xref: /openbmc/linux/kernel/time/tick-sched.c (revision 02ff3755)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 
24 #include <asm/irq_regs.h>
25 
26 #include "tick-internal.h"
27 
28 /*
29  * Per cpu nohz control structure
30  */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 
33 /*
34  * The time, when the last jiffy update happened. Protected by xtime_lock.
35  */
36 static ktime_t last_jiffies_update;
37 
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 	return &per_cpu(tick_cpu_sched, cpu);
41 }
42 
43 /*
44  * Must be called with interrupts disabled !
45  */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 	unsigned long ticks = 0;
49 	ktime_t delta;
50 
51 	/* Reevalute with xtime_lock held */
52 	write_seqlock(&xtime_lock);
53 
54 	delta = ktime_sub(now, last_jiffies_update);
55 	if (delta.tv64 >= tick_period.tv64) {
56 
57 		delta = ktime_sub(delta, tick_period);
58 		last_jiffies_update = ktime_add(last_jiffies_update,
59 						tick_period);
60 
61 		/* Slow path for long timeouts */
62 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 			s64 incr = ktime_to_ns(tick_period);
64 
65 			ticks = ktime_divns(delta, incr);
66 
67 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 							   incr * ticks);
69 		}
70 		do_timer(++ticks);
71 	}
72 	write_sequnlock(&xtime_lock);
73 }
74 
75 /*
76  * Initialize and return retrieve the jiffies update.
77  */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 	ktime_t period;
81 
82 	write_seqlock(&xtime_lock);
83 	/* Did we start the jiffies update yet ? */
84 	if (last_jiffies_update.tv64 == 0)
85 		last_jiffies_update = tick_next_period;
86 	period = last_jiffies_update;
87 	write_sequnlock(&xtime_lock);
88 	return period;
89 }
90 
91 /*
92  * NOHZ - aka dynamic tick functionality
93  */
94 #ifdef CONFIG_NO_HZ
95 /*
96  * NO HZ enabled ?
97  */
98 static int tick_nohz_enabled __read_mostly  = 1;
99 
100 /*
101  * Enable / Disable tickless mode
102  */
103 static int __init setup_tick_nohz(char *str)
104 {
105 	if (!strcmp(str, "off"))
106 		tick_nohz_enabled = 0;
107 	else if (!strcmp(str, "on"))
108 		tick_nohz_enabled = 1;
109 	else
110 		return 0;
111 	return 1;
112 }
113 
114 __setup("nohz=", setup_tick_nohz);
115 
116 /**
117  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118  *
119  * Called from interrupt entry when the CPU was idle
120  *
121  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122  * must be updated. Otherwise an interrupt handler could use a stale jiffy
123  * value. We do this unconditionally on any cpu, as we don't know whether the
124  * cpu, which has the update task assigned is in a long sleep.
125  */
126 void tick_nohz_update_jiffies(void)
127 {
128 	int cpu = smp_processor_id();
129 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 	unsigned long flags;
131 	ktime_t now;
132 
133 	if (!ts->tick_stopped)
134 		return;
135 
136 	cpu_clear(cpu, nohz_cpu_mask);
137 	now = ktime_get();
138 	ts->idle_waketime = now;
139 
140 	local_irq_save(flags);
141 	tick_do_update_jiffies64(now);
142 	local_irq_restore(flags);
143 
144 	touch_softlockup_watchdog();
145 }
146 
147 void tick_nohz_stop_idle(int cpu)
148 {
149 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
150 
151 	if (ts->idle_active) {
152 		ktime_t now, delta;
153 		now = ktime_get();
154 		delta = ktime_sub(now, ts->idle_entrytime);
155 		ts->idle_lastupdate = now;
156 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 		ts->idle_active = 0;
158 	}
159 }
160 
161 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
162 {
163 	ktime_t now, delta;
164 
165 	now = ktime_get();
166 	if (ts->idle_active) {
167 		delta = ktime_sub(now, ts->idle_entrytime);
168 		ts->idle_lastupdate = now;
169 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
170 	}
171 	ts->idle_entrytime = now;
172 	ts->idle_active = 1;
173 	return now;
174 }
175 
176 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
177 {
178 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
179 
180 	*last_update_time = ktime_to_us(ts->idle_lastupdate);
181 	return ktime_to_us(ts->idle_sleeptime);
182 }
183 
184 /**
185  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
186  *
187  * When the next event is more than a tick into the future, stop the idle tick
188  * Called either from the idle loop or from irq_exit() when an idle period was
189  * just interrupted by an interrupt which did not cause a reschedule.
