xref: /openbmc/linux/kernel/time/tick-sched.c (revision 03441a34)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/module.h>
26 #include <linux/irq_work.h>
27 #include <linux/posix-timers.h>
28 #include <linux/context_tracking.h>
29 
30 #include <asm/irq_regs.h>
31 
32 #include "tick-internal.h"
33 
34 #include <trace/events/timer.h>
35 
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 	return &per_cpu(tick_cpu_sched, cpu);
44 }
45 
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Protected by jiffies_lock.
49  */
50 static ktime_t last_jiffies_update;
51 
52 /*
53  * Must be called with interrupts disabled !
54  */
55 static void tick_do_update_jiffies64(ktime_t now)
56 {
57 	unsigned long ticks = 0;
58 	ktime_t delta;
59 
60 	/*
61 	 * Do a quick check without holding jiffies_lock:
62 	 */
63 	delta = ktime_sub(now, last_jiffies_update);
64 	if (delta < tick_period)
65 		return;
66 
67 	/* Reevaluate with jiffies_lock held */
68 	write_seqlock(&jiffies_lock);
69 
70 	delta = ktime_sub(now, last_jiffies_update);
71 	if (delta >= tick_period) {
72 
73 		delta = ktime_sub(delta, tick_period);
74 		last_jiffies_update = ktime_add(last_jiffies_update,
75 						tick_period);
76 
77 		/* Slow path for long timeouts */
78 		if (unlikely(delta >= tick_period)) {
79 			s64 incr = ktime_to_ns(tick_period);
80 
81 			ticks = ktime_divns(delta, incr);
82 
83 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
84 							   incr * ticks);
85 		}
86 		do_timer(++ticks);
87 
88 		/* Keep the tick_next_period variable up to date */
89 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
90 	} else {
91 		write_sequnlock(&jiffies_lock);
92 		return;
93 	}
94 	write_sequnlock(&jiffies_lock);
95 	update_wall_time();
96 }
97 
98 /*
99  * Initialize and return retrieve the jiffies update.
100  */
101 static ktime_t tick_init_jiffy_update(void)
102 {
103 	ktime_t period;
104 
105 	write_seqlock(&jiffies_lock);
106 	/* Did we start the jiffies update yet ? */
107 	if (last_jiffies_update == 0)
108 		last_jiffies_update = tick_next_period;
109 	period = last_jiffies_update;
110 	write_sequnlock(&jiffies_lock);
111 	return period;
112 }
113 
114 
115 static void tick_sched_do_timer(ktime_t now)
116 {
117 	int cpu = smp_processor_id();
118 
119 #ifdef CONFIG_NO_HZ_COMMON
120 	/*
121 	 * Check if the do_timer duty was dropped. We don't care about
122 	 * concurrency: This happens only when the CPU in charge went
123 	 * into a long sleep. If two CPUs happen to assign themselves to
124 	 * this duty, then the jiffies update is still serialized by
125 	 * jiffies_lock.
126 	 */
127 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
128 	    && !tick_nohz_full_cpu(cpu))
129 		tick_do_timer_cpu = cpu;
130 #endif
131 
132 	/* Check, if the jiffies need an update */
133 	if (tick_do_timer_cpu == cpu)
134 		tick_do_update_jiffies64(now);
135 }
136 
137 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
138 {
139 #ifdef CONFIG_NO_HZ_COMMON
140 	/*
141 	 * When we are idle and the tick is stopped, we have to touch
142 	 * the watchdog as we might not schedule for a really long
143 	 * time. This happens on complete idle SMP systems while
144 	 * waiting on the login prompt. We also increment the "start of
145 	 * idle" jiffy stamp so the idle accounting adjustment we do
146 	 * when we go busy again does not account too much ticks.
