xref: /openbmc/linux/kernel/time/tick-sched.c (revision 05911c5d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53 
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59 	unsigned long ticks = 1;
60 	ktime_t delta, nextp;
61 
62 	/*
63 	 * 64bit can do a quick check without holding jiffies lock and
64 	 * without looking at the sequence count. The smp_load_acquire()
65 	 * pairs with the update done later in this function.
66 	 *
67 	 * 32bit cannot do that because the store of tick_next_period
68 	 * consists of two 32bit stores and the first store could move it
69 	 * to a random point in the future.
70 	 */
71 	if (IS_ENABLED(CONFIG_64BIT)) {
72 		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 			return;
74 	} else {
75 		unsigned int seq;
76 
77 		/*
78 		 * Avoid contention on jiffies_lock and protect the quick
79 		 * check with the sequence count.
80 		 */
81 		do {
82 			seq = read_seqcount_begin(&jiffies_seq);
83 			nextp = tick_next_period;
84 		} while (read_seqcount_retry(&jiffies_seq, seq));
85 
86 		if (ktime_before(now, nextp))
87 			return;
88 	}
89 
90 	/* Quick check failed, i.e. update is required. */
91 	raw_spin_lock(&jiffies_lock);
92 	/*
93 	 * Reevaluate with the lock held. Another CPU might have done the
94 	 * update already.
95 	 */
96 	if (ktime_before(now, tick_next_period)) {
97 		raw_spin_unlock(&jiffies_lock);
98 		return;
99 	}
100 
101 	write_seqcount_begin(&jiffies_seq);
102 
103 	delta = ktime_sub(now, tick_next_period);
104 	if (unlikely(delta >= TICK_NSEC)) {
105 		/* Slow path for long idle sleep times */
106 		s64 incr = TICK_NSEC;
107 
108 		ticks += ktime_divns(delta, incr);
109 
110 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 						   incr * ticks);
112 	} else {
113 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 						   TICK_NSEC);
115 	}
116 
117 	/* Advance jiffies to complete the jiffies_seq protected job */
118 	jiffies_64 += ticks;
119 
120 	/*
121 	 * Keep the tick_next_period variable up to date.
122 	 */
123 	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124 
125 	if (IS_ENABLED(CONFIG_64BIT)) {
126 		/*
127 		 * Pairs with smp_load_acquire() in the lockless quick
128 		 * check above and ensures that the update to jiffies_64 is
129 		 * not reordered vs. the store to tick_next_period, neither
130 		 * by the compiler nor by the CPU.
131 		 */
132 		smp_store_release(&tick_next_period, nextp);
133 	} else {
134 		/*
135 		 * A plain store is good enough on 32bit as the quick check
136 		 * above is protected by the sequence count.
137 		 */
138 		tick_next_period = nextp;
139 	}
140 
141 	/*
142 	 * Release the sequence count. calc_global_load() below is not
143 	 * protected by it, but jiffies_lock needs to be held to prevent
144 	 * concurrent invocations.
145 	 */
146 	write_seqcount_end(&jiffies_seq);
147 
148 	calc_global_load();
149 
150 	raw_spin_unlock(&jiffies_lock);
151 	update_wall_time();
152 }
153 
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159 	ktime_t period;
160 
161 	raw_spin_lock(&jiffies_lock);
162 	write_seqcount_begin(&jiffies_seq);
163 	/* Did we start the jiffies update yet ? */
164 	if (last_jiffies_update == 0)
165 		last_jiffies_update = tick_next_period;
166 	period = last_jiffies_update;
167 	write_seqcount_end(&jiffies_seq);
168 	raw_spin_unlock(&jiffies_lock);
169 	return period;
170 }
171 
172 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
173 {
174 	int cpu = smp_processor_id();
175 
176 #ifdef CONFIG_NO_HZ_COMMON
177 	/*
178 	 * Check if the do_timer duty was dropped. We don't care about
179 	 * concurrency: This happens only when the CPU in charge went
180 	 * into a long sleep. If two CPUs happen to assign themselves to
181 	 * this duty, then the jiffies update is still serialized by
182 	 * jiffies_lock.
183 	 *
184 	 * If nohz_full is enabled, this should not happen because the
185 	 * tick_do_timer_cpu never relinquishes.
186 	 */
187 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
188 #ifdef CONFIG_NO_HZ_FULL
189 		WARN_ON(tick_nohz_full_running);
190 #endif
191 		tick_do_timer_cpu = cpu;
192 	}
193 #endif
194 
195 	/* Check, if the jiffies need an update */
196 	if (tick_do_timer_cpu == cpu)
197 		tick_do_update_jiffies64(now);
198 
199 	if (ts->inidle)
200 		ts->got_idle_tick = 1;
201 }
202 
203 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
204 {
205 #ifdef CONFIG_NO_HZ_COMMON
206 	/*
207 	 * When we are idle and the tick is stopped, we have to touch
208 	 * the watchdog as we might not schedule for a really long
209 	 * time. This happens on complete idle SMP systems while
210 	 * waiting on the login prompt. We also increment the "start of
211 	 * idle" jiffy stamp so the idle accounting adjustment we do
212 	 * when we go busy again does not account too much ticks.
