period, nextp); 133 } else { 134 /* 135 * A plain store is good enough on 32bit as the quick check 136 * above is protected by the sequence count. 137 */ 138 tick_next_period = nextp; 139 } 140 141 /* 142 * Release the sequence count. calc_global_load() below is not 143 * protected by it, but jiffies_lock needs to be held to prevent 144 * concurrent invocations. 145 */ 146 write_seqcount_end(&jiffies_seq); 147 148 calc_global_load(); 149 150 raw_spin_unlock(&jiffies_lock); 151 update_wall_time(); 152 } 153 154 /* 155 * Initialize and return retrieve the jiffies update. 156 */ 157 static ktime_t tick_init_jiffy_update(void) 158 { 159 ktime_t period; 160 161 raw_spin_lock(&jiffies_lock); 162 write_seqcount_begin(&jiffies_seq); 163 /* Did we start the jiffies update yet ? */ 164 if (last_jiffies_update == 0) 165 last_jiffies_update = tick_next_period; 166 period = last_jiffies_update; 167 write_seqcount_end(&jiffies_seq); 168 raw_spin_unlock(&jiffies_lock); 169 return period; 170 } 171 172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 173 { 174 int cpu = smp_processor_id(); 175 176 #ifdef CONFIG_NO_HZ_COMMON 177 /* 178 * Check if the do_timer duty was dropped. We don't care about 179 * concurrency: This happens only when the CPU in charge went 180 * into a long sleep. If two CPUs happen to assign themselves to 181 * this duty, then the jiffies update is still serialized by 182 * jiffies_lock. 183 * 184 * If nohz_full is enabled, this should not happen because the 185 * tick_do_timer_cpu never relinquishes. 186 */ 187 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 188 #ifdef CONFIG_NO_HZ_FULL 189 WARN_ON(tick_nohz_full_running); 190 #endif 191 tick_do_timer_cpu = cpu; 192 } 193 #endif 194 195 /* Check, if the jiffies need an update */ 196 if (tick_do_timer_cpu == cpu) 197 tick_do_update_jiffies64(now); 198 199 if (ts->inidle) 200 ts->got_idle_tick = 1; 201 } 202 203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 204 { 205 #ifdef CONFIG_NO_HZ_COMMON 206 /* 207 * When we are idle and the tick is stopped, we have to touch 208 * the watchdog as we might not schedule for a really long 209 * time. This happens on complete idle SMP systems while 210 * waiting on the login prompt. We also increment the "start of 211 * idle" jiffy stamp so the idle accounting adjustment we do 212 * when we go busy again does not account too much ticks. 213 */ 214 if (ts->tick_stopped) { 215 touch_softlockup_watchdog_sched(); 216 if (is_idle_task(current)) 217 ts->idle_jiffies++; 218 /* 219 * In case the current tick fired too early past its expected 220 * expiration, make sure we don't bypass the next clock reprogramming 221 * to the same deadline. 222 */ 223 ts->next_tick = 0; 224 } 225 #endif 226 update_process_times(user_mode(regs)); 227 profile_tick(CPU_PROFILING); 228 } 229 #endif 230 231 #ifdef CONFIG_NO_HZ_FULL 232 cpumask_var_t tick_nohz_full_mask; 233 EXPORT_SYMBOL_GPL(tick_nohz_full_mask); 234 bool tick_nohz_full_running; 235 EXPORT_SYMBOL_GPL(tick_nohz_full_running); 236 static atomic_t tick_dep_mask; 237 238 static bool check_tick_dependency(atomic_t *dep) 239 { 240 int val = atomic_read(dep); 241 242 if (val & TICK_DEP_MASK_POSIX_TIMER) { 243 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 244 return true; 245 } 246 247 if (val & TICK_DEP_MASK_PERF_EVENTS) { 248 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 249 return true; 250 } 251 252 if (val & TICK_DEP_MASK_SCHED) { 253 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 254 return true; 255 } 256 257 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 258 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 259 return true; 260 } 261 262 if (val & TICK_DEP_MASK_RCU) { 263 trace_tick_stop(0, TICK_DEP_MASK_RCU); 264 return true; 265 } 266 267 return false; 268 } 269 270 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 271 { 272 lockdep_assert_irqs_disabled(); 273 274 if (unlikely(!cpu_online(cpu))) 275 return false; 276 277 if (check_tick_dependency(&tick_dep_mask)) 278 return false; 279 280 if (check_tick_dependency(&ts->tick_dep_mask)) 281 return false; 282 283 if (check_tick_dependency(¤t->tick_dep_mask)) 284 return false; 285 286 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 287 return false; 288 289 return true; 290 } 291 292 static void nohz_full_kick_func(struct irq_work *work) 293 { 294 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 295 } 296 297 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = 298 IRQ_WORK_INIT_HARD(nohz_full_kick_func); 299 300 /* 301 * Kick this CPU if it's full dynticks in order to force it to 302 * re-evaluate its dependency on the tick and restart it if necessary. 