147 	 */
148 	if (ts->tick_stopped) {
149 		touch_softlockup_watchdog_sched();
150 		if (is_idle_task(current))
151 			ts->idle_jiffies++;
152 	}
153 #endif
154 	update_process_times(user_mode(regs));
155 	profile_tick(CPU_PROFILING);
156 }
157 #endif
158 
159 #ifdef CONFIG_NO_HZ_FULL
160 cpumask_var_t tick_nohz_full_mask;
161 cpumask_var_t housekeeping_mask;
162 bool tick_nohz_full_running;
163 static atomic_t tick_dep_mask;
164 
165 static bool check_tick_dependency(atomic_t *dep)
166 {
167 	int val = atomic_read(dep);
168 
169 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
170 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
171 		return true;
172 	}
173 
174 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
175 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
176 		return true;
177 	}
178 
179 	if (val & TICK_DEP_MASK_SCHED) {
180 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
181 		return true;
182 	}
183 
184 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
185 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
186 		return true;
187 	}
188 
189 	return false;
190 }
191 
192 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
193 {
194 	WARN_ON_ONCE(!irqs_disabled());
195 
196 	if (unlikely(!cpu_online(cpu)))
197 		return false;
198 
199 	if (check_tick_dependency(&tick_dep_mask))
200 		return false;
201 
202 	if (check_tick_dependency(&ts->tick_dep_mask))
203 		return false;
204 
205 	if (check_tick_dependency(&current->tick_dep_mask))
206 		return false;
207 
208 	if (check_tick_dependency(&current->signal->tick_dep_mask))
209 		return false;
210 
211 	return true;
212 }
213 
214 static void nohz_full_kick_func(struct irq_work *work)
215 {
216 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
217 }
218 
219 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
220 	.func = nohz_full_kick_func,
221 };
222 
223 /*
224  * Kick this CPU if it's full dynticks in order to force it to
225  * re-evaluate its dependency on the tick and restart it if necessary.
226  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
227  * is NMI safe.
228  */
229 static void tick_nohz_full_kick(void)
230 {
231 	if (!tick_nohz_full_cpu(smp_processor_id()))
232 		return;
233 
234 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
235 }
236 
237 /*
238  * Kick the CPU if it's full dynticks in order to force it to
239  * re-evaluate its dependency on the tick and restart it if necessary.
240  */
241 void tick_nohz_full_kick_cpu(int cpu)
242 {
243 	if (!tick_nohz_full_cpu(cpu))
244 		return;
245 
246 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
247 }
248 
249 /*
250  * Kick all full dynticks CPUs in order to force these to re-evaluate
251  * their dependency on the tick and restart it if necessary.
252  */
253 static void tick_nohz_full_kick_all(void)
254 {
255 	int cpu;
256 
257 	if (!tick_nohz_full_running)
258 		return;
259 
260 	preempt_disable();
261 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
262 		tick_nohz_full_kick_cpu(cpu);
263 	preempt_enable();
264 }
265 
266 static void tick_nohz_dep_set_all(atomic_t *dep,
267 				  enum tick_dep_bits bit)
268 {
269 	int prev;
270 
271 	prev = atomic_fetch_or(BIT(bit), dep);
272 	if (!prev)
273 		tick_nohz_full_kick_all();
274 }
275 
276 /*
277  * Set a global tick dependency. Used by perf events that rely on freq and
278  * by unstable clock.
279  */
280 void tick_nohz_dep_set(enum tick_dep_bits bit)
281 {
282 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
283 }
284 
285 void tick_nohz_dep_clear(enum tick_dep_bits bit)
286 {
287 	atomic_andnot(BIT(bit), &tick_dep_mask);
288 }
289 
290 /*
291  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
292  * manage events throttling.
293  */
294 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
295 {
296 	int prev;
297 	struct tick_sched *ts;
298 
299 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
300 
301 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
302 	if (!prev) {
303 		preempt_disable();
304 		/* Perf needs local kick that is NMI safe */
305 		if (cpu == smp_processor_id()) {
306 			tick_nohz_full_kick();
307 		} else {
308 			/* Remote irq work not NMI-safe */
309 			if (!WARN_ON_ONCE(in_nmi()))
310 				tick_nohz_full_kick_cpu(cpu);
311 		}
312 		preempt_enable();
313 	}
314 }
315 
316 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
317 {
318 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
319 
320 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
321 }
322 
323 /*
324  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
325  * per task timers.
326  */
327 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
328 {
329 	/*
330 	 * We could optimize this with just kicking the target running the task
331 	 * if that noise matters for nohz full users.
332 	 */
333 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
334 }
335 
336 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
337 {
338 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
339 }
340 
341 /*
342  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
343  * per process timers.
344  */
345 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
346 {
347 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
348 }
349 
350 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
351 {
352 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
353 }
354 
355 /*
356  * Re-evaluate the need for the tick as we switch the current task.
357  * It might need the tick due to per task/process properties:
358  * perf events, posix CPU timers, ...