213 	 */
214 	if (ts->tick_stopped) {
215 		touch_softlockup_watchdog_sched();
216 		if (is_idle_task(current))
217 			ts->idle_jiffies++;
218 		/*
219 		 * In case the current tick fired too early past its expected
220 		 * expiration, make sure we don't bypass the next clock reprogramming
221 		 * to the same deadline.
222 		 */
223 		ts->next_tick = 0;
224 	}
225 #endif
226 	update_process_times(user_mode(regs));
227 	profile_tick(CPU_PROFILING);
228 }
229 #endif
230 
231 #ifdef CONFIG_NO_HZ_FULL
232 cpumask_var_t tick_nohz_full_mask;
233 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
234 bool tick_nohz_full_running;
235 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
236 static atomic_t tick_dep_mask;
237 
238 static bool check_tick_dependency(atomic_t *dep)
239 {
240 	int val = atomic_read(dep);
241 
242 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
243 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
244 		return true;
245 	}
246 
247 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
248 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
249 		return true;
250 	}
251 
252 	if (val & TICK_DEP_MASK_SCHED) {
253 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
254 		return true;
255 	}
256 
257 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
258 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
259 		return true;
260 	}
261 
262 	if (val & TICK_DEP_MASK_RCU) {
263 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
264 		return true;
265 	}
266 
267 	return false;
268 }
269 
270 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
271 {
272 	lockdep_assert_irqs_disabled();
273 
274 	if (unlikely(!cpu_online(cpu)))
275 		return false;
276 
277 	if (check_tick_dependency(&tick_dep_mask))
278 		return false;
279 
280 	if (check_tick_dependency(&ts->tick_dep_mask))
281 		return false;
282 
283 	if (check_tick_dependency(&current->tick_dep_mask))
284 		return false;
285 
286 	if (check_tick_dependency(&current->signal->tick_dep_mask))
287 		return false;
288 
289 	return true;
290 }
291 
292 static void nohz_full_kick_func(struct irq_work *work)
293 {
294 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
295 }
296 
297 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
298 	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
299 
300 /*
301  * Kick this CPU if it's full dynticks in order to force it to
302  * re-evaluate its dependency on the tick and restart it if necessary.
303  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
304  * is NMI safe.
305  */
306 static void tick_nohz_full_kick(void)
307 {
308 	if (!tick_nohz_full_cpu(smp_processor_id()))
309 		return;
310 
311 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
312 }
313 
314 /*
315  * Kick the CPU if it's full dynticks in order to force it to
316  * re-evaluate its dependency on the tick and restart it if necessary.
317  */
318 void tick_nohz_full_kick_cpu(int cpu)
319 {
320 	if (!tick_nohz_full_cpu(cpu))
321 		return;
322 
323 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
324 }
325 
326 /*
327  * Kick all full dynticks CPUs in order to force these to re-evaluate
328  * their dependency on the tick and restart it if necessary.
329  */
330 static void tick_nohz_full_kick_all(void)
331 {
332 	int cpu;
333 
334 	if (!tick_nohz_full_running)
335 		return;
336 
337 	preempt_disable();
338 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
339 		tick_nohz_full_kick_cpu(cpu);
340 	preempt_enable();
341 }
342 
343 static void tick_nohz_dep_set_all(atomic_t *dep,
344 				  enum tick_dep_bits bit)
345 {
346 	int prev;
347 
348 	prev = atomic_fetch_or(BIT(bit), dep);
349 	if (!prev)
350 		tick_nohz_full_kick_all();
351 }
352 
353 /*
354  * Set a global tick dependency. Used by perf events that rely on freq and
355  * by unstable clock.
356  */
357 void tick_nohz_dep_set(enum tick_dep_bits bit)
358 {
359 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
360 }
361 
362 void tick_nohz_dep_clear(enum tick_dep_bits bit)
363 {
364 	atomic_andnot(BIT(bit), &tick_dep_mask);
365 }
366 
367 /*
368  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
369  * manage events throttling.
370  */
371 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
372 {
373 	int prev;
374 	struct tick_sched *ts;
375 
376 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
377 
378 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
379 	if (!prev) {
380 		preempt_disable();
381 		/* Perf needs local kick that is NMI safe */
382 		if (cpu == smp_processor_id()) {
383 			tick_nohz_full_kick();
384 		} else {
385 			/* Remote irq work not NMI-safe */
386 			if (!WARN_ON_ONCE(in_nmi()))
387 				tick_nohz_full_kick_cpu(cpu);
388 		}
389 		preempt_enable();
390 	}
391 }
392 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
393 
394 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
395 {
396 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
397 
398 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
399 }
400 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
401 
402 /*
403  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
404  * in order to elapse per task timers.
405  */
406 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
407 {
408 	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
409 		if (tsk == current) {
410 			preempt_disable();
411 			tick_nohz_full_kick();
412 			preempt_enable();
413 		} else {
414 			/*
415 			 * Some future tick_nohz_full_kick_task()
416 			 * should optimize this.