303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 304 * is NMI safe. 305 */ 306 static void tick_nohz_full_kick(void) 307 { 308 if (!tick_nohz_full_cpu(smp_processor_id())) 309 return; 310 311 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 312 } 313 314 /* 315 * Kick the CPU if it's full dynticks in order to force it to 316 * re-evaluate its dependency on the tick and restart it if necessary. 317 */ 318 void tick_nohz_full_kick_cpu(int cpu) 319 { 320 if (!tick_nohz_full_cpu(cpu)) 321 return; 322 323 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 324 } 325 326 /* 327 * Kick all full dynticks CPUs in order to force these to re-evaluate 328 * their dependency on the tick and restart it if necessary. 329 */ 330 static void tick_nohz_full_kick_all(void) 331 { 332 int cpu; 333 334 if (!tick_nohz_full_running) 335 return; 336 337 preempt_disable(); 338 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 339 tick_nohz_full_kick_cpu(cpu); 340 preempt_enable(); 341 } 342 343 static void tick_nohz_dep_set_all(atomic_t *dep, 344 enum tick_dep_bits bit) 345 { 346 int prev; 347 348 prev = atomic_fetch_or(BIT(bit), dep); 349 if (!prev) 350 tick_nohz_full_kick_all(); 351 } 352 353 /* 354 * Set a global tick dependency. Used by perf events that rely on freq and 355 * by unstable clock. 356 */ 357 void tick_nohz_dep_set(enum tick_dep_bits bit) 358 { 359 tick_nohz_dep_set_all(&tick_dep_mask, bit); 360 } 361 362 void tick_nohz_dep_clear(enum tick_dep_bits bit) 363 { 364 atomic_andnot(BIT(bit), &tick_dep_mask); 365 } 366 367 /* 368 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 369 * manage events throttling. 370 */ 371 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 372 { 373 int prev; 374 struct tick_sched *ts; 375 376 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 377 378 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 379 if (!prev) { 380 preempt_disable(); 381 /* Perf needs local kick that is NMI safe */ 382 if (cpu == smp_processor_id()) { 383 tick_nohz_full_kick(); 384 } else { 385 /* Remote irq work not NMI-safe */ 386 if (!WARN_ON_ONCE(in_nmi())) 387 tick_nohz_full_kick_cpu(cpu); 388 } 389 preempt_enable(); 390 } 391 } 392 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 393 394 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 395 { 396 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 397 398 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 399 } 400 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 401 402 /* 403 * Set a per-task tick dependency. RCU need this. Also posix CPU timers 404 * in order to elapse per task timers. 405 */ 406 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 407 { 408 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) { 409 if (tsk == current) { 410 preempt_disable(); 411 tick_nohz_full_kick(); 412 preempt_enable(); 413 } else { 414 /* 415 * Some future tick_nohz_full_kick_task() 416 * should optimize this. 417 */ 418 tick_nohz_full_kick_all(); 419 } 420 } 421 } 422 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); 423 424 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 425 { 426 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 427 } 428 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); 429 430 /* 431 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 432 * per process timers. 433 */ 434 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 435 { 436 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 437 } 438 439 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 440 { 441 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 442 } 443 444 /* 445 * Re-evaluate the need for the tick as we switch the current task. 446 * It might need the tick due to per task/process properties: 447 * perf events, posix CPU timers, ... 448 */ 449 void __tick_nohz_task_switch(void) 450 { 451 unsigned long flags; 452 struct tick_sched *ts; 453 454 local_irq_save(flags); 455 456 if (!tick_nohz_full_cpu(smp_processor_id())) 457 goto out; 458 459 ts = this_cpu_ptr(&tick_cpu_sched); 460 461 if (ts->tick_stopped) { 462 if (atomic_read(¤t->tick_dep_mask) || 463 atomic_read(¤t->signal->tick_dep_mask)) 464 tick_nohz_full_kick(); 465 } 466 out: 467 local_irq_restore(flags); 468 } 469 470 /* Get the boot-time nohz CPU list from the kernel parameters. */ 471 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 472 { 473 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 474 cpumask_copy(tick_nohz_full_mask, cpumask); 475 tick_nohz_full_running = true; 476 } 477 EXPORT_SYMBOL_GPL(tick_nohz_full_setup); 478 479 static int tick_nohz_cpu_down(unsigned int cpu) 480 { 481 /* 482 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 483 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 484 * CPUs. It must remain online when nohz full is enabled. 