359  */
360 void __tick_nohz_task_switch(void)
361 {
362 	unsigned long flags;
363 	struct tick_sched *ts;
364 
365 	local_irq_save(flags);
366 
367 	if (!tick_nohz_full_cpu(smp_processor_id()))
368 		goto out;
369 
370 	ts = this_cpu_ptr(&tick_cpu_sched);
371 
372 	if (ts->tick_stopped) {
373 		if (atomic_read(&current->tick_dep_mask) ||
374 		    atomic_read(&current->signal->tick_dep_mask))
375 			tick_nohz_full_kick();
376 	}
377 out:
378 	local_irq_restore(flags);
379 }
380 
381 /* Parse the boot-time nohz CPU list from the kernel parameters. */
382 static int __init tick_nohz_full_setup(char *str)
383 {
384 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
385 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
386 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
387 		free_bootmem_cpumask_var(tick_nohz_full_mask);
388 		return 1;
389 	}
390 	tick_nohz_full_running = true;
391 
392 	return 1;
393 }
394 __setup("nohz_full=", tick_nohz_full_setup);
395 
396 static int tick_nohz_cpu_down(unsigned int cpu)
397 {
398 	/*
399 	 * The boot CPU handles housekeeping duty (unbound timers,
400 	 * workqueues, timekeeping, ...) on behalf of full dynticks
401 	 * CPUs. It must remain online when nohz full is enabled.
402 	 */
403 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 		return -EBUSY;
405 	return 0;
406 }
407 
408 static int tick_nohz_init_all(void)
409 {
410 	int err = -1;
411 
412 #ifdef CONFIG_NO_HZ_FULL_ALL
413 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
414 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
415 		return err;
416 	}
417 	err = 0;
418 	cpumask_setall(tick_nohz_full_mask);
419 	tick_nohz_full_running = true;
420 #endif
421 	return err;
422 }
423 
424 void __init tick_nohz_init(void)
425 {
426 	int cpu, ret;
427 
428 	if (!tick_nohz_full_running) {
429 		if (tick_nohz_init_all() < 0)
430 			return;
431 	}
432 
433 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
434 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
435 		cpumask_clear(tick_nohz_full_mask);
436 		tick_nohz_full_running = false;
437 		return;
438 	}
439 
440 	/*
441 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
442 	 * locking contexts. But then we need irq work to raise its own
443 	 * interrupts to avoid circular dependency on the tick
444 	 */
445 	if (!arch_irq_work_has_interrupt()) {
446 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
447 		cpumask_clear(tick_nohz_full_mask);
448 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
449 		tick_nohz_full_running = false;
450 		return;
451 	}
452 
453 	cpu = smp_processor_id();
454 
455 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
456 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
457 			cpu);
458 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
459 	}
460 
461 	cpumask_andnot(housekeeping_mask,
462 		       cpu_possible_mask, tick_nohz_full_mask);
463 
464 	for_each_cpu(cpu, tick_nohz_full_mask)
465 		context_tracking_cpu_set(cpu);
466 
467 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
468 					"kernel/nohz:predown", NULL,
469 					tick_nohz_cpu_down);
470 	WARN_ON(ret < 0);
471 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
472 		cpumask_pr_args(tick_nohz_full_mask));
473 
474 	/*
475 	 * We need at least one CPU to handle housekeeping work such
476 	 * as timekeeping, unbound timers, workqueues, ...
477 	 */
478 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
479 }
480 #endif
481 
482 /*
483  * NOHZ - aka dynamic tick functionality
484  */
485 #ifdef CONFIG_NO_HZ_COMMON
486 /*
487  * NO HZ enabled ?
488  */
489 bool tick_nohz_enabled __read_mostly  = true;
490 unsigned long tick_nohz_active  __read_mostly;
491 /*
492  * Enable / Disable tickless mode
493  */
494 static int __init setup_tick_nohz(char *str)
495 {
496 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
497 }
498 
499 __setup("nohz=", setup_tick_nohz);
500 
501 int tick_nohz_tick_stopped(void)
502 {
503 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
504 }
505 
506 /**
507  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
508  *
509  * Called from interrupt entry when the CPU was idle
510  *
511  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
512  * must be updated. Otherwise an interrupt handler could use a stale jiffy
513  * value. We do this unconditionally on any CPU, as we don't know whether the
514  * CPU, which has the update task assigned is in a long sleep.