417 			 */
418 			tick_nohz_full_kick_all();
419 		}
420 	}
421 }
422 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
423 
424 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
425 {
426 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
427 }
428 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
429 
430 /*
431  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
432  * per process timers.
433  */
434 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
435 {
436 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
437 }
438 
439 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
440 {
441 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
442 }
443 
444 /*
445  * Re-evaluate the need for the tick as we switch the current task.
446  * It might need the tick due to per task/process properties:
447  * perf events, posix CPU timers, ...
448  */
449 void __tick_nohz_task_switch(void)
450 {
451 	unsigned long flags;
452 	struct tick_sched *ts;
453 
454 	local_irq_save(flags);
455 
456 	if (!tick_nohz_full_cpu(smp_processor_id()))
457 		goto out;
458 
459 	ts = this_cpu_ptr(&tick_cpu_sched);
460 
461 	if (ts->tick_stopped) {
462 		if (atomic_read(&current->tick_dep_mask) ||
463 		    atomic_read(&current->signal->tick_dep_mask))
464 			tick_nohz_full_kick();
465 	}
466 out:
467 	local_irq_restore(flags);
468 }
469 
470 /* Get the boot-time nohz CPU list from the kernel parameters. */
471 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
472 {
473 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
474 	cpumask_copy(tick_nohz_full_mask, cpumask);
475 	tick_nohz_full_running = true;
476 }
477 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
478 
479 static int tick_nohz_cpu_down(unsigned int cpu)
480 {
481 	/*
482 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
483 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
484 	 * CPUs. It must remain online when nohz full is enabled.
485 	 */
486 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
487 		return -EBUSY;
488 	return 0;
489 }
490 
491 void __init tick_nohz_init(void)
492 {
493 	int cpu, ret;
494 
495 	if (!tick_nohz_full_running)
496 		return;
497 
498 	/*
499 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
500 	 * locking contexts. But then we need irq work to raise its own
501 	 * interrupts to avoid circular dependency on the tick
502 	 */
503 	if (!arch_irq_work_has_interrupt()) {
504 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
505 		cpumask_clear(tick_nohz_full_mask);
506 		tick_nohz_full_running = false;
507 		return;
508 	}
509 
510 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
511 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
512 		cpu = smp_processor_id();
513 
514 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
515 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
516 				"for timekeeping\n", cpu);
517 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
518 		}
519 	}
520 
521 	for_each_cpu(cpu, tick_nohz_full_mask)
522 		context_tracking_cpu_set(cpu);
523 
524 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
525 					"kernel/nohz:predown", NULL,
526 					tick_nohz_cpu_down);
527 	WARN_ON(ret < 0);
528 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
529 		cpumask_pr_args(tick_nohz_full_mask));
530 }
531 #endif
532 
533 /*
534  * NOHZ - aka dynamic tick functionality
535  */
536 #ifdef CONFIG_NO_HZ_COMMON
537 /*
538  * NO HZ enabled ?
539  */
540 bool tick_nohz_enabled __read_mostly  = true;
541 unsigned long tick_nohz_active  __read_mostly;
542 /*
543  * Enable / Disable tickless mode
544  */
545 static int __init setup_tick_nohz(char *str)
546 {
547 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
548 }
549 
550 __setup("nohz=", setup_tick_nohz);
551 
552 bool tick_nohz_tick_stopped(void)
553 {
554 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
555 
556 	return ts->tick_stopped;
557 }
558 
559 bool tick_nohz_tick_stopped_cpu(int cpu)
560 {
561 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
562 
563 	return ts->tick_stopped;
564 }
565 
566 /**
567  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
568  *
569  * Called from interrupt entry when the CPU was idle
570  *
571  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
572  * must be updated. Otherwise an interrupt handler could use a stale jiffy
573  * value. We do this unconditionally on any CPU, as we don't know whether the
574  * CPU, which has the update task assigned is in a long sleep.
575  */
576 static void tick_nohz_update_jiffies(ktime_t now)
577 {
578 	unsigned long flags;
579 
580 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
581 
582 	local_irq_save(flags);
583 	tick_do_update_jiffies64(now);
584 	local_irq_restore(flags);
585 
586 	touch_softlockup_watchdog_sched();
587 }
588 
589 /*
590  * Updates the per-CPU time idle statistics counters
591  */
592 static void
593 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
594 {
595 	ktime_t delta;
596 
597 	if (ts->idle_active) {
598 		delta = ktime_sub(now, ts->idle_entrytime);
599 		if (nr_iowait_cpu(cpu) > 0)
600 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
601 		else
602 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
603 		ts->idle_entrytime = now;
604 	}
605 
606 	if (last_update_time)
607 		*last_update_time = ktime_to_us(now);
608 
609 }
610 
611 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
612 {
613 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
614 	ts->idle_active = 0;
615 
616 	sched_clock_idle_wakeup_event();
617 }
618 
619 static void tick_nohz_start_idle(struct tick_sched *ts)
620 {
621 	ts->idle_entrytime = ktime_get();
622 	ts->idle_active = 1;
623 	sched_clock_idle_sleep_event();
624 }
625 
626 /**
627  * get_cpu_idle_time_us - get the total idle time of a CPU
628  * @cpu: CPU number to query
629  * @last_update_time: variable to store update time in. Do not update
630  * counters if NULL.