485 */ 486 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 487 return -EBUSY; 488 return 0; 489 } 490 491 void __init tick_nohz_init(void) 492 { 493 int cpu, ret; 494 495 if (!tick_nohz_full_running) 496 return; 497 498 /* 499 * Full dynticks uses irq work to drive the tick rescheduling on safe 500 * locking contexts. But then we need irq work to raise its own 501 * interrupts to avoid circular dependency on the tick 502 */ 503 if (!arch_irq_work_has_interrupt()) { 504 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 505 cpumask_clear(tick_nohz_full_mask); 506 tick_nohz_full_running = false; 507 return; 508 } 509 510 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 511 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 512 cpu = smp_processor_id(); 513 514 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 515 pr_warn("NO_HZ: Clearing %d from nohz_full range " 516 "for timekeeping\n", cpu); 517 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 518 } 519 } 520 521 for_each_cpu(cpu, tick_nohz_full_mask) 522 context_tracking_cpu_set(cpu); 523 524 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 525 "kernel/nohz:predown", NULL, 526 tick_nohz_cpu_down); 527 WARN_ON(ret < 0); 528 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 529 cpumask_pr_args(tick_nohz_full_mask)); 530 } 531 #endif 532 533 /* 534 * NOHZ - aka dynamic tick functionality 535 */ 536 #ifdef CONFIG_NO_HZ_COMMON 537 /* 538 * NO HZ enabled ? 539 */ 540 bool tick_nohz_enabled __read_mostly = true; 541 unsigned long tick_nohz_active __read_mostly; 542 /* 543 * Enable / Disable tickless mode 544 */ 545 static int __init setup_tick_nohz(char *str) 546 { 547 return (kstrtobool(str, &tick_nohz_enabled) == 0); 548 } 549 550 __setup("nohz=", setup_tick_nohz); 551 552 bool tick_nohz_tick_stopped(void) 553 { 554 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 555 556 return ts->tick_stopped; 557 } 558 559 bool tick_nohz_tick_stopped_cpu(int cpu) 560 { 561 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 562 563 return ts->tick_stopped; 564 } 565 566 /** 567 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 568 * 569 * Called from interrupt entry when the CPU was idle 570 * 571 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 572 * must be updated. Otherwise an interrupt handler could use a stale jiffy 573 * value. We do this unconditionally on any CPU, as we don't know whether the 574 * CPU, which has the update task assigned is in a long sleep. 575 */ 576 static void tick_nohz_update_jiffies(ktime_t now) 577 { 578 unsigned long flags; 579 580 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 581 582 local_irq_save(flags); 583 tick_do_update_jiffies64(now); 584 local_irq_restore(flags); 585 586 touch_softlockup_watchdog_sched(); 587 } 588 589 /* 590 * Updates the per-CPU time idle statistics counters 591 */ 592 static void 593 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 594 { 595 ktime_t delta; 596 597 if (ts->idle_active) { 598 delta = ktime_sub(now, ts->idle_entrytime); 599 if (nr_iowait_cpu(cpu) > 0) 600 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 601 else 602 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 603 ts->idle_entrytime = now; 604 } 605 606 if (last_update_time) 607 *last_update_time = ktime_to_us(now); 608 609 } 610 611 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 612 { 613 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 614 ts->idle_active = 0; 615 616 sched_clock_idle_wakeup_event(); 617 } 618 619 static void tick_nohz_start_idle(struct tick_sched *ts) 620 { 621 ts->idle_entrytime = ktime_get(); 622 ts->idle_active = 1; 623 sched_clock_idle_sleep_event(); 624 } 625 626 /** 627 * get_cpu_idle_time_us - get the total idle time of a CPU 628 * @cpu: CPU number to query 629 * @last_update_time: variable to store update time in. Do not update 630 * counters if NULL. 631 * 632 * Return the cumulative idle time (since boot) for a given 633 * CPU, in microseconds. 634 * 635 * This time is measured via accounting rather than sampling, 636 * and is as accurate as ktime_get() is. 637 * 638 * This function returns -1 if NOHZ is not enabled. 