515  */
516 static void tick_nohz_update_jiffies(ktime_t now)
517 {
518 	unsigned long flags;
519 
520 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
521 
522 	local_irq_save(flags);
523 	tick_do_update_jiffies64(now);
524 	local_irq_restore(flags);
525 
526 	touch_softlockup_watchdog_sched();
527 }
528 
529 /*
530  * Updates the per-CPU time idle statistics counters
531  */
532 static void
533 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
534 {
535 	ktime_t delta;
536 
537 	if (ts->idle_active) {
538 		delta = ktime_sub(now, ts->idle_entrytime);
539 		if (nr_iowait_cpu(cpu) > 0)
540 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
541 		else
542 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
543 		ts->idle_entrytime = now;
544 	}
545 
546 	if (last_update_time)
547 		*last_update_time = ktime_to_us(now);
548 
549 }
550 
551 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
552 {
553 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
554 	ts->idle_active = 0;
555 
556 	sched_clock_idle_wakeup_event(0);
557 }
558 
559 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
560 {
561 	ktime_t now = ktime_get();
562 
563 	ts->idle_entrytime = now;
564 	ts->idle_active = 1;
565 	sched_clock_idle_sleep_event();
566 	return now;
567 }
568 
569 /**
570  * get_cpu_idle_time_us - get the total idle time of a CPU
571  * @cpu: CPU number to query
572  * @last_update_time: variable to store update time in. Do not update
573  * counters if NULL.
574  *
575  * Return the cumulative idle time (since boot) for a given
576  * CPU, in microseconds.
577  *
578  * This time is measured via accounting rather than sampling,
579  * and is as accurate as ktime_get() is.
580  *
581  * This function returns -1 if NOHZ is not enabled.
582  */
583 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
584 {
585 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
586 	ktime_t now, idle;
587 
588 	if (!tick_nohz_active)
589 		return -1;
590 
591 	now = ktime_get();
592 	if (last_update_time) {
593 		update_ts_time_stats(cpu, ts, now, last_update_time);
594 		idle = ts->idle_sleeptime;
595 	} else {
596 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
597 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
598 
599 			idle = ktime_add(ts->idle_sleeptime, delta);
600 		} else {
601 			idle = ts->idle_sleeptime;
602 		}
603 	}
604 
605 	return ktime_to_us(idle);
606 
607 }
608 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
609 
610 /**
611  * get_cpu_iowait_time_us - get the total iowait time of a CPU
612  * @cpu: CPU number to query
613  * @last_update_time: variable to store update time in. Do not update
614  * counters if NULL.
615  *
616  * Return the cumulative iowait time (since boot) for a given
617  * CPU, in microseconds.
618  *
619  * This time is measured via accounting rather than sampling,
620  * and is as accurate as ktime_get() is.
621  *
622  * This function returns -1 if NOHZ is not enabled.
623  */
624 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
625 {
626 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627 	ktime_t now, iowait;
628 
629 	if (!tick_nohz_active)
630 		return -1;
631 
632 	now = ktime_get();
633 	if (last_update_time) {
634 		update_ts_time_stats(cpu, ts, now, last_update_time);
635 		iowait = ts->iowait_sleeptime;
636 	} else {
637 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
638 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
639 
640 			iowait = ktime_add(ts->iowait_sleeptime, delta);
641 		} else {
642 			iowait = ts->iowait_sleeptime;
643 		}
644 	}
645 
646 	return ktime_to_us(iowait);
647 }
648 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
649 
650 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
651 {
652 	hrtimer_cancel(&ts->sched_timer);
653 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
654 
655 	/* Forward the time to expire in the future */
656 	hrtimer_forward(&ts->sched_timer, now, tick_period);
657 
658 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
659 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
660 	else
661 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
662 }
663 
664 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
665 					 ktime_t now, int cpu)
666 {
667 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
668 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
669 	unsigned long seq, basejiff;
670 	ktime_t	tick;
671 
672 	/* Read jiffies and the time when jiffies were updated last */
673 	do {
674 		seq = read_seqbegin(&jiffies_lock);
675 		basemono = last_jiffies_update;
676 		basejiff = jiffies;
677 	} while (read_seqretry(&jiffies_lock, seq));
678 	ts->last_jiffies = basejiff;
679 
680 	if (rcu_needs_cpu(basemono, &next_rcu) ||
681 	    arch_needs_cpu() || irq_work_needs_cpu()) {
682 		next_tick = basemono + TICK_NSEC;
683 	} else {
684 		/*
685 		 * Get the next pending timer. If high resolution
686 		 * timers are enabled this only takes the timer wheel
687 		 * timers into account. If high resolution timers are
688 		 * disabled this also looks at the next expiring
689 		 * hrtimer.