631  *
632  * Return the cumulative idle time (since boot) for a given
633  * CPU, in microseconds.
634  *
635  * This time is measured via accounting rather than sampling,
636  * and is as accurate as ktime_get() is.
637  *
638  * This function returns -1 if NOHZ is not enabled.
639  */
640 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
641 {
642 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
643 	ktime_t now, idle;
644 
645 	if (!tick_nohz_active)
646 		return -1;
647 
648 	now = ktime_get();
649 	if (last_update_time) {
650 		update_ts_time_stats(cpu, ts, now, last_update_time);
651 		idle = ts->idle_sleeptime;
652 	} else {
653 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
654 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
655 
656 			idle = ktime_add(ts->idle_sleeptime, delta);
657 		} else {
658 			idle = ts->idle_sleeptime;
659 		}
660 	}
661 
662 	return ktime_to_us(idle);
663 
664 }
665 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
666 
667 /**
668  * get_cpu_iowait_time_us - get the total iowait time of a CPU
669  * @cpu: CPU number to query
670  * @last_update_time: variable to store update time in. Do not update
671  * counters if NULL.
672  *
673  * Return the cumulative iowait time (since boot) for a given
674  * CPU, in microseconds.
675  *
676  * This time is measured via accounting rather than sampling,
677  * and is as accurate as ktime_get() is.
678  *
679  * This function returns -1 if NOHZ is not enabled.
680  */
681 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
682 {
683 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
684 	ktime_t now, iowait;
685 
686 	if (!tick_nohz_active)
687 		return -1;
688 
689 	now = ktime_get();
690 	if (last_update_time) {
691 		update_ts_time_stats(cpu, ts, now, last_update_time);
692 		iowait = ts->iowait_sleeptime;
693 	} else {
694 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
695 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
696 
697 			iowait = ktime_add(ts->iowait_sleeptime, delta);
698 		} else {
699 			iowait = ts->iowait_sleeptime;
700 		}
701 	}
702 
703 	return ktime_to_us(iowait);
704 }
705 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
706 
707 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
708 {
709 	hrtimer_cancel(&ts->sched_timer);
710 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
711 
712 	/* Forward the time to expire in the future */
713 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
714 
715 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
716 		hrtimer_start_expires(&ts->sched_timer,
717 				      HRTIMER_MODE_ABS_PINNED_HARD);
718 	} else {
719 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
720 	}
721 
722 	/*
723 	 * Reset to make sure next tick stop doesn't get fooled by past
724 	 * cached clock deadline.
725 	 */
726 	ts->next_tick = 0;
727 }
728 
729 static inline bool local_timer_softirq_pending(void)
730 {
731 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
732 }
733 
734 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
735 {
736 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
737 	unsigned long basejiff;
738 	unsigned int seq;
739 
740 	/* Read jiffies and the time when jiffies were updated last */
741 	do {
742 		seq = read_seqcount_begin(&jiffies_seq);
743 		basemono = last_jiffies_update;
744 		basejiff = jiffies;
745 	} while (read_seqcount_retry(&jiffies_seq, seq));
746 	ts->last_jiffies = basejiff;
747 	ts->timer_expires_base = basemono;
748 
749 	/*
750 	 * Keep the periodic tick, when RCU, architecture or irq_work
751 	 * requests it.
752 	 * Aside of that check whether the local timer softirq is
753 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
754 	 * because there is an already expired timer, so it will request
755 	 * immediate expiry, which rearms the hardware timer with a
756 	 * minimal delta which brings us back to this place
757 	 * immediately. Lather, rinse and repeat...
758 	 */
759 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
760 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
761 		next_tick = basemono + TICK_NSEC;
762 	} else {
763 		/*
764 		 * Get the next pending timer. If high resolution
765 		 * timers are enabled this only takes the timer wheel
766 		 * timers into account. If high resolution timers are
767 		 * disabled this also looks at the next expiring
768 		 * hrtimer.
769 		 */
770 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
771 		ts->next_timer = next_tmr;
772 		/* Take the next rcu event into account */
773 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
774 	}
775 
776 	/*
777 	 * If the tick is due in the next period, keep it ticking or
778 	 * force prod the timer.
779 	 */
780 	delta = next_tick - basemono;
781 	if (delta <= (u64)TICK_NSEC) {
782 		/*
783 		 * Tell the timer code that the base is not idle, i.e. undo
784 		 * the effect of get_next_timer_interrupt():
785 		 */
786 		timer_clear_idle();
787 		/*
788 		 * We've not stopped the tick yet, and there's a timer in the
789 		 * next period, so no point in stopping it either, bail.
790 		 */
791 		if (!ts->tick_stopped) {
792 			ts->timer_expires = 0;
793 			goto out;
794 		}
795 	}
796 
797 	/*
798 	 * If this CPU is the one which had the do_timer() duty last, we limit
799 	 * the sleep time to the timekeeping max_deferment value.
800 	 * Otherwise we can sleep as long as we want.