639 */ 640 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 641 { 642 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 643 ktime_t now, idle; 644 645 if (!tick_nohz_active) 646 return -1; 647 648 now = ktime_get(); 649 if (last_update_time) { 650 update_ts_time_stats(cpu, ts, now, last_update_time); 651 idle = ts->idle_sleeptime; 652 } else { 653 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 654 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 655 656 idle = ktime_add(ts->idle_sleeptime, delta); 657 } else { 658 idle = ts->idle_sleeptime; 659 } 660 } 661 662 return ktime_to_us(idle); 663 664 } 665 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 666 667 /** 668 * get_cpu_iowait_time_us - get the total iowait time of a CPU 669 * @cpu: CPU number to query 670 * @last_update_time: variable to store update time in. Do not update 671 * counters if NULL. 672 * 673 * Return the cumulative iowait time (since boot) for a given 674 * CPU, in microseconds. 675 * 676 * This time is measured via accounting rather than sampling, 677 * and is as accurate as ktime_get() is. 678 * 679 * This function returns -1 if NOHZ is not enabled. 680 */ 681 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 682 { 683 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 684 ktime_t now, iowait; 685 686 if (!tick_nohz_active) 687 return -1; 688 689 now = ktime_get(); 690 if (last_update_time) { 691 update_ts_time_stats(cpu, ts, now, last_update_time); 692 iowait = ts->iowait_sleeptime; 693 } else { 694 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 695 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 696 697 iowait = ktime_add(ts->iowait_sleeptime, delta); 698 } else { 699 iowait = ts->iowait_sleeptime; 700 } 701 } 702 703 return ktime_to_us(iowait); 704 } 705 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 706 707 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 708 { 709 hrtimer_cancel(&ts->sched_timer); 710 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 711 712 /* Forward the time to expire in the future */ 713 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 714 715 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 716 hrtimer_start_expires(&ts->sched_timer, 717 HRTIMER_MODE_ABS_PINNED_HARD); 718 } else { 719 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 720 } 721 722 /* 723 * Reset to make sure next tick stop doesn't get fooled by past 724 * cached clock deadline. 725 */ 726 ts->next_tick = 0; 727 } 728 729 static inline bool local_timer_softirq_pending(void) 730 { 731 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 732 } 733 734 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 735 { 736 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 737 unsigned long basejiff; 738 unsigned int seq; 739 740 /* Read jiffies and the time when jiffies were updated last */ 741 do { 742 seq = read_seqcount_begin(&jiffies_seq); 743 basemono = last_jiffies_update; 744 basejiff = jiffies; 745 } while (read_seqcount_retry(&jiffies_seq, seq)); 746 ts->last_jiffies = basejiff; 747 ts->timer_expires_base = basemono; 748 749 /* 750 * Keep the periodic tick, when RCU, architecture or irq_work 751 * requests it. 752 * Aside of that check whether the local timer softirq is 753 * pending. If so its a bad idea to call get_next_timer_interrupt() 754 * because there is an already expired timer, so it will request 755 * immediate expiry, which rearms the hardware timer with a 756 * minimal delta which brings us back to this place 757 * immediately. Lather, rinse and repeat... 758 */ 759 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 760 irq_work_needs_cpu() || local_timer_softirq_pending()) { 761 next_tick = basemono + TICK_NSEC; 762 } else { 763 /* 764 * Get the next pending timer. If high resolution 765 * timers are enabled this only takes the timer wheel 766 * timers into account. If high resolution timers are 767 * disabled this also looks at the next expiring 768 * hrtimer. 769 */ 770 next_tmr = get_next_timer_interrupt(basejiff, basemono); 771 ts->next_timer = next_tmr; 772 /* Take the next rcu event into account */ 773 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 774 } 775 776 /* 777 * If the tick is due in the next period, keep it ticking or 778 * force prod the timer. 779 */ 780 delta = next_tick - basemono; 781 if (delta <= (u64)TICK_NSEC) { 782 /* 783 * Tell the timer code that the base is not idle, i.e. undo 784 * the effect of get_next_timer_interrupt(): 785 */ 786 timer_clear_idle(); 787 /* 788 * We've not stopped the tick yet, and there's a timer in the 789 * next period, so no point in stopping it either, bail. 790 */ 791 if (!ts->tick_stopped) { 792 ts->timer_expires = 0; 793 goto out; 794 } 795 } 796 797 /* 798 * If this CPU is the one which had the do_timer() duty last, we limit 799 * the sleep time to the timekeeping max_deferment value. 