1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time 31 */ 32 ktime_t tick_next_period; 33 ktime_t tick_period; 34 35 /* 36 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 37 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 38 * variable has two functions: 39 * 40 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 41 * timekeeping lock all at once. Only the CPU which is assigned to do the 42 * update is handling it. 43 * 44 * 2) Hand off the duty in the NOHZ idle case by setting the value to 45 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 46 * at it will take over and keep the time keeping alive. The handover 47 * procedure also covers cpu hotplug. 48 */ 49 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 50 #ifdef CONFIG_NO_HZ_FULL 51 /* 52 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 53 * tick_do_timer_cpu and it should be taken over by an eligible secondary 54 * when one comes online. 55 */ 56 static int tick_do_timer_boot_cpu __read_mostly = -1; 57 #endif 58 59 /* 60 * Debugging: see timer_list.c 61 */ 62 struct tick_device *tick_get_device(int cpu) 63 { 64 return &per_cpu(tick_cpu_device, cpu); 65 } 66 67 /** 68 * tick_is_oneshot_available - check for a oneshot capable event device 69 */ 70 int tick_is_oneshot_available(void) 71 { 72 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 73 74 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 75 return 0; 76 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 77 return 1; 78 return tick_broadcast_oneshot_available(); 79 } 80 81 /* 82 * Periodic tick 83 */ 84 static void tick_periodic(int cpu) 85 { 86 if (tick_do_timer_cpu == cpu) { 87 write_seqlock(&jiffies_lock); 88 89 /* Keep track of the next tick event */ 90 tick_next_period = ktime_add(tick_next_period, tick_period); 91 92 do_timer(1); 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 update_process_times(user_mode(get_irq_regs())); 98 profile_tick(CPU_PROFILING); 99 } 100 101 /* 102 * Event handler for periodic ticks 103 */ 104 void tick_handle_periodic(struct clock_event_device *dev) 105 { 106 int cpu = smp_processor_id(); 107 ktime_t next = dev->next_event; 108 109 tick_periodic(cpu); 110 111 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 112 /* 113 * The cpu might have transitioned to HIGHRES or NOHZ mode via 114 * update_process_times() -> run_local_timers() -> 115 * hrtimer_run_queues(). 116 */ 117 if (dev->event_handler != tick_handle_periodic) 118 return; 119 #endif 120 121 if (!clockevent_state_oneshot(dev)) 122 return; 123 for (;;) { 124 /* 125 * Setup the next period for devices, which do not have 126 * periodic mode: 127 */ 128 next = ktime_add(next, tick_period); 129 130 if (!clockevents_program_event(dev, next, false)) 131 return; 132 /* 133 * Have to be careful here. If we're in oneshot mode, 134 * before we call tick_periodic() in a loop, we need 135 * to be sure we're using a real hardware clocksource. 136 * Otherwise we could get trapped in an infinite 137 * loop, as the tick_periodic() increments jiffies, 138 * which then will increment time, possibly causing 139 * the loop to trigger again and again. 140 */ 141 if (timekeeping_valid_for_hres()) 142 tick_periodic(cpu); 143 } 144 } 145 146 /* 147 * Setup the device for a periodic tick 148 */ 149 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 150 { 151 tick_set_periodic_handler(dev, broadcast); 152 153 /* Broadcast setup ? */ 154 if (!tick_device_is_functional(dev)) 155 return; 156 157 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 158 !tick_broadcast_oneshot_active()) { 159 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 160 } else { 161 unsigned int seq; 162 ktime_t next; 163 164 do { 165 seq = read_seqbegin(&jiffies_lock); 166 next = tick_next_period; 167 } while (read_seqretry(&jiffies_lock, seq)); 168 169 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 170 171 for (;;) { 172 if (!clockevents_program_event(dev, next, false)) 173 return; 174 next = ktime_add(next, tick_period); 175 } 176 } 177 } 178 179 #ifdef CONFIG_NO_HZ_FULL 180 static void giveup_do_timer(void *info) 181 { 182 int cpu = *(unsigned int *)info; 183 184 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 185 186 tick_do_timer_cpu = cpu; 187 } 188 189 static void tick_take_do_timer_from_boot(void) 190 { 191 int cpu = smp_processor_id(); 192 int from = tick_do_timer_boot_cpu; 193 194 if (from >= 0 && from != cpu) 195 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 196 } 197 #endif 198 199 /* 200 * Setup the tick device 201 */ 202 static void tick_setup_device(struct tick_device *td, 203 struct clock_event_device *newdev, int cpu, 204 const struct cpumask *cpumask) 205 { 206 void (*handler)(struct clock_event_device *) = NULL; 207 ktime_t next_event = 0; 208 209 /* 210 * First device setup ? 