690 		 */
691 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
692 		ts->next_timer = next_tmr;
693 		/* Take the next rcu event into account */
694 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
695 	}
696 
697 	/*
698 	 * If the tick is due in the next period, keep it ticking or
699 	 * force prod the timer.
700 	 */
701 	delta = next_tick - basemono;
702 	if (delta <= (u64)TICK_NSEC) {
703 		tick = 0;
704 
705 		/*
706 		 * Tell the timer code that the base is not idle, i.e. undo
707 		 * the effect of get_next_timer_interrupt():
708 		 */
709 		timer_clear_idle();
710 		/*
711 		 * We've not stopped the tick yet, and there's a timer in the
712 		 * next period, so no point in stopping it either, bail.
713 		 */
714 		if (!ts->tick_stopped)
715 			goto out;
716 
717 		/*
718 		 * If, OTOH, we did stop it, but there's a pending (expired)
719 		 * timer reprogram the timer hardware to fire now.
720 		 *
721 		 * We will not restart the tick proper, just prod the timer
722 		 * hardware into firing an interrupt to process the pending
723 		 * timers. Just like tick_irq_exit() will not restart the tick
724 		 * for 'normal' interrupts.
725 		 *
726 		 * Only once we exit the idle loop will we re-enable the tick,
727 		 * see tick_nohz_idle_exit().
728 		 */
729 		if (delta == 0) {
730 			tick_nohz_restart(ts, now);
731 			goto out;
732 		}
733 	}
734 
735 	/*
736 	 * If this CPU is the one which updates jiffies, then give up
737 	 * the assignment and let it be taken by the CPU which runs
738 	 * the tick timer next, which might be this CPU as well. If we
739 	 * don't drop this here the jiffies might be stale and
740 	 * do_timer() never invoked. Keep track of the fact that it
741 	 * was the one which had the do_timer() duty last. If this CPU
742 	 * is the one which had the do_timer() duty last, we limit the
743 	 * sleep time to the timekeeping max_deferment value.
744 	 * Otherwise we can sleep as long as we want.
745 	 */
746 	delta = timekeeping_max_deferment();
747 	if (cpu == tick_do_timer_cpu) {
748 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 		ts->do_timer_last = 1;
750 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
751 		delta = KTIME_MAX;
752 		ts->do_timer_last = 0;
753 	} else if (!ts->do_timer_last) {
754 		delta = KTIME_MAX;
755 	}
756 
757 #ifdef CONFIG_NO_HZ_FULL
758 	/* Limit the tick delta to the maximum scheduler deferment */
759 	if (!ts->inidle)
760 		delta = min(delta, scheduler_tick_max_deferment());
761 #endif
762 
763 	/* Calculate the next expiry time */
764 	if (delta < (KTIME_MAX - basemono))
765 		expires = basemono + delta;
766 	else
767 		expires = KTIME_MAX;
768 
769 	expires = min_t(u64, expires, next_tick);
770 	tick = expires;
771 
772 	/* Skip reprogram of event if its not changed */
773 	if (ts->tick_stopped && (expires == dev->next_event))
774 		goto out;
775 
776 	/*
777 	 * nohz_stop_sched_tick can be called several times before
778 	 * the nohz_restart_sched_tick is called. This happens when
779 	 * interrupts arrive which do not cause a reschedule. In the
780 	 * first call we save the current tick time, so we can restart
781 	 * the scheduler tick in nohz_restart_sched_tick.
782 	 */
783 	if (!ts->tick_stopped) {
784 		nohz_balance_enter_idle(cpu);
785 		calc_load_enter_idle();
786 		cpu_load_update_nohz_start();
787 
788 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
789 		ts->tick_stopped = 1;
790 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
791 	}
792 
793 	/*
794 	 * If the expiration time == KTIME_MAX, then we simply stop
795 	 * the tick timer.