800 * Otherwise we can sleep as long as we want. 801 */ 802 delta = timekeeping_max_deferment(); 803 if (cpu != tick_do_timer_cpu && 804 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 805 delta = KTIME_MAX; 806 807 /* Calculate the next expiry time */ 808 if (delta < (KTIME_MAX - basemono)) 809 expires = basemono + delta; 810 else 811 expires = KTIME_MAX; 812 813 ts->timer_expires = min_t(u64, expires, next_tick); 814 815 out: 816 return ts->timer_expires; 817 } 818 819 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 820 { 821 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 822 u64 basemono = ts->timer_expires_base; 823 u64 expires = ts->timer_expires; 824 ktime_t tick = expires; 825 826 /* Make sure we won't be trying to stop it twice in a row. */ 827 ts->timer_expires_base = 0; 828 829 /* 830 * If this CPU is the one which updates jiffies, then give up 831 * the assignment and let it be taken by the CPU which runs 832 * the tick timer next, which might be this CPU as well. If we 833 * don't drop this here the jiffies might be stale and 834 * do_timer() never invoked. Keep track of the fact that it 835 * was the one which had the do_timer() duty last. 836 */ 837 if (cpu == tick_do_timer_cpu) { 838 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 839 ts->do_timer_last = 1; 840 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 841 ts->do_timer_last = 0; 842 } 843 844 /* Skip reprogram of event if its not changed */ 845 if (ts->tick_stopped && (expires == ts->next_tick)) { 846 /* Sanity check: make sure clockevent is actually programmed */ 847 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 848 return; 849 850 WARN_ON_ONCE(1); 851 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 852 basemono, ts->next_tick, dev->next_event, 853 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 854 } 855 856 /* 857 * nohz_stop_sched_tick can be called several times before 858 * the nohz_restart_sched_tick is called. This happens when 859 * interrupts arrive which do not cause a reschedule. In the 860 * first call we save the current tick time, so we can restart 861 * the scheduler tick in nohz_restart_sched_tick. 862 */ 863 if (!ts->tick_stopped) { 864 calc_load_nohz_start(); 865 quiet_vmstat(); 866 867 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 868 ts->tick_stopped = 1; 869 trace_tick_stop(1, TICK_DEP_MASK_NONE); 870 } 871 872 ts->next_tick = tick; 873 874 /* 875 * If the expiration time == KTIME_MAX, then we simply stop 876 * the tick timer. 877 */ 878 if (unlikely(expires == KTIME_MAX)) { 879 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 880 hrtimer_cancel(&ts->sched_timer); 881 return; 882 } 883 884 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 885 hrtimer_start(&ts->sched_timer, tick, 886 HRTIMER_MODE_ABS_PINNED_HARD); 887 } else { 888 hrtimer_set_expires(&ts->sched_timer, tick); 889 tick_program_event(tick, 1); 890 } 891 } 892 893 static void tick_nohz_retain_tick(struct tick_sched *ts) 894 { 895 ts->timer_expires_base = 0; 896 } 897 898 #ifdef CONFIG_NO_HZ_FULL 899 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 900 { 901 if (tick_nohz_next_event(ts, cpu)) 902 tick_nohz_stop_tick(ts, cpu); 903 else 904 tick_nohz_retain_tick(ts); 905 } 906 #endif /* CONFIG_NO_HZ_FULL */ 907 908 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 909 { 910 /* Update jiffies first */ 911 tick_do_update_jiffies64(now); 912 913 /* 914 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 915 * the clock forward checks in the enqueue path: 916 */ 917 timer_clear_idle(); 918 919 calc_load_nohz_stop(); 920 touch_softlockup_watchdog_sched(); 921 /* 922 * Cancel the scheduled timer and restore the tick 923 */ 924 ts->tick_stopped = 0; 925 ts->idle_exittime = now; 926 927 tick_nohz_restart(ts, now); 928 } 929 930 static void tick_nohz_full_update_tick(struct tick_sched *ts) 931 { 932 #ifdef CONFIG_NO_HZ_FULL 933 int cpu = smp_processor_id(); 934 935 if (!tick_nohz_full_cpu(cpu)) 936 return; 937 938 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 939 return; 940 941 if (can_stop_full_tick(cpu, ts)) 942 tick_nohz_stop_sched_tick(ts, cpu); 943 else if (ts->tick_stopped) 944 tick_nohz_restart_sched_tick(ts, ktime_get()); 945 #endif 946 } 947 948 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 949 { 950 /* 951 * If this CPU is offline and it is the one which updates 952 * jiffies, then give up the assignment and let it be taken by 953 * the CPU which runs the tick timer next. If we don't drop 954 * this here the jiffies might be stale and do_timer() never 955 * invoked. 956 */ 957 if (unlikely(!cpu_online(cpu))) { 958 if (cpu == tick_do_timer_cpu) 959 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 960 /* 961 * Make sure the CPU doesn't get fooled by obsolete tick 962 * deadline if it comes back online later. 