211 */ 212 if (!td->evtdev) { 213 /* 214 * If no cpu took the do_timer update, assign it to 215 * this cpu: 216 */ 217 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 218 tick_do_timer_cpu = cpu; 219 220 tick_next_period = ktime_get(); 221 tick_period = NSEC_PER_SEC / HZ; 222 #ifdef CONFIG_NO_HZ_FULL 223 /* 224 * The boot CPU may be nohz_full, in which case set 225 * tick_do_timer_boot_cpu so the first housekeeping 226 * secondary that comes up will take do_timer from 227 * us. 228 */ 229 if (tick_nohz_full_cpu(cpu)) 230 tick_do_timer_boot_cpu = cpu; 231 232 } else if (tick_do_timer_boot_cpu != -1 && 233 !tick_nohz_full_cpu(cpu)) { 234 tick_take_do_timer_from_boot(); 235 tick_do_timer_boot_cpu = -1; 236 WARN_ON(tick_do_timer_cpu != cpu); 237 #endif 238 } 239 240 /* 241 * Startup in periodic mode first. 242 */ 243 td->mode = TICKDEV_MODE_PERIODIC; 244 } else { 245 handler = td->evtdev->event_handler; 246 next_event = td->evtdev->next_event; 247 td->evtdev->event_handler = clockevents_handle_noop; 248 } 249 250 td->evtdev = newdev; 251 252 /* 253 * When the device is not per cpu, pin the interrupt to the 254 * current cpu: 255 */ 256 if (!cpumask_equal(newdev->cpumask, cpumask)) 257 irq_set_affinity(newdev->irq, cpumask); 258 259 /* 260 * When global broadcasting is active, check if the current 261 * device is registered as a placeholder for broadcast mode. 262 * This allows us to handle this x86 misfeature in a generic 263 * way. This function also returns !=0 when we keep the 264 * current active broadcast state for this CPU. 265 */ 266 if (tick_device_uses_broadcast(newdev, cpu)) 267 return; 268 269 if (td->mode == TICKDEV_MODE_PERIODIC) 270 tick_setup_periodic(newdev, 0); 271 else 272 tick_setup_oneshot(newdev, handler, next_event); 273 } 274 275 void tick_install_replacement(struct clock_event_device *newdev) 276 { 277 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 278 int cpu = smp_processor_id(); 279 280 clockevents_exchange_device(td->evtdev, newdev); 281 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 282 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 283 tick_oneshot_notify(); 284 } 285 286 static bool tick_check_percpu(struct clock_event_device *curdev, 287 struct clock_event_device *newdev, int cpu) 288 { 289 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 290 return false; 291 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 292 return true; 293 /* Check if irq affinity can be set */ 294 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 295 return false; 296 /* Prefer an existing cpu local device */ 297 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 298 return false; 299 return true; 300 } 301 302 static bool tick_check_preferred(struct clock_event_device *curdev, 303 struct clock_event_device *newdev) 304 { 305 /* Prefer oneshot capable device */ 306 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 307 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 308 return false; 309 if (tick_oneshot_mode_active()) 310 return false; 311 } 312 313 /* 314 * Use the higher rated one, but prefer a CPU local device with a lower 315 * rating than a non-CPU local device 316 */ 317 return !curdev || 318 newdev->rating > curdev->rating || 319 !cpumask_equal(curdev->cpumask, newdev->cpumask); 320 } 321 322 /* 323 * Check whether the new device is a better fit than curdev. curdev 324 * can be NULL ! 325 */ 326 bool tick_check_replacement(struct clock_event_device *curdev, 327 struct clock_event_device *newdev) 328 { 329 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 330 return false; 331 332 return tick_check_preferred(curdev, newdev); 333 } 334 335 /* 336 * Check, if the new registered device should be used. Called with 337 * clockevents_lock held and interrupts disabled. 338 */ 339 void tick_check_new_device(struct clock_event_device *newdev) 340 { 341 struct clock_event_device *curdev; 342 struct tick_device *td; 343 int cpu; 344 345 cpu = smp_processor_id(); 346 td = &per_cpu(tick_cpu_device, cpu); 347 curdev = td->evtdev; 348 349 /* cpu local device ? */ 350 if (!tick_check_percpu(curdev, newdev, cpu)) 351 goto out_bc; 352 353 /* Preference decision */ 354 if (!tick_check_preferred(curdev, newdev)) 355 goto out_bc; 356 357 if (!try_module_get(newdev->owner)) 358 return; 359 360 /* 361 * Replace the eventually existing device by the new 362 * device. If the current device is the broadcast device, do 363 * not give it back to the clockevents layer ! 364 */ 365 if (tick_is_broadcast_device(curdev)) { 366 clockevents_shutdown(curdev); 367 curdev = NULL; 368 } 369 clockevents_exchange_device(curdev, newdev); 370 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 371 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 372 tick_oneshot_notify(); 373 return; 374 375 out_bc: 376 /* 377 * Can the new device be used as a broadcast device ? 