801 	 */
802 	delta = timekeeping_max_deferment();
803 	if (cpu != tick_do_timer_cpu &&
804 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
805 		delta = KTIME_MAX;
806 
807 	/* Calculate the next expiry time */
808 	if (delta < (KTIME_MAX - basemono))
809 		expires = basemono + delta;
810 	else
811 		expires = KTIME_MAX;
812 
813 	ts->timer_expires = min_t(u64, expires, next_tick);
814 
815 out:
816 	return ts->timer_expires;
817 }
818 
819 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
820 {
821 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
822 	u64 basemono = ts->timer_expires_base;
823 	u64 expires = ts->timer_expires;
824 	ktime_t tick = expires;
825 
826 	/* Make sure we won't be trying to stop it twice in a row. */
827 	ts->timer_expires_base = 0;
828 
829 	/*
830 	 * If this CPU is the one which updates jiffies, then give up
831 	 * the assignment and let it be taken by the CPU which runs
832 	 * the tick timer next, which might be this CPU as well. If we
833 	 * don't drop this here the jiffies might be stale and
834 	 * do_timer() never invoked. Keep track of the fact that it
835 	 * was the one which had the do_timer() duty last.
836 	 */
837 	if (cpu == tick_do_timer_cpu) {
838 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
839 		ts->do_timer_last = 1;
840 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
841 		ts->do_timer_last = 0;
842 	}
843 
844 	/* Skip reprogram of event if its not changed */
845 	if (ts->tick_stopped && (expires == ts->next_tick)) {
846 		/* Sanity check: make sure clockevent is actually programmed */
847 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
848 			return;
849 
850 		WARN_ON_ONCE(1);
851 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
852 			    basemono, ts->next_tick, dev->next_event,
853 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
854 	}
855 
856 	/*
857 	 * nohz_stop_sched_tick can be called several times before
858 	 * the nohz_restart_sched_tick is called. This happens when
859 	 * interrupts arrive which do not cause a reschedule. In the
860 	 * first call we save the current tick time, so we can restart
861 	 * the scheduler tick in nohz_restart_sched_tick.
862 	 */
863 	if (!ts->tick_stopped) {
864 		calc_load_nohz_start();
865 		quiet_vmstat();
866 
867 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
868 		ts->tick_stopped = 1;
869 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
870 	}
871 
872 	ts->next_tick = tick;
873 
874 	/*
875 	 * If the expiration time == KTIME_MAX, then we simply stop
876 	 * the tick timer.
877 	 */
878 	if (unlikely(expires == KTIME_MAX)) {
879 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
880 			hrtimer_cancel(&ts->sched_timer);
881 		return;
882 	}
883 
884 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
885 		hrtimer_start(&ts->sched_timer, tick,
886 			      HRTIMER_MODE_ABS_PINNED_HARD);
887 	} else {
888 		hrtimer_set_expires(&ts->sched_timer, tick);
889 		tick_program_event(tick, 1);
890 	}
891 }
892 
893 static void tick_nohz_retain_tick(struct tick_sched *ts)
894 {
895 	ts->timer_expires_base = 0;
896 }
897 
898 #ifdef CONFIG_NO_HZ_FULL
899 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
900 {
901 	if (tick_nohz_next_event(ts, cpu))
902 		tick_nohz_stop_tick(ts, cpu);
903 	else
904 		tick_nohz_retain_tick(ts);
905 }
906 #endif /* CONFIG_NO_HZ_FULL */
907 
908 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
909 {
910 	/* Update jiffies first */
911 	tick_do_update_jiffies64(now);
912 
913 	/*
914 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
915 	 * the clock forward checks in the enqueue path:
916 	 */
917 	timer_clear_idle();
918 
919 	calc_load_nohz_stop();
920 	touch_softlockup_watchdog_sched();
921 	/*
922 	 * Cancel the scheduled timer and restore the tick
923 	 */
924 	ts->tick_stopped  = 0;
925 	ts->idle_exittime = now;
926 
927 	tick_nohz_restart(ts, now);
928 }
929 
930 static void tick_nohz_full_update_tick(struct tick_sched *ts)
931 {
932 #ifdef CONFIG_NO_HZ_FULL
933 	int cpu = smp_processor_id();
934 
935 	if (!tick_nohz_full_cpu(cpu))
936 		return;
937 
938 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
939 		return;
940 
941 	if (can_stop_full_tick(cpu, ts))
942 		tick_nohz_stop_sched_tick(ts, cpu);
943 	else if (ts->tick_stopped)
944 		tick_nohz_restart_sched_tick(ts, ktime_get());
945 #endif
946 }
947 
948 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
949 {
950 	/*
951 	 * If this CPU is offline and it is the one which updates
952 	 * jiffies, then give up the assignment and let it be taken by
953 	 * the CPU which runs the tick timer next. If we don't drop
954 	 * this here the jiffies might be stale and do_timer() never
955 	 * invoked.
956 	 */
957 	if (unlikely(!cpu_online(cpu))) {
958 		if (cpu == tick_do_timer_cpu)
959 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
960 		/*
961 		 * Make sure the CPU doesn't get fooled by obsolete tick
962 		 * deadline if it comes back online later.