963 */ 964 ts->next_tick = 0; 965 return false; 966 } 967 968 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 969 return false; 970 971 if (need_resched()) 972 return false; 973 974 if (unlikely(local_softirq_pending())) { 975 static int ratelimit; 976 977 if (ratelimit < 10 && !local_bh_blocked() && 978 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 979 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n", 980 (unsigned int) local_softirq_pending()); 981 ratelimit++; 982 } 983 return false; 984 } 985 986 if (tick_nohz_full_enabled()) { 987 /* 988 * Keep the tick alive to guarantee timekeeping progression 989 * if there are full dynticks CPUs around 990 */ 991 if (tick_do_timer_cpu == cpu) 992 return false; 993 994 /* Should not happen for nohz-full */ 995 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 996 return false; 997 } 998 999 return true; 1000 } 1001 1002 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 1003 { 1004 ktime_t expires; 1005 int cpu = smp_processor_id(); 1006 1007 /* 1008 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 1009 * tick timer expiration time is known already. 1010 */ 1011 if (ts->timer_expires_base) 1012 expires = ts->timer_expires; 1013 else if (can_stop_idle_tick(cpu, ts)) 1014 expires = tick_nohz_next_event(ts, cpu); 1015 else 1016 return; 1017 1018 ts->idle_calls++; 1019 1020 if (expires > 0LL) { 1021 int was_stopped = ts->tick_stopped; 1022 1023 tick_nohz_stop_tick(ts, cpu); 1024 1025 ts->idle_sleeps++; 1026 ts->idle_expires = expires; 1027 1028 if (!was_stopped && ts->tick_stopped) { 1029 ts->idle_jiffies = ts->last_jiffies; 1030 nohz_balance_enter_idle(cpu); 1031 } 1032 } else { 1033 tick_nohz_retain_tick(ts); 1034 } 1035 } 1036 1037 /** 1038 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 1039 * 1040 * When the next event is more than a tick into the future, stop the idle tick 1041 */ 1042 void tick_nohz_idle_stop_tick(void) 1043 { 1044 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 1045 } 1046 1047 void tick_nohz_idle_retain_tick(void) 1048 { 1049 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 1050 /* 1051 * Undo the effect of get_next_timer_interrupt() called from 1052 * tick_nohz_next_event(). 1053 */ 1054 timer_clear_idle(); 1055 } 1056 1057 /** 1058 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 1059 * 1060 * Called when we start the idle loop. 1061 */ 1062 void tick_nohz_idle_enter(void) 1063 { 1064 struct tick_sched *ts; 1065 1066 lockdep_assert_irqs_enabled(); 1067 1068 local_irq_disable(); 1069 1070 ts = this_cpu_ptr(&tick_cpu_sched); 1071 1072 WARN_ON_ONCE(ts->timer_expires_base); 1073 1074 ts->inidle = 1; 1075 tick_nohz_start_idle(ts); 1076 1077 local_irq_enable(); 1078 } 1079 1080 /** 1081 * tick_nohz_irq_exit - update next tick event from interrupt exit 1082 * 1083 * When an interrupt fires while we are idle and it doesn't cause 1084 * a reschedule, it may still add, modify or delete a timer, enqueue 1085 * an RCU callback, etc... 1086 * So we need to re-calculate and reprogram the next tick event. 1087 */ 1088 void tick_nohz_irq_exit(void) 1089 { 1090 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1091 1092 if (ts->inidle) 1093 tick_nohz_start_idle(ts); 1094 else 1095 tick_nohz_full_update_tick(ts); 1096 } 1097 1098 /** 1099 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1100 */ 1101 bool tick_nohz_idle_got_tick(void) 1102 { 1103 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1104 1105 if (ts->got_idle_tick) { 1106 ts->got_idle_tick = 0; 1107 return true; 1108 } 1109 return false; 1110 } 1111 1112 /** 1113 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1114 * or the tick, whatever that expires first. Note that, if the tick has been 1115 * stopped, it returns the next hrtimer. 1116 * 1117 * Called from power state control code with interrupts disabled 1118 */ 1119 ktime_t tick_nohz_get_next_hrtimer(void) 1120 { 1121 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1122 } 1123 1124 /** 1125 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1126 * @delta_next: duration until the next event if the tick cannot be stopped 1127 * 1128 * Called from power state control code with interrupts disabled. 1129 * 1130 * The return value of this function and/or the value returned by it through the 1131 * @delta_next pointer can be negative which must be taken into account by its 1132 * callers. 1133 */ 1134 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1135 { 1136 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1137 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1138 int cpu = smp_processor_id(); 1139 /* 1140 * The idle entry time is expected to be a sufficient approximation of 1141 * the current time at this point. 