796 	 */
797 	if (unlikely(expires == KTIME_MAX)) {
798 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
799 			hrtimer_cancel(&ts->sched_timer);
800 		goto out;
801 	}
802 
803 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
804 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
805 	else
806 		tick_program_event(tick, 1);
807 out:
808 	/* Update the estimated sleep length */
809 	ts->sleep_length = ktime_sub(dev->next_event, now);
810 	return tick;
811 }
812 
813 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
814 {
815 	/* Update jiffies first */
816 	tick_do_update_jiffies64(now);
817 	cpu_load_update_nohz_stop();
818 
819 	/*
820 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
821 	 * the clock forward checks in the enqueue path:
822 	 */
823 	timer_clear_idle();
824 
825 	calc_load_exit_idle();
826 	touch_softlockup_watchdog_sched();
827 	/*
828 	 * Cancel the scheduled timer and restore the tick
829 	 */
830 	ts->tick_stopped  = 0;
831 	ts->idle_exittime = now;
832 
833 	tick_nohz_restart(ts, now);
834 }
835 
836 static void tick_nohz_full_update_tick(struct tick_sched *ts)
837 {
838 #ifdef CONFIG_NO_HZ_FULL
839 	int cpu = smp_processor_id();
840 
841 	if (!tick_nohz_full_cpu(cpu))
842 		return;
843 
844 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
845 		return;
846 
847 	if (can_stop_full_tick(cpu, ts))
848 		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
849 	else if (ts->tick_stopped)
850 		tick_nohz_restart_sched_tick(ts, ktime_get());
851 #endif
852 }
853 
854 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
855 {
856 	/*
857 	 * If this CPU is offline and it is the one which updates
858 	 * jiffies, then give up the assignment and let it be taken by
859 	 * the CPU which runs the tick timer next. If we don't drop
860 	 * this here the jiffies might be stale and do_timer() never
861 	 * invoked.
862 	 */
863 	if (unlikely(!cpu_online(cpu))) {
864 		if (cpu == tick_do_timer_cpu)
865 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
866 		return false;
867 	}
868 
869 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
870 		ts->sleep_length = NSEC_PER_SEC / HZ;
871 		return false;
872 	}
873 
874 	if (need_resched())
875 		return false;
876 
877 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
878 		static int ratelimit;
879 
880 		if (ratelimit < 10 &&
881 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
882 			pr_warn("NOHZ: local_softirq_pending %02x\n",
883 				(unsigned int) local_softirq_pending());
884 			ratelimit++;
885 		}
886 		return false;
887 	}
888 
889 	if (tick_nohz_full_enabled()) {
890 		/*
891 		 * Keep the tick alive to guarantee timekeeping progression
892 		 * if there are full dynticks CPUs around
893 		 */
894 		if (tick_do_timer_cpu == cpu)
895 			return false;
896 		/*
897 		 * Boot safety: make sure the timekeeping duty has been
898 		 * assigned before entering dyntick-idle mode,
899 		 */
900 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
901 			return false;
902 	}
903 
904 	return true;
905 }
906 
907 static void __tick_nohz_idle_enter(struct tick_sched *ts)
908 {
909 	ktime_t now, expires;
910 	int cpu = smp_processor_id();
911 
912 	now = tick_nohz_start_idle(ts);
913 
914 	if (can_stop_idle_tick(cpu, ts)) {
915 		int was_stopped = ts->tick_stopped;
916 
917 		ts->idle_calls++;
918 
919 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
920 		if (expires > 0LL) {
921 			ts->idle_sleeps++;
922 			ts->idle_expires = expires;
923 		}
924 
925 		if (!was_stopped && ts->tick_stopped)
926 			ts->idle_jiffies = ts->last_jiffies;
927 	}
928 }
929 
930 /**
931  * tick_nohz_idle_enter - stop the idle tick from the idle task
932  *
933  * When the next event is more than a tick into the future, stop the idle tick
934  * Called when we start the idle loop.
935  *
936  * The arch is responsible of calling:
937  *
938  * - rcu_idle_enter() after its last use of RCU before the CPU is put
939  *  to sleep.
940  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
941  */
942 void tick_nohz_idle_enter(void)
943 {
944 	struct tick_sched *ts;
945 
946 	WARN_ON_ONCE(irqs_disabled());
947 
948 	/*
949 	 * Update the idle state in the scheduler domain hierarchy
950 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
951 	 * State will be updated to busy during the first busy tick after
952 	 * exiting idle.
953 	 */
954 	set_cpu_sd_state_idle();
955 
956 	local_irq_disable();
957 
958 	ts = this_cpu_ptr(&tick_cpu_sched);
959 	ts->inidle = 1;
960 	__tick_nohz_idle_enter(ts);
961 
962 	local_irq_enable();
963 }
964 
965 /**
966  * tick_nohz_irq_exit - update next tick event from interrupt exit
967  *
968  * When an interrupt fires while we are idle and it doesn't cause
969  * a reschedule, it may still add, modify or delete a timer, enqueue
970  * an RCU callback, etc...
971  * So we need to re-calculate and reprogram the next tick event.