190  */
191 void tick_nohz_stop_sched_tick(void)
192 {
193 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
194 	struct tick_sched *ts;
195 	ktime_t last_update, expires, now;
196 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
197 	int cpu;
198 
199 	local_irq_save(flags);
200 
201 	cpu = smp_processor_id();
202 	ts = &per_cpu(tick_cpu_sched, cpu);
203 	now = tick_nohz_start_idle(ts);
204 
205 	/*
206 	 * If this cpu is offline and it is the one which updates
207 	 * jiffies, then give up the assignment and let it be taken by
208 	 * the cpu which runs the tick timer next. If we don't drop
209 	 * this here the jiffies might be stale and do_timer() never
210 	 * invoked.
211 	 */
212 	if (unlikely(!cpu_online(cpu))) {
213 		if (cpu == tick_do_timer_cpu)
214 			tick_do_timer_cpu = -1;
215 	}
216 
217 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
218 		goto end;
219 
220 	if (need_resched())
221 		goto end;
222 
223 	if (unlikely(local_softirq_pending())) {
224 		static int ratelimit;
225 
226 		if (ratelimit < 10) {
227 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
228 			       local_softirq_pending());
229 			ratelimit++;
230 		}
231 	}
232 
233 	ts->idle_calls++;
234 	/* Read jiffies and the time when jiffies were updated last */
235 	do {
236 		seq = read_seqbegin(&xtime_lock);
237 		last_update = last_jiffies_update;
238 		last_jiffies = jiffies;
239 	} while (read_seqretry(&xtime_lock, seq));
240 
241 	/* Get the next timer wheel timer */
242 	next_jiffies = get_next_timer_interrupt(last_jiffies);
243 	delta_jiffies = next_jiffies - last_jiffies;
244 
245 	if (rcu_needs_cpu(cpu))
246 		delta_jiffies = 1;
247 	/*
248 	 * Do not stop the tick, if we are only one off
249 	 * or if the cpu is required for rcu
250 	 */
251 	if (!ts->tick_stopped && delta_jiffies == 1)
252 		goto out;
253 
254 	/* Schedule the tick, if we are at least one jiffie off */
255 	if ((long)delta_jiffies >= 1) {
256 
257 		if (delta_jiffies > 1)
258 			cpu_set(cpu, nohz_cpu_mask);
259 		/*
260 		 * nohz_stop_sched_tick can be called several times before
261 		 * the nohz_restart_sched_tick is called. This happens when
262 		 * interrupts arrive which do not cause a reschedule. In the
263 		 * first call we save the current tick time, so we can restart
264 		 * the scheduler tick in nohz_restart_sched_tick.
265 		 */
266 		if (!ts->tick_stopped) {
267 			if (select_nohz_load_balancer(1)) {
268 				/*
269 				 * sched tick not stopped!
270 				 */
271 				cpu_clear(cpu, nohz_cpu_mask);
272 				goto out;
273 			}
274 
275 			ts->idle_tick = ts->sched_timer.expires;
276 			ts->tick_stopped = 1;
277 			ts->idle_jiffies = last_jiffies;
278 			rcu_enter_nohz();
279 		}
280 
281 		/*
282 		 * If this cpu is the one which updates jiffies, then
283 		 * give up the assignment and let it be taken by the
284 		 * cpu which runs the tick timer next, which might be
285 		 * this cpu as well. If we don't drop this here the
286 		 * jiffies might be stale and do_timer() never
287 		 * invoked.