963 		 */
964 		ts->next_tick = 0;
965 		return false;
966 	}
967 
968 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
969 		return false;
970 
971 	if (need_resched())
972 		return false;
973 
974 	if (unlikely(local_softirq_pending())) {
975 		static int ratelimit;
976 
977 		if (ratelimit < 10 && !local_bh_blocked() &&
978 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
979 			pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
980 				(unsigned int) local_softirq_pending());
981 			ratelimit++;
982 		}
983 		return false;
984 	}
985 
986 	if (tick_nohz_full_enabled()) {
987 		/*
988 		 * Keep the tick alive to guarantee timekeeping progression
989 		 * if there are full dynticks CPUs around
990 		 */
991 		if (tick_do_timer_cpu == cpu)
992 			return false;
993 
994 		/* Should not happen for nohz-full */
995 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
996 			return false;
997 	}
998 
999 	return true;
1000 }
1001 
1002 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1003 {
1004 	ktime_t expires;
1005 	int cpu = smp_processor_id();
1006 
1007 	/*
1008 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1009 	 * tick timer expiration time is known already.
1010 	 */
1011 	if (ts->timer_expires_base)
1012 		expires = ts->timer_expires;
1013 	else if (can_stop_idle_tick(cpu, ts))
1014 		expires = tick_nohz_next_event(ts, cpu);
1015 	else
1016 		return;
1017 
1018 	ts->idle_calls++;
1019 
1020 	if (expires > 0LL) {
1021 		int was_stopped = ts->tick_stopped;
1022 
1023 		tick_nohz_stop_tick(ts, cpu);
1024 
1025 		ts->idle_sleeps++;
1026 		ts->idle_expires = expires;
1027 
1028 		if (!was_stopped && ts->tick_stopped) {
1029 			ts->idle_jiffies = ts->last_jiffies;
1030 			nohz_balance_enter_idle(cpu);
1031 		}
1032 	} else {
1033 		tick_nohz_retain_tick(ts);
1034 	}
1035 }
1036 
1037 /**
1038  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1039  *
1040  * When the next event is more than a tick into the future, stop the idle tick
1041  */
1042 void tick_nohz_idle_stop_tick(void)
1043 {
1044 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1045 }
1046 
1047 void tick_nohz_idle_retain_tick(void)
1048 {
1049 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1050 	/*
1051 	 * Undo the effect of get_next_timer_interrupt() called from
1052 	 * tick_nohz_next_event().
1053 	 */
1054 	timer_clear_idle();
1055 }
1056 
1057 /**
1058  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1059  *
1060  * Called when we start the idle loop.
1061  */
1062 void tick_nohz_idle_enter(void)
1063 {
1064 	struct tick_sched *ts;
1065 
1066 	lockdep_assert_irqs_enabled();
1067 
1068 	local_irq_disable();
1069 
1070 	ts = this_cpu_ptr(&tick_cpu_sched);
1071 
1072 	WARN_ON_ONCE(ts->timer_expires_base);
1073 
1074 	ts->inidle = 1;
1075 	tick_nohz_start_idle(ts);
1076 
1077 	local_irq_enable();
1078 }
1079 
1080 /**
1081  * tick_nohz_irq_exit - update next tick event from interrupt exit
1082  *
1083  * When an interrupt fires while we are idle and it doesn't cause
1084  * a reschedule, it may still add, modify or delete a timer, enqueue
1085  * an RCU callback, etc...
1086  * So we need to re-calculate and reprogram the next tick event.
1087  */
1088 void tick_nohz_irq_exit(void)
1089 {
1090 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1091 
1092 	if (ts->inidle)
1093 		tick_nohz_start_idle(ts);
1094 	else
1095 		tick_nohz_full_update_tick(ts);
1096 }
1097 
1098 /**
1099  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1100  */
1101 bool tick_nohz_idle_got_tick(void)
1102 {
1103 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1104 
1105 	if (ts->got_idle_tick) {
1106 		ts->got_idle_tick = 0;
1107 		return true;
1108 	}
1109 	return false;
1110 }
1111 
1112 /**
1113  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1114  * or the tick, whatever that expires first. Note that, if the tick has been
1115  * stopped, it returns the next hrtimer.
1116  *
1117  * Called from power state control code with interrupts disabled
1118  */
1119 ktime_t tick_nohz_get_next_hrtimer(void)
1120 {
1121 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1122 }
1123 
1124 /**
1125  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1126  * @delta_next: duration until the next event if the tick cannot be stopped
1127  *
1128  * Called from power state control code with interrupts disabled.
1129  *
1130  * The return value of this function and/or the value returned by it through the
1131  * @delta_next pointer can be negative which must be taken into account by its
1132  * callers.
1133  */
1134 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1135 {
1136 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1137 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1138 	int cpu = smp_processor_id();
1139 	/*
1140 	 * The idle entry time is expected to be a sufficient approximation of
1141 	 * the current time at this point.