378 */ 379 tick_install_broadcast_device(newdev); 380 } 381 382 /** 383 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 384 * @state: The target state (enter/exit) 385 * 386 * The system enters/leaves a state, where affected devices might stop 387 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 388 * 389 * Called with interrupts disabled, so clockevents_lock is not 390 * required here because the local clock event device cannot go away 391 * under us. 392 */ 393 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 394 { 395 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 396 397 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 398 return 0; 399 400 return __tick_broadcast_oneshot_control(state); 401 } 402 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 403 404 #ifdef CONFIG_HOTPLUG_CPU 405 /* 406 * Transfer the do_timer job away from a dying cpu. 407 * 408 * Called with interrupts disabled. Not locking required. If 409 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 410 */ 411 void tick_handover_do_timer(void) 412 { 413 if (tick_do_timer_cpu == smp_processor_id()) { 414 int cpu = cpumask_first(cpu_online_mask); 415 416 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 417 TICK_DO_TIMER_NONE; 418 } 419 } 420 421 /* 422 * Shutdown an event device on a given cpu: 423 * 424 * This is called on a life CPU, when a CPU is dead. So we cannot 425 * access the hardware device itself. 426 * We just set the mode and remove it from the lists. 427 */ 428 void tick_shutdown(unsigned int cpu) 429 { 430 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 431 struct clock_event_device *dev = td->evtdev; 432 433 td->mode = TICKDEV_MODE_PERIODIC; 434 if (dev) { 435 /* 436 * Prevent that the clock events layer tries to call 437 * the set mode function! 438 */ 439 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 440 clockevents_exchange_device(dev, NULL); 441 dev->event_handler = clockevents_handle_noop; 442 td->evtdev = NULL; 443 } 444 } 445 #endif 446 447 /** 448 * tick_suspend_local - Suspend the local tick device 449 * 450 * Called from the local cpu for freeze with interrupts disabled. 451 * 452 * No locks required. Nothing can change the per cpu device. 453 */ 454 void tick_suspend_local(void) 455 { 456 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 457 458 clockevents_shutdown(td->evtdev); 459 } 460 461 /** 462 * tick_resume_local - Resume the local tick device 463 * 464 * Called from the local CPU for unfreeze or XEN resume magic. 465 * 466 * No locks required. Nothing can change the per cpu device. 467 */ 468 void tick_resume_local(void) 469 { 470 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 471 bool broadcast = tick_resume_check_broadcast(); 472 473 clockevents_tick_resume(td->evtdev); 474 if (!broadcast) { 475 if (td->mode == TICKDEV_MODE_PERIODIC) 476 tick_setup_periodic(td->evtdev, 0); 477 else 478 tick_resume_oneshot(); 479 } 480 } 481 482 /** 483 * tick_suspend - Suspend the tick and the broadcast device 484 * 485 * Called from syscore_suspend() via timekeeping_suspend with only one 486 * CPU online and interrupts disabled or from tick_unfreeze() under 487 * tick_freeze_lock. 488 * 489 * No locks required. Nothing can change the per cpu device. 490 */ 491 void tick_suspend(void) 492 { 493 tick_suspend_local(); 494 tick_suspend_broadcast(); 495 } 496 497 /** 498 * tick_resume - Resume the tick and the broadcast device 499 * 500 * Called from syscore_resume() via timekeeping_resume with only one 501 * CPU online and interrupts disabled. 502 * 503 * No locks required. Nothing can change the per cpu device. 504 */ 505 void tick_resume(void) 506 { 507 tick_resume_broadcast(); 508 tick_resume_local(); 509 } 510 511 #ifdef CONFIG_SUSPEND 512 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 513 static unsigned int tick_freeze_depth; 514 515 /** 516 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 517 * 518 * Check if this is the last online CPU executing the function and if so, 519 * suspend timekeeping. Otherwise suspend the local tick. 520 * 521 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 522 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 523 */ 524 void tick_freeze(void) 525 { 526 raw_spin_lock(&tick_freeze_lock); 527 528 tick_freeze_depth++; 529 if (tick_freeze_depth == num_online_cpus()) { 530 trace_suspend_resume(TPS("timekeeping_freeze"), 531 smp_processor_id(), true); 532 system_state = SYSTEM_SUSPEND; 533 sched_clock_suspend(); 534 timekeeping_suspend(); 535 } else { 536 tick_suspend_local(); 537 } 538 539 raw_spin_unlock(&tick_freeze_lock); 540 } 541 542 /** 543 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 544 * 545 * Check if this is the first CPU executing the function and if so, resume 546 * timekeeping. Otherwise resume the local tick. 547 * 548 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 549 * Interrupts must not be enabled after the preceding %tick_freeze(). 550 */ 551 void tick_unfreeze(void) 552 { 553 raw_spin_lock(&tick_freeze_lock); 554 555 if (tick_freeze_depth == num_online_cpus()) { 556 timekeeping_resume(); 557 sched_clock_resume(); 558 system_state = SYSTEM_RUNNING; 559 trace_suspend_resume(TPS("timekeeping_freeze"), 560 smp_processor_id(), false); 561 } else { 562 touch_softlockup_watchdog(); 563 tick_resume_local(); 564 } 565 566 tick_freeze_depth--; 567 568 raw_spin_unlock(&tick_freeze_lock); 569 } 570 #endif /* CONFIG_SUSPEND */ 571 572 /** 573 * tick_init - initialize the tick control 574 */ 575 void __init tick_init(void) 576 { 577 tick_broadcast_init(); 578 tick_nohz_init(); 579 } 580