288 		 */
289 		if (cpu == tick_do_timer_cpu)
290 			tick_do_timer_cpu = -1;
291 
292 		ts->idle_sleeps++;
293 
294 		/*
295 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
296 		 * there is no timer pending or at least extremly far
297 		 * into the future (12 days for HZ=1000). In this case
298 		 * we simply stop the tick timer:
299 		 */
300 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
301 			ts->idle_expires.tv64 = KTIME_MAX;
302 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
303 				hrtimer_cancel(&ts->sched_timer);
304 			goto out;
305 		}
306 
307 		/*
308 		 * calculate the expiry time for the next timer wheel
309 		 * timer
310 		 */
311 		expires = ktime_add_ns(last_update, tick_period.tv64 *
312 				       delta_jiffies);
313 		ts->idle_expires = expires;
314 
315 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
316 			hrtimer_start(&ts->sched_timer, expires,
317 				      HRTIMER_MODE_ABS);
318 			/* Check, if the timer was already in the past */
319 			if (hrtimer_active(&ts->sched_timer))
320 				goto out;
321 		} else if (!tick_program_event(expires, 0))
322 				goto out;
323 		/*
324 		 * We are past the event already. So we crossed a
325 		 * jiffie boundary. Update jiffies and raise the
326 		 * softirq.
327 		 */
328 		tick_do_update_jiffies64(ktime_get());
329 		cpu_clear(cpu, nohz_cpu_mask);
330 	}
331 	raise_softirq_irqoff(TIMER_SOFTIRQ);
332 out:
333 	ts->next_jiffies = next_jiffies;
334 	ts->last_jiffies = last_jiffies;
335 	ts->sleep_length = ktime_sub(dev->next_event, now);
336 end:
337 	local_irq_restore(flags);
338 }
339 
340 /**
341  * tick_nohz_get_sleep_length - return the length of the current sleep
342  *
343  * Called from power state control code with interrupts disabled
344  */
345 ktime_t tick_nohz_get_sleep_length(void)
346 {
347 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
348 
349 	return ts->sleep_length;
350 }
351 
352 /**
353  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
354  *
355  * Restart the idle tick when the CPU is woken up from idle
356  */
357 void tick_nohz_restart_sched_tick(void)
358 {
359 	int cpu = smp_processor_id();
360 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
361 	unsigned long ticks;
362 	ktime_t now;
363 
364 	local_irq_disable();
365 	tick_nohz_stop_idle(cpu);
366 
367 	if (!ts->tick_stopped) {
368 		local_irq_enable();
369 		return;
370 	}
371 
372 	rcu_exit_nohz();
373 
374 	/* Update jiffies first */
375 	select_nohz_load_balancer(0);
376 	now = ktime_get();
377 	tick_do_update_jiffies64(now);
378 	cpu_clear(cpu, nohz_cpu_mask);
379 
380 	/*
381 	 * We stopped the tick in idle. Update process times would miss the
382 	 * time we slept as update_process_times does only a 1 tick
383 	 * accounting. Enforce that this is accounted to idle !
384 	 */
385 	ticks = jiffies - ts->idle_jiffies;
386 	/*
387 	 * We might be one off. Do not randomly account a huge number of ticks!
388 	 */
389 	if (ticks && ticks < LONG_MAX) {
390 		add_preempt_count(HARDIRQ_OFFSET);
391 		account_system_time(current, HARDIRQ_OFFSET,
392 				    jiffies_to_cputime(ticks));
393 		sub_preempt_count(HARDIRQ_OFFSET);
394 	}
395 
396 	touch_softlockup_watchdog();
397 	/*
398 	 * Cancel the scheduled timer and restore the tick
399 	 */
400 	ts->tick_stopped  = 0;
401 	ts->idle_exittime = now;
402 	hrtimer_cancel(&ts->sched_timer);
403 	ts->sched_timer.expires = ts->idle_tick;
404 
405 	while (1) {
406 		/* Forward the time to expire in the future */
407 		hrtimer_forward(&ts->sched_timer, now, tick_period);
408 
409 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
410 			hrtimer_start(&ts->sched_timer,
411 				      ts->sched_timer.expires,
412 				      HRTIMER_MODE_ABS);
413 			/* Check, if the timer was already in the past */
414 			if (hrtimer_active(&ts->sched_timer))
415 				break;
416 		} else {
417 			if (!tick_program_event(ts->sched_timer.expires, 0))
418 				break;
419 		}
420 		/* Update jiffies and reread time */
421 		tick_do_update_jiffies64(now);
422 		now = ktime_get();
423 	}
424 	local_irq_enable();
425 }
426 
427 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
428 {
429 	hrtimer_forward(&ts->sched_timer, now, tick_period);
430 	return tick_program_event(ts->sched_timer.expires, 0);
431 }
432 
433 /*
434  * The nohz low res interrupt handler
435  */
436 static void tick_nohz_handler(struct clock_event_device *dev)
437 {
438 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
439 	struct pt_regs *regs = get_irq_regs();
440 	int cpu = smp_processor_id();
441 	ktime_t now = ktime_get();
442 
443 	dev->next_event.tv64 = KTIME_MAX;
444 
445 	/*
446 	 * Check if the do_timer duty was dropped. We don't care about
447 	 * concurrency: This happens only when the cpu in charge went
448 	 * into a long sleep. If two cpus happen to assign themself to
449 	 * this duty, then the jiffies update is still serialized by
450 	 * xtime_lock.