1142 */ 1143 ktime_t now = ts->idle_entrytime; 1144 ktime_t next_event; 1145 1146 WARN_ON_ONCE(!ts->inidle); 1147 1148 *delta_next = ktime_sub(dev->next_event, now); 1149 1150 if (!can_stop_idle_tick(cpu, ts)) 1151 return *delta_next; 1152 1153 next_event = tick_nohz_next_event(ts, cpu); 1154 if (!next_event) 1155 return *delta_next; 1156 1157 /* 1158 * If the next highres timer to expire is earlier than next_event, the 1159 * idle governor needs to know that. 1160 */ 1161 next_event = min_t(u64, next_event, 1162 hrtimer_next_event_without(&ts->sched_timer)); 1163 1164 return ktime_sub(next_event, now); 1165 } 1166 1167 /** 1168 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1169 * for a particular CPU. 1170 * 1171 * Called from the schedutil frequency scaling governor in scheduler context. 1172 */ 1173 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1174 { 1175 struct tick_sched *ts = tick_get_tick_sched(cpu); 1176 1177 return ts->idle_calls; 1178 } 1179 1180 /** 1181 * tick_nohz_get_idle_calls - return the current idle calls counter value 1182 * 1183 * Called from the schedutil frequency scaling governor in scheduler context. 1184 */ 1185 unsigned long tick_nohz_get_idle_calls(void) 1186 { 1187 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1188 1189 return ts->idle_calls; 1190 } 1191 1192 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1193 { 1194 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1195 unsigned long ticks; 1196 1197 if (vtime_accounting_enabled_this_cpu()) 1198 return; 1199 /* 1200 * We stopped the tick in idle. Update process times would miss the 1201 * time we slept as update_process_times does only a 1 tick 1202 * accounting. Enforce that this is accounted to idle ! 1203 */ 1204 ticks = jiffies - ts->idle_jiffies; 1205 /* 1206 * We might be one off. Do not randomly account a huge number of ticks! 1207 */ 1208 if (ticks && ticks < LONG_MAX) 1209 account_idle_ticks(ticks); 1210 #endif 1211 } 1212 1213 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1214 { 1215 tick_nohz_restart_sched_tick(ts, now); 1216 tick_nohz_account_idle_ticks(ts); 1217 } 1218 1219 void tick_nohz_idle_restart_tick(void) 1220 { 1221 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1222 1223 if (ts->tick_stopped) 1224 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1225 } 1226 1227 /** 1228 * tick_nohz_idle_exit - restart the idle tick from the idle task 1229 * 1230 * Restart the idle tick when the CPU is woken up from idle 1231 * This also exit the RCU extended quiescent state. The CPU 1232 * can use RCU again after this function is called. 1233 */ 1234 void tick_nohz_idle_exit(void) 1235 { 1236 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1237 bool idle_active, tick_stopped; 1238 ktime_t now; 1239 1240 local_irq_disable(); 1241 1242 WARN_ON_ONCE(!ts->inidle); 1243 WARN_ON_ONCE(ts->timer_expires_base); 1244 1245 ts->inidle = 0; 1246 idle_active = ts->idle_active; 1247 tick_stopped = ts->tick_stopped; 1248 1249 if (idle_active || tick_stopped) 1250 now = ktime_get(); 1251 1252 if (idle_active) 1253 tick_nohz_stop_idle(ts, now); 1254 1255 if (tick_stopped) 1256 __tick_nohz_idle_restart_tick(ts, now); 1257 1258 local_irq_enable(); 1259 } 1260 1261 /* 1262 * The nohz low res interrupt handler 1263 */ 1264 static void tick_nohz_handler(struct clock_event_device *dev) 1265 { 1266 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1267 struct pt_regs *regs = get_irq_regs(); 1268 ktime_t now = ktime_get(); 1269 1270 dev->next_event = KTIME_MAX; 1271 1272 tick_sched_do_timer(ts, now); 1273 tick_sched_handle(ts, regs); 1274 1275 /* No need to reprogram if we are running tickless */ 1276 if (unlikely(ts->tick_stopped)) 1277 return; 1278 1279 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1280 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1281 } 1282 1283 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1284 { 1285 if (!tick_nohz_enabled) 1286 return; 1287 ts->nohz_mode = mode; 1288 /* One update is enough */ 1289 if (!test_and_set_bit(0, &tick_nohz_active)) 1290 timers_update_nohz(); 1291 } 1292 1293 /** 1294 * tick_nohz_switch_to_nohz - switch to nohz mode 1295 */ 1296 static void tick_nohz_switch_to_nohz(void) 1297 { 1298 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1299 ktime_t next; 1300 1301 if (!tick_nohz_enabled) 1302 return; 1303 1304 if (tick_switch_to_oneshot(tick_nohz_handler)) 1305 return; 1306 1307 /* 1308 * Recycle the hrtimer in ts, so we can share the 1309 * hrtimer_forward with the highres code. 1310 */ 1311 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1312 /* Get the next period */ 1313 next = tick_init_jiffy_update(); 1314 1315 hrtimer_set_expires(&ts->sched_timer, next); 1316 