1 /* 2 * linux/kernel/time/tick-common.c 3 * 4 * This file contains the base functions to manage periodic tick 5 * related events. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 22 #include <asm/irq_regs.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Tick devices 28 */ 29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 30 /* 31 * Tick next event: keeps track of the tick time 32 */ 33 ktime_t tick_next_period; 34 ktime_t tick_period; 35 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 36 static DEFINE_RAW_SPINLOCK(tick_device_lock); 37 38 /* 39 * Debugging: see timer_list.c 40 */ 41 struct tick_device *tick_get_device(int cpu) 42 { 43 return &per_cpu(tick_cpu_device, cpu); 44 } 45 46 /** 47 * tick_is_oneshot_available - check for a oneshot capable event device 48 */ 49 int tick_is_oneshot_available(void) 50 { 51 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 52 53 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 54 return 0; 55 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 56 return 1; 57 return tick_broadcast_oneshot_available(); 58 } 59 60 /* 61 * Periodic tick 62 */ 63 static void tick_periodic(int cpu) 64 { 65 if (tick_do_timer_cpu == cpu) { 66 write_seqlock(&jiffies_lock); 67 68 /* Keep track of the next tick event */ 69 tick_next_period = ktime_add(tick_next_period, tick_period); 70 71 do_timer(1); 72 write_sequnlock(&jiffies_lock); 73 } 74 75 update_process_times(user_mode(get_irq_regs())); 76 profile_tick(CPU_PROFILING); 77 } 78 79 /* 80 * Event handler for periodic ticks 81 */ 82 void tick_handle_periodic(struct clock_event_device *dev) 83 { 84 int cpu = smp_processor_id(); 85 ktime_t next; 86 87 tick_periodic(cpu); 88 89 if (dev->mode != CLOCK_EVT_MODE_ONESHOT) 90 return; 91 /* 92 * Setup the next period for devices, which do not have 93 * periodic mode: 94 */ 95 next = ktime_add(dev->next_event, tick_period); 96 for (;;) { 97 if (!clockevents_program_event(dev, next, false)) 98 return; 99 /* 100 * Have to be careful here. If we're in oneshot mode, 101 * before we call tick_periodic() in a loop, we need 102 * to be sure we're using a real hardware clocksource. 103 * Otherwise we could get trapped in an infinite 104 * loop, as the tick_periodic() increments jiffies, 105 * when then will increment time, posibly causing 106 * the loop to trigger again and again. 107 */ 108 if (timekeeping_valid_for_hres()) 109 tick_periodic(cpu); 110 next = ktime_add(next, tick_period); 111 } 112 } 113 114 /* 115 * Setup the device for a periodic tick 116 */ 117 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 118 { 119 tick_set_periodic_handler(dev, broadcast); 120 121 /* Broadcast setup ? */ 122 if (!tick_device_is_functional(dev)) 123 return; 124 125 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 126 !tick_broadcast_oneshot_active()) { 127 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); 128 } else { 129 unsigned long seq; 130 ktime_t next; 131 132 do { 133 seq = read_seqbegin(&jiffies_lock); 134 next = tick_next_period; 135 } while (read_seqretry(&jiffies_lock, seq)); 136 137 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 138 139 for (;;) { 140 if (!clockevents_program_event(dev, next, false)) 141 return; 142 next = ktime_add(next, tick_period); 143 } 144 } 145 } 146 147 /* 148 * Setup the tick device 149 */ 150 static void tick_setup_device(struct tick_device *td, 151 struct clock_event_device *newdev, int cpu, 152 const struct cpumask *cpumask) 153 { 154 ktime_t next_event; 155 void (*handler)(struct clock_event_device *) = NULL; 156 157 /* 158 * First device setup ? 159 */ 160 if (!td->evtdev) { 161 /* 162 * If no cpu took the do_timer update, assign it to 163 * this cpu: 164 */ 165 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 166 if (!tick_nohz_full_cpu(cpu)) 167 tick_do_timer_cpu = cpu; 168 else 169 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 170 tick_next_period = ktime_get(); 171 tick_period = ktime_set(0, NSEC_PER_SEC / HZ); 172 } 173 174 /* 175 * Startup in periodic mode first. 176 */ 177 td->mode = TICKDEV_MODE_PERIODIC; 178 } else { 179 handler = td->evtdev->event_handler; 180 next_event = td->evtdev->next_event; 181 td->evtdev->event_handler = clockevents_handle_noop; 182 } 183 184 td->evtdev = newdev; 185 186 /* 187 * When the device is not per cpu, pin the interrupt to the 188 * current cpu: 189 */ 190 if (!cpumask_equal(newdev->cpumask, cpumask)) 191 irq_set_affinity(newdev->irq, cpumask); 192 193 /* 194 * When global broadcasting is active, check if the current 195 * device is registered as a placeholder for broadcast mode. 196 * This allows us to handle this x86 misfeature in a generic 197 * way. 198 */ 199 if (tick_device_uses_broadcast(newdev, cpu)) 200 return; 201 202 if (td->mode == TICKDEV_MODE_PERIODIC) 203 tick_setup_periodic(newdev, 0); 204 else 205 tick_setup_oneshot(newdev, handler, next_event); 206 } 207 208 /* 209 * Check, if the new registered device should be used. 210 */ 211 static int tick_check_new_device(struct clock_event_device *newdev) 212 { 213 struct clock_event_device *curdev; 214 struct tick_device *td; 215 int cpu, ret = NOTIFY_OK; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&tick_device_lock, flags); 219 220 cpu = smp_processor_id(); 221 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 222 goto out_bc; 223 224 td = &per_cpu(tick_cpu_device, cpu); 225 curdev = td->evtdev; 226 227 /* cpu local device ? */ 228 if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) { 229 230 /* 231 * If the cpu affinity of the device interrupt can not 232 * be set, ignore it. 233 */ 234 if (!irq_can_set_affinity(newdev->irq)) 235 goto out_bc; 236 237 /* 238 * If we have a cpu local device already, do not replace it 239 * by a non cpu local device 240 */ 241 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 242 goto out_bc; 243 } 244 245 /* 246 * If we have an active device, then check the rating and the oneshot 247 * feature. 