451 	 */
452 	if (unlikely(tick_do_timer_cpu == -1))
453 		tick_do_timer_cpu = cpu;
454 
455 	/* Check, if the jiffies need an update */
456 	if (tick_do_timer_cpu == cpu)
457 		tick_do_update_jiffies64(now);
458 
459 	/*
460 	 * When we are idle and the tick is stopped, we have to touch
461 	 * the watchdog as we might not schedule for a really long
462 	 * time. This happens on complete idle SMP systems while
463 	 * waiting on the login prompt. We also increment the "start
464 	 * of idle" jiffy stamp so the idle accounting adjustment we
465 	 * do when we go busy again does not account too much ticks.
466 	 */
467 	if (ts->tick_stopped) {
468 		touch_softlockup_watchdog();
469 		ts->idle_jiffies++;
470 	}
471 
472 	update_process_times(user_mode(regs));
473 	profile_tick(CPU_PROFILING);
474 
475 	/* Do not restart, when we are in the idle loop */
476 	if (ts->tick_stopped)
477 		return;
478 
479 	while (tick_nohz_reprogram(ts, now)) {
480 		now = ktime_get();
481 		tick_do_update_jiffies64(now);
482 	}
483 }
484 
485 /**
486  * tick_nohz_switch_to_nohz - switch to nohz mode
487  */
488 static void tick_nohz_switch_to_nohz(void)
489 {
490 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
491 	ktime_t next;
492 
493 	if (!tick_nohz_enabled)
494 		return;
495 
496 	local_irq_disable();
497 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
498 		local_irq_enable();
499 		return;
500 	}
501 
502 	ts->nohz_mode = NOHZ_MODE_LOWRES;
503 
504 	/*
505 	 * Recycle the hrtimer in ts, so we can share the
506 	 * hrtimer_forward with the highres code.
507 	 */
508 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
509 	/* Get the next period */
510 	next = tick_init_jiffy_update();
511 
512 	for (;;) {
513 		ts->sched_timer.expires = next;
514 		if (!tick_program_event(next, 0))
515 			break;
516 		next = ktime_add(next, tick_period);
517 	}
518 	local_irq_enable();
519 
520 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
521 	       smp_processor_id());
522 }
523 
524 #else
525 
526 static inline void tick_nohz_switch_to_nohz(void) { }
527 
528 #endif /* NO_HZ */
529 
530 /*
531  * High resolution timer specific code
532  */
533 #ifdef CONFIG_HIGH_RES_TIMERS
534 /*
535  * We rearm the timer until we get disabled by the idle code.
536  * Called with interrupts disabled and timer->base->cpu_base->lock held.
537  */
538 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
539 {
540 	struct tick_sched *ts =
541 		container_of(timer, struct tick_sched, sched_timer);
542 	struct pt_regs *regs = get_irq_regs();
543 	ktime_t now = ktime_get();
544 	int cpu = smp_processor_id();
545 
546 #ifdef CONFIG_NO_HZ
547 	/*
548 	 * Check if the do_timer duty was dropped. We don't care about
549 	 * concurrency: This happens only when the cpu in charge went
550 	 * into a long sleep. If two cpus happen to assign themself to
551 	 * this duty, then the jiffies update is still serialized by
552 	 * xtime_lock.