1142 	 */
1143 	ktime_t now = ts->idle_entrytime;
1144 	ktime_t next_event;
1145 
1146 	WARN_ON_ONCE(!ts->inidle);
1147 
1148 	*delta_next = ktime_sub(dev->next_event, now);
1149 
1150 	if (!can_stop_idle_tick(cpu, ts))
1151 		return *delta_next;
1152 
1153 	next_event = tick_nohz_next_event(ts, cpu);
1154 	if (!next_event)
1155 		return *delta_next;
1156 
1157 	/*
1158 	 * If the next highres timer to expire is earlier than next_event, the
1159 	 * idle governor needs to know that.
1160 	 */
1161 	next_event = min_t(u64, next_event,
1162 			   hrtimer_next_event_without(&ts->sched_timer));
1163 
1164 	return ktime_sub(next_event, now);
1165 }
1166 
1167 /**
1168  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1169  * for a particular CPU.
1170  *
1171  * Called from the schedutil frequency scaling governor in scheduler context.
1172  */
1173 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1174 {
1175 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1176 
1177 	return ts->idle_calls;
1178 }
1179 
1180 /**
1181  * tick_nohz_get_idle_calls - return the current idle calls counter value
1182  *
1183  * Called from the schedutil frequency scaling governor in scheduler context.
1184  */
1185 unsigned long tick_nohz_get_idle_calls(void)
1186 {
1187 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188 
1189 	return ts->idle_calls;
1190 }
1191 
1192 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1193 {
1194 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1195 	unsigned long ticks;
1196 
1197 	if (vtime_accounting_enabled_this_cpu())
1198 		return;
1199 	/*
1200 	 * We stopped the tick in idle. Update process times would miss the
1201 	 * time we slept as update_process_times does only a 1 tick
1202 	 * accounting. Enforce that this is accounted to idle !
1203 	 */
1204 	ticks = jiffies - ts->idle_jiffies;
1205 	/*
1206 	 * We might be one off. Do not randomly account a huge number of ticks!
1207 	 */
1208 	if (ticks && ticks < LONG_MAX)
1209 		account_idle_ticks(ticks);
1210 #endif
1211 }
1212 
1213 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1214 {
1215 	tick_nohz_restart_sched_tick(ts, now);
1216 	tick_nohz_account_idle_ticks(ts);
1217 }
1218 
1219 void tick_nohz_idle_restart_tick(void)
1220 {
1221 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1222 
1223 	if (ts->tick_stopped)
1224 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1225 }
1226 
1227 /**
1228  * tick_nohz_idle_exit - restart the idle tick from the idle task
1229  *
1230  * Restart the idle tick when the CPU is woken up from idle
1231  * This also exit the RCU extended quiescent state. The CPU
1232  * can use RCU again after this function is called.
1233  */
1234 void tick_nohz_idle_exit(void)
1235 {
1236 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1237 	bool idle_active, tick_stopped;
1238 	ktime_t now;
1239 
1240 	local_irq_disable();
1241 
1242 	WARN_ON_ONCE(!ts->inidle);
1243 	WARN_ON_ONCE(ts->timer_expires_base);
1244 
1245 	ts->inidle = 0;
1246 	idle_active = ts->idle_active;
1247 	tick_stopped = ts->tick_stopped;
1248 
1249 	if (idle_active || tick_stopped)
1250 		now = ktime_get();
1251 
1252 	if (idle_active)
1253 		tick_nohz_stop_idle(ts, now);
1254 
1255 	if (tick_stopped)
1256 		__tick_nohz_idle_restart_tick(ts, now);
1257 
1258 	local_irq_enable();
1259 }
1260 
1261 /*
1262  * The nohz low res interrupt handler
1263  */
1264 static void tick_nohz_handler(struct clock_event_device *dev)
1265 {
1266 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1267 	struct pt_regs *regs = get_irq_regs();
1268 	ktime_t now = ktime_get();
1269 
1270 	dev->next_event = KTIME_MAX;
1271 
1272 	tick_sched_do_timer(ts, now);
1273 	tick_sched_handle(ts, regs);
1274 
1275 	/* No need to reprogram if we are running tickless  */
1276 	if (unlikely(ts->tick_stopped))
1277 		return;
1278 
1279 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1280 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1281 }
1282 
1283 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1284 {
1285 	if (!tick_nohz_enabled)
1286 		return;
1287 	ts->nohz_mode = mode;
1288 	/* One update is enough */
1289 	if (!test_and_set_bit(0, &tick_nohz_active))
1290 		timers_update_nohz();
1291 }
1292 
1293 /**
1294  * tick_nohz_switch_to_nohz - switch to nohz mode
1295  */
1296 static void tick_nohz_switch_to_nohz(void)
1297 {
1298 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1299 	ktime_t next;
1300 
1301 	if (!tick_nohz_enabled)
1302 		return;
1303 
1304 	if (tick_switch_to_oneshot(tick_nohz_handler))
1305 		return;
1306 
1307 	/*
1308 	 * Recycle the hrtimer in ts, so we can share the
1309 	 * hrtimer_forward with the highres code.