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); 1317 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1318 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1319 } 1320 1321 static inline void tick_nohz_irq_enter(void) 1322 { 1323 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1324 ktime_t now; 1325 1326 if (!ts->idle_active && !ts->tick_stopped) 1327 return; 1328 now = ktime_get(); 1329 if (ts->idle_active) 1330 tick_nohz_stop_idle(ts, now); 1331 if (ts->tick_stopped) 1332 tick_nohz_update_jiffies(now); 1333 } 1334 1335 #else 1336 1337 static inline void tick_nohz_switch_to_nohz(void) { } 1338 static inline void tick_nohz_irq_enter(void) { } 1339 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1340 1341 #endif /* CONFIG_NO_HZ_COMMON */ 1342 1343 /* 1344 * Called from irq_enter to notify about the possible interruption of idle() 1345 */ 1346 void tick_irq_enter(void) 1347 { 1348 tick_check_oneshot_broadcast_this_cpu(); 1349 tick_nohz_irq_enter(); 1350 } 1351 1352 /* 1353 * High resolution timer specific code 1354 */ 1355 #ifdef CONFIG_HIGH_RES_TIMERS 1356 /* 1357 * We rearm the timer until we get disabled by the idle code. 1358 * Called with interrupts disabled. 1359 */ 1360 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1361 { 1362 struct tick_sched *ts = 1363 container_of(timer, struct tick_sched, sched_timer); 1364 struct pt_regs *regs = get_irq_regs(); 1365 ktime_t now = ktime_get(); 1366 1367 tick_sched_do_timer(ts, now); 1368 1369 /* 1370 * Do not call, when we are not in irq context and have 1371 * no valid regs pointer 1372 */ 1373 if (regs) 1374 tick_sched_handle(ts, regs); 1375 else 1376 ts->next_tick = 0; 1377 1378 /* No need to reprogram if we are in idle or full dynticks mode */ 1379 if (unlikely(ts->tick_stopped)) 1380 return HRTIMER_NORESTART; 1381 1382 hrtimer_forward(timer, now, TICK_NSEC); 1383 1384 return HRTIMER_RESTART; 1385 } 1386 1387 static int sched_skew_tick; 1388 1389 static int __init skew_tick(char *str) 1390 { 1391 get_option(&str, &sched_skew_tick); 1392 1393 return 0; 1394 } 1395 early_param("skew_tick", skew_tick); 1396 1397 /** 1398 * tick_setup_sched_timer - setup the tick emulation timer 1399 */ 1400 void tick_setup_sched_timer(void) 1401 { 1402 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1403 ktime_t now = ktime_get(); 1404 1405 /* 1406 * Emulate tick processing via per-CPU hrtimers: 1407 */ 1408 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1409 ts->sched_timer.function = tick_sched_timer; 1410 1411 /* Get the next period (per-CPU) */ 1412 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1413 1414 /* Offset the tick to avert jiffies_lock contention. */ 1415 if (sched_skew_tick) { 1416 u64 offset = TICK_NSEC >> 1; 1417 do_div(offset, num_possible_cpus()); 1418 offset *= smp_processor_id(); 1419 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1420 } 1421 1422 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); 1423 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1424 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1425 } 1426 #endif /* HIGH_RES_TIMERS */ 1427 1428 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1429 void tick_cancel_sched_timer(int cpu) 1430 { 1431 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1432 1433 # ifdef CONFIG_HIGH_RES_TIMERS 1434 if (ts->sched_timer.base) 1435 hrtimer_cancel(&ts->sched_timer); 1436 # endif 1437 1438 memset(ts, 0, sizeof(*ts)); 1439 } 1440 #endif 1441 1442 /** 1443 * Async notification about clocksource changes 1444 */ 1445 void tick_clock_notify(void) 1446 { 1447 int cpu; 1448 1449 for_each_possible_cpu(cpu) 1450 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1451 } 1452 1453 /* 1454 * Async notification about clock event changes 1455 */ 1456 void tick_oneshot_notify(void) 1457 { 1458 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1459 1460 set_bit(0, &ts->check_clocks); 1461 } 1462 1463 /** 1464 * Check, if a change happened, which makes oneshot possible. 1465 * 1466 * Called cyclic from the hrtimer softirq (driven by the timer 1467 * softirq) allow_nohz signals, that we can switch into low-res nohz 1468 * mode, because high resolution timers are disabled (either compile 1469 * or runtime). Called with interrupts disabled. 1470 */ 1471 int tick_check_oneshot_change(int allow_nohz) 1472 { 1473 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1474 1475 if (!test_and_clear_bit(0, &ts->check_clocks)) 1476 return 0; 1477 1478 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1479 return 0; 1480 1481 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1482 return 0; 1483 1484 if (!allow_nohz) 1485 return 1; 1486 1487 tick_nohz_switch_to_nohz(); 1488 return 0; 1489 } 1490