553 	 */
554 	if (unlikely(tick_do_timer_cpu == -1))
555 		tick_do_timer_cpu = cpu;
556 #endif
557 
558 	/* Check, if the jiffies need an update */
559 	if (tick_do_timer_cpu == cpu)
560 		tick_do_update_jiffies64(now);
561 
562 	/*
563 	 * Do not call, when we are not in irq context and have
564 	 * no valid regs pointer
565 	 */
566 	if (regs) {
567 		/*
568 		 * When we are idle and the tick is stopped, we have to touch
569 		 * the watchdog as we might not schedule for a really long
570 		 * time. This happens on complete idle SMP systems while
571 		 * waiting on the login prompt. We also increment the "start of
572 		 * idle" jiffy stamp so the idle accounting adjustment we do
573 		 * when we go busy again does not account too much ticks.
574 		 */
575 		if (ts->tick_stopped) {
576 			touch_softlockup_watchdog();
577 			ts->idle_jiffies++;
578 		}
579 		update_process_times(user_mode(regs));
580 		profile_tick(CPU_PROFILING);
581 	}
582 
583 	/* Do not restart, when we are in the idle loop */
584 	if (ts->tick_stopped)
585 		return HRTIMER_NORESTART;
586 
587 	hrtimer_forward(timer, now, tick_period);
588 
589 	return HRTIMER_RESTART;
590 }
591 
592 /**
593  * tick_setup_sched_timer - setup the tick emulation timer
594  */
595 void tick_setup_sched_timer(void)
596 {
597 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
598 	ktime_t now = ktime_get();
599 	u64 offset;
600 
601 	/*
602 	 * Emulate tick processing via per-CPU hrtimers:
603 	 */
604 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
605 	ts->sched_timer.function = tick_sched_timer;
606 	ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
607 
608 	/* Get the next period (per cpu) */
609 	ts->sched_timer.expires = tick_init_jiffy_update();
610 	offset = ktime_to_ns(tick_period) >> 1;
611 	do_div(offset, num_possible_cpus());
612 	offset *= smp_processor_id();
613 	ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
614 
615 	for (;;) {
616 		hrtimer_forward(&ts->sched_timer, now, tick_period);
617 		hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
618 			      HRTIMER_MODE_ABS);
619 		/* Check, if the timer was already in the past */
620 		if (hrtimer_active(&ts->sched_timer))
621 			break;
622 		now = ktime_get();
623 	}
624 
625 #ifdef CONFIG_NO_HZ
626 	if (tick_nohz_enabled)
627 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
628 #endif
629 }
630 
631 void tick_cancel_sched_timer(int cpu)
632 {
633 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 
635 	if (ts->sched_timer.base)
636 		hrtimer_cancel(&ts->sched_timer);
637 
638 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
639 }
640 #endif /* HIGH_RES_TIMERS */
641 
642 /**
643  * Async notification about clocksource changes
644  */
645 void tick_clock_notify(void)
646 {
647 	int cpu;
648 
649 	for_each_possible_cpu(cpu)
650 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
651 }
652 
653 /*
654  * Async notification about clock event changes
655  */
656 void tick_oneshot_notify(void)
657 {
658 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
659 
660 	set_bit(0, &ts->check_clocks);
661 }
662 
663 /**
664  * Check, if a change happened, which makes oneshot possible.
665  *
666  * Called cyclic from the hrtimer softirq (driven by the timer
667  * softirq) allow_nohz signals, that we can switch into low-res nohz
668  * mode, because high resolution timers are disabled (either compile
669  * or runtime).
670  */
671 int tick_check_oneshot_change(int allow_nohz)
672 {
673 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
674 
675 	if (!test_and_clear_bit(0, &ts->check_clocks))
676 		return 0;
677 
678 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
679 		return 0;
680 
681 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
682 		return 0;
683 
684 	if (!allow_nohz)
685 		return 1;
686 
687 	tick_nohz_switch_to_nohz();
688 	return 0;
689 }
690