972  */
973 void tick_nohz_irq_exit(void)
974 {
975 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
976 
977 	if (ts->inidle)
978 		__tick_nohz_idle_enter(ts);
979 	else
980 		tick_nohz_full_update_tick(ts);
981 }
982 
983 /**
984  * tick_nohz_get_sleep_length - return the length of the current sleep
985  *
986  * Called from power state control code with interrupts disabled
987  */
988 ktime_t tick_nohz_get_sleep_length(void)
989 {
990 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
991 
992 	return ts->sleep_length;
993 }
994 
995 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
996 {
997 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
998 	unsigned long ticks;
999 
1000 	if (vtime_accounting_cpu_enabled())
1001 		return;
1002 	/*
1003 	 * We stopped the tick in idle. Update process times would miss the
1004 	 * time we slept as update_process_times does only a 1 tick
1005 	 * accounting. Enforce that this is accounted to idle !
1006 	 */
1007 	ticks = jiffies - ts->idle_jiffies;
1008 	/*
1009 	 * We might be one off. Do not randomly account a huge number of ticks!
1010 	 */
1011 	if (ticks && ticks < LONG_MAX)
1012 		account_idle_ticks(ticks);
1013 #endif
1014 }
1015 
1016 /**
1017  * tick_nohz_idle_exit - restart the idle tick from the idle task
1018  *
1019  * Restart the idle tick when the CPU is woken up from idle
1020  * This also exit the RCU extended quiescent state. The CPU
1021  * can use RCU again after this function is called.
1022  */
1023 void tick_nohz_idle_exit(void)
1024 {
1025 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1026 	ktime_t now;
1027 
1028 	local_irq_disable();
1029 
1030 	WARN_ON_ONCE(!ts->inidle);
1031 
1032 	ts->inidle = 0;
1033 
1034 	if (ts->idle_active || ts->tick_stopped)
1035 		now = ktime_get();
1036 
1037 	if (ts->idle_active)
1038 		tick_nohz_stop_idle(ts, now);
1039 
1040 	if (ts->tick_stopped) {
1041 		tick_nohz_restart_sched_tick(ts, now);
1042 		tick_nohz_account_idle_ticks(ts);
1043 	}
1044 
1045 	local_irq_enable();
1046 }
1047 
1048 /*
1049  * The nohz low res interrupt handler
1050  */
1051 static void tick_nohz_handler(struct clock_event_device *dev)
1052 {
1053 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1054 	struct pt_regs *regs = get_irq_regs();
1055 	ktime_t now = ktime_get();
1056 
1057 	dev->next_event = KTIME_MAX;
1058 
1059 	tick_sched_do_timer(now);
1060 	tick_sched_handle(ts, regs);
1061 
1062 	/* No need to reprogram if we are running tickless  */
1063 	if (unlikely(ts->tick_stopped))
1064 		return;
1065 
1066 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1067 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1068 }
1069 
1070 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1071 {
1072 	if (!tick_nohz_enabled)
1073 		return;
1074 	ts->nohz_mode = mode;
1075 	/* One update is enough */
1076 	if (!test_and_set_bit(0, &tick_nohz_active))
1077 		timers_update_migration(true);
1078 }
1079 
1080 /**
1081  * tick_nohz_switch_to_nohz - switch to nohz mode
1082  */
1083 static void tick_nohz_switch_to_nohz(void)
1084 {
1085 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1086 	ktime_t next;
1087 
1088 	if (!tick_nohz_enabled)
1089 		return;
1090 
1091 	if (tick_switch_to_oneshot(tick_nohz_handler))
1092 		return;
1093 
1094 	/*
1095 	 * Recycle the hrtimer in ts, so we can share the
1096 	 * hrtimer_forward with the highres code.