1310 	 */
1311 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1312 	/* Get the next period */
1313 	next = tick_init_jiffy_update();
1314 
1315 	hrtimer_set_expires(&ts->sched_timer, next);
1316 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1317 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1318 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1319 }
1320 
1321 static inline void tick_nohz_irq_enter(void)
1322 {
1323 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1324 	ktime_t now;
1325 
1326 	if (!ts->idle_active && !ts->tick_stopped)
1327 		return;
1328 	now = ktime_get();
1329 	if (ts->idle_active)
1330 		tick_nohz_stop_idle(ts, now);
1331 	if (ts->tick_stopped)
1332 		tick_nohz_update_jiffies(now);
1333 }
1334 
1335 #else
1336 
1337 static inline void tick_nohz_switch_to_nohz(void) { }
1338 static inline void tick_nohz_irq_enter(void) { }
1339 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1340 
1341 #endif /* CONFIG_NO_HZ_COMMON */
1342 
1343 /*
1344  * Called from irq_enter to notify about the possible interruption of idle()
1345  */
1346 void tick_irq_enter(void)
1347 {
1348 	tick_check_oneshot_broadcast_this_cpu();
1349 	tick_nohz_irq_enter();
1350 }
1351 
1352 /*
1353  * High resolution timer specific code
1354  */
1355 #ifdef CONFIG_HIGH_RES_TIMERS
1356 /*
1357  * We rearm the timer until we get disabled by the idle code.
1358  * Called with interrupts disabled.
1359  */
1360 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1361 {
1362 	struct tick_sched *ts =
1363 		container_of(timer, struct tick_sched, sched_timer);
1364 	struct pt_regs *regs = get_irq_regs();
1365 	ktime_t now = ktime_get();
1366 
1367 	tick_sched_do_timer(ts, now);
1368 
1369 	/*
1370 	 * Do not call, when we are not in irq context and have
1371 	 * no valid regs pointer
1372 	 */
1373 	if (regs)
1374 		tick_sched_handle(ts, regs);
1375 	else
1376 		ts->next_tick = 0;
1377 
1378 	/* No need to reprogram if we are in idle or full dynticks mode */
1379 	if (unlikely(ts->tick_stopped))
1380 		return HRTIMER_NORESTART;
1381 
1382 	hrtimer_forward(timer, now, TICK_NSEC);
1383 
1384 	return HRTIMER_RESTART;
1385 }
1386 
1387 static int sched_skew_tick;
1388 
1389 static int __init skew_tick(char *str)
1390 {
1391 	get_option(&str, &sched_skew_tick);
1392 
1393 	return 0;
1394 }
1395 early_param("skew_tick", skew_tick);
1396 
1397 /**
1398  * tick_setup_sched_timer - setup the tick emulation timer
1399  */
1400 void tick_setup_sched_timer(void)
1401 {
1402 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403 	ktime_t now = ktime_get();
1404 
1405 	/*
1406 	 * Emulate tick processing via per-CPU hrtimers:
1407 	 */
1408 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1409 	ts->sched_timer.function = tick_sched_timer;
1410 
1411 	/* Get the next period (per-CPU) */
1412 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1413 
1414 	/* Offset the tick to avert jiffies_lock contention. */
1415 	if (sched_skew_tick) {
1416 		u64 offset = TICK_NSEC >> 1;
1417 		do_div(offset, num_possible_cpus());
1418 		offset *= smp_processor_id();
1419 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1420 	}
1421 
1422 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1423 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1424 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1425 }
1426 #endif /* HIGH_RES_TIMERS */
1427 
1428 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1429 void tick_cancel_sched_timer(int cpu)
1430 {
1431 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1432 
1433 # ifdef CONFIG_HIGH_RES_TIMERS
1434 	if (ts->sched_timer.base)
1435 		hrtimer_cancel(&ts->sched_timer);
1436 # endif
1437 
1438 	memset(ts, 0, sizeof(*ts));
1439 }
1440 #endif
1441 
1442 /**
1443  * Async notification about clocksource changes
1444  */
1445 void tick_clock_notify(void)
1446 {
1447 	int cpu;
1448 
1449 	for_each_possible_cpu(cpu)
1450 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1451 }
1452 
1453 /*
1454  * Async notification about clock event changes
1455  */
1456 void tick_oneshot_notify(void)
1457 {
1458 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1459 
1460 	set_bit(0, &ts->check_clocks);
1461 }
1462 
1463 /**
1464  * Check, if a change happened, which makes oneshot possible.
1465  *
1466  * Called cyclic from the hrtimer softirq (driven by the timer
1467  * softirq) allow_nohz signals, that we can switch into low-res nohz
1468  * mode, because high resolution timers are disabled (either compile
1469  * or runtime). Called with interrupts disabled.
1470  */
1471 int tick_check_oneshot_change(int allow_nohz)
1472 {
1473 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1474 
1475 	if (!test_and_clear_bit(0, &ts->check_clocks))
1476 		return 0;
1477 
1478 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1479 		return 0;
1480 
1481 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1482 		return 0;
1483 
1484 	if (!allow_nohz)
1485 		return 1;
1486 
1487 	tick_nohz_switch_to_nohz();
1488 	return 0;
1489 }
1490