248 */ 249 if (curdev) { 250 /* 251 * Prefer one shot capable devices ! 252 */ 253 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) && 254 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 255 goto out_bc; 256 /* 257 * Check the rating 258 */ 259 if (curdev->rating >= newdev->rating) 260 goto out_bc; 261 } 262 263 /* 264 * Replace the eventually existing device by the new 265 * device. If the current device is the broadcast device, do 266 * not give it back to the clockevents layer ! 267 */ 268 if (tick_is_broadcast_device(curdev)) { 269 clockevents_shutdown(curdev); 270 curdev = NULL; 271 } 272 clockevents_exchange_device(curdev, newdev); 273 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 274 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 275 tick_oneshot_notify(); 276 277 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 278 return NOTIFY_STOP; 279 280 out_bc: 281 /* 282 * Can the new device be used as a broadcast device ? 283 */ 284 if (tick_check_broadcast_device(newdev)) 285 ret = NOTIFY_STOP; 286 287 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 288 289 return ret; 290 } 291 292 /* 293 * Transfer the do_timer job away from a dying cpu. 294 * 295 * Called with interrupts disabled. 296 */ 297 static void tick_handover_do_timer(int *cpup) 298 { 299 if (*cpup == tick_do_timer_cpu) { 300 int cpu = cpumask_first(cpu_online_mask); 301 302 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 303 TICK_DO_TIMER_NONE; 304 } 305 } 306 307 /* 308 * Shutdown an event device on a given cpu: 309 * 310 * This is called on a life CPU, when a CPU is dead. So we cannot 311 * access the hardware device itself. 312 * We just set the mode and remove it from the lists. 313 */ 314 static void tick_shutdown(unsigned int *cpup) 315 { 316 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); 317 struct clock_event_device *dev = td->evtdev; 318 unsigned long flags; 319 320 raw_spin_lock_irqsave(&tick_device_lock, flags); 321 td->mode = TICKDEV_MODE_PERIODIC; 322 if (dev) { 323 /* 324 * Prevent that the clock events layer tries to call 325 * the set mode function! 326 */ 327 dev->mode = CLOCK_EVT_MODE_UNUSED; 328 clockevents_exchange_device(dev, NULL); 329 dev->event_handler = clockevents_handle_noop; 330 td->evtdev = NULL; 331 } 332 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 333 } 334 335 static void tick_suspend(void) 336 { 337 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 338 unsigned long flags; 339 340 raw_spin_lock_irqsave(&tick_device_lock, flags); 341 clockevents_shutdown(td->evtdev); 342 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 343 } 344 345 static void tick_resume(void) 346 { 347 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 348 unsigned long flags; 349 int broadcast = tick_resume_broadcast(); 350 351 raw_spin_lock_irqsave(&tick_device_lock, flags); 352 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); 353 354 if (!broadcast) { 355 if (td->mode == TICKDEV_MODE_PERIODIC) 356 tick_setup_periodic(td->evtdev, 0); 357 else 358 tick_resume_oneshot(); 359 } 360 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 361 } 362 363 /* 364 * Notification about clock event devices 365 */ 366 static int tick_notify(struct notifier_block *nb, unsigned long reason, 367 void *dev) 368 { 369 switch (reason) { 370 371 case CLOCK_EVT_NOTIFY_ADD: 372 return tick_check_new_device(dev); 373 374 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 375 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 376 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 377 tick_broadcast_on_off(reason, dev); 378 break; 379 380 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER: 381 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT: 382 tick_broadcast_oneshot_control(reason); 383 break; 384 385 case CLOCK_EVT_NOTIFY_CPU_DYING: 386 tick_handover_do_timer(dev); 387 break; 388 389 case CLOCK_EVT_NOTIFY_CPU_DEAD: 390 tick_shutdown_broadcast_oneshot(dev); 391 tick_shutdown_broadcast(dev); 392 tick_shutdown(dev); 393 break; 394 395 case CLOCK_EVT_NOTIFY_SUSPEND: 396 tick_suspend(); 397 tick_suspend_broadcast(); 398 break; 399 400 case CLOCK_EVT_NOTIFY_RESUME: 401 tick_resume(); 402 break; 403 404 default: 405 break; 406 } 407 408 return NOTIFY_OK; 409 } 410 411 static struct notifier_block tick_notifier = { 412 .notifier_call = tick_notify, 413 }; 414 415 /** 416 * tick_init - initialize the tick control 417 * 418 * Register the notifier with the clockevents framework 419 */ 420 void __init tick_init(void) 421 { 422 clockevents_register_notifier(&tick_notifier); 423 tick_broadcast_init(); 424 } 425