1097 	 */
1098 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1099 	/* Get the next period */
1100 	next = tick_init_jiffy_update();
1101 
1102 	hrtimer_set_expires(&ts->sched_timer, next);
1103 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1104 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1105 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1106 }
1107 
1108 static inline void tick_nohz_irq_enter(void)
1109 {
1110 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1111 	ktime_t now;
1112 
1113 	if (!ts->idle_active && !ts->tick_stopped)
1114 		return;
1115 	now = ktime_get();
1116 	if (ts->idle_active)
1117 		tick_nohz_stop_idle(ts, now);
1118 	if (ts->tick_stopped)
1119 		tick_nohz_update_jiffies(now);
1120 }
1121 
1122 #else
1123 
1124 static inline void tick_nohz_switch_to_nohz(void) { }
1125 static inline void tick_nohz_irq_enter(void) { }
1126 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1127 
1128 #endif /* CONFIG_NO_HZ_COMMON */
1129 
1130 /*
1131  * Called from irq_enter to notify about the possible interruption of idle()
1132  */
1133 void tick_irq_enter(void)
1134 {
1135 	tick_check_oneshot_broadcast_this_cpu();
1136 	tick_nohz_irq_enter();
1137 }
1138 
1139 /*
1140  * High resolution timer specific code
1141  */
1142 #ifdef CONFIG_HIGH_RES_TIMERS
1143 /*
1144  * We rearm the timer until we get disabled by the idle code.
1145  * Called with interrupts disabled.
1146  */
1147 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1148 {
1149 	struct tick_sched *ts =
1150 		container_of(timer, struct tick_sched, sched_timer);
1151 	struct pt_regs *regs = get_irq_regs();
1152 	ktime_t now = ktime_get();
1153 
1154 	tick_sched_do_timer(now);
1155 
1156 	/*
1157 	 * Do not call, when we are not in irq context and have
1158 	 * no valid regs pointer
1159 	 */
1160 	if (regs)
1161 		tick_sched_handle(ts, regs);
1162 
1163 	/* No need to reprogram if we are in idle or full dynticks mode */
1164 	if (unlikely(ts->tick_stopped))
1165 		return HRTIMER_NORESTART;
1166 
1167 	hrtimer_forward(timer, now, tick_period);
1168 
1169 	return HRTIMER_RESTART;
1170 }
1171 
1172 static int sched_skew_tick;
1173 
1174 static int __init skew_tick(char *str)
1175 {
1176 	get_option(&str, &sched_skew_tick);
1177 
1178 	return 0;
1179 }
1180 early_param("skew_tick", skew_tick);
1181 
1182 /**
1183  * tick_setup_sched_timer - setup the tick emulation timer
1184  */
1185 void tick_setup_sched_timer(void)
1186 {
1187 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188 	ktime_t now = ktime_get();
1189 
1190 	/*
1191 	 * Emulate tick processing via per-CPU hrtimers:
1192 	 */
1193 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1194 	ts->sched_timer.function = tick_sched_timer;
1195 
1196 	/* Get the next period (per-CPU) */
1197 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1198 
1199 	/* Offset the tick to avert jiffies_lock contention. */
1200 	if (sched_skew_tick) {
1201 		u64 offset = ktime_to_ns(tick_period) >> 1;
1202 		do_div(offset, num_possible_cpus());
1203 		offset *= smp_processor_id();
1204 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1205 	}
1206 
1207 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1208 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1209 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1210 }
1211 #endif /* HIGH_RES_TIMERS */
1212 
1213 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1214 void tick_cancel_sched_timer(int cpu)
1215 {
1216 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1217 
1218 # ifdef CONFIG_HIGH_RES_TIMERS
1219 	if (ts->sched_timer.base)
1220 		hrtimer_cancel(&ts->sched_timer);
1221 # endif
1222 
1223 	memset(ts, 0, sizeof(*ts));
1224 }
1225 #endif
1226 
1227 /**
1228  * Async notification about clocksource changes
1229  */
1230 void tick_clock_notify(void)
1231 {
1232 	int cpu;
1233 
1234 	for_each_possible_cpu(cpu)
1235 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1236 }
1237 
1238 /*
1239  * Async notification about clock event changes
1240  */
1241 void tick_oneshot_notify(void)
1242 {
1243 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1244 
1245 	set_bit(0, &ts->check_clocks);
1246 }
1247 
1248 /**
1249  * Check, if a change happened, which makes oneshot possible.
1250  *
1251  * Called cyclic from the hrtimer softirq (driven by the timer
1252  * softirq) allow_nohz signals, that we can switch into low-res nohz
1253  * mode, because high resolution timers are disabled (either compile
1254  * or runtime). Called with interrupts disabled.
1255  */
1256 int tick_check_oneshot_change(int allow_nohz)
1257 {
1258 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1259 
1260 	if (!test_and_clear_bit(0, &ts->check_clocks))
1261 		return 0;
1262 
1263 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1264 		return 0;
1265 
1266 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1267 		return 0;
1268 
1269 	if (!allow_nohz)
1270 		return 1;
1271 
1272 	tick_nohz_switch_to_nohz();
1273 	return 0;
1274 }
1275