1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/profile.h> 16 #include <linux/sched.h> 17 #include <linux/module.h> 18 #include <trace/events/power.h> 19 20 #include <asm/irq_regs.h> 21 22 #include "tick-internal.h" 23 24 /* 25 * Tick devices 26 */ 27 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 28 /* 29 * Tick next event: keeps track of the tick time 30 */ 31 ktime_t tick_next_period; 32 ktime_t tick_period; 33 34 /* 35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 37 * variable has two functions: 38 * 39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 40 * timekeeping lock all at once. Only the CPU which is assigned to do the 41 * update is handling it. 42 * 43 * 2) Hand off the duty in the NOHZ idle case by setting the value to 44 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 45 * at it will take over and keep the time keeping alive. The handover 46 * procedure also covers cpu hotplug. 47 */ 48 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 49 #ifdef CONFIG_NO_HZ_FULL 50 /* 51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 52 * tick_do_timer_cpu and it should be taken over by an eligible secondary 53 * when one comes online. 54 */ 55 static int tick_do_timer_boot_cpu __read_mostly = -1; 56 #endif 57 58 /* 59 * Debugging: see timer_list.c 60 */ 61 struct tick_device *tick_get_device(int cpu) 62 { 63 return &per_cpu(tick_cpu_device, cpu); 64 } 65 66 /** 67 * tick_is_oneshot_available - check for a oneshot capable event device 68 */ 69 int tick_is_oneshot_available(void) 70 { 71 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 72 73 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 74 return 0; 75 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 76 return 1; 77 return tick_broadcast_oneshot_available(); 78 } 79 80 /* 81 * Periodic tick 82 */ 83 static void tick_periodic(int cpu) 84 { 85 if (tick_do_timer_cpu == cpu) { 86 write_seqlock(&jiffies_lock); 87 88 /* Keep track of the next tick event */ 89 tick_next_period = ktime_add(tick_next_period, tick_period); 90 91 do_timer(1); 92 write_sequnlock(&jiffies_lock); 93 update_wall_time(); 94 } 95 96 update_process_times(user_mode(get_irq_regs())); 97 profile_tick(CPU_PROFILING); 98 } 99 100 /* 101 * Event handler for periodic ticks 102 */ 103 void tick_handle_periodic(struct clock_event_device *dev) 104 { 105 int cpu = smp_processor_id(); 106 ktime_t next = dev->next_event; 107 108 tick_periodic(cpu); 109 110 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 111 /* 112 * The cpu might have transitioned to HIGHRES or NOHZ mode via 113 * update_process_times() -> run_local_timers() -> 114 * hrtimer_run_queues(). 115 */ 116 if (dev->event_handler != tick_handle_periodic) 117 return; 118 #endif 119 120 if (!clockevent_state_oneshot(dev)) 121 return; 122 for (;;) { 123 /* 124 * Setup the next period for devices, which do not have 125 * periodic mode: 126 */ 127 next = ktime_add(next, tick_period); 128 129 if (!clockevents_program_event(dev, next, false)) 130 return; 131 /* 132 * Have to be careful here. If we're in oneshot mode, 133 * before we call tick_periodic() in a loop, we need 134 * to be sure we're using a real hardware clocksource. 135 * Otherwise we could get trapped in an infinite 136 * loop, as the tick_periodic() increments jiffies, 137 * which then will increment time, possibly causing 138 * the loop to trigger again and again. 139 */ 140 if (timekeeping_valid_for_hres()) 141 tick_periodic(cpu); 142 } 143 } 144 145 /* 146 * Setup the device for a periodic tick 147 */ 148 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 149 { 150 tick_set_periodic_handler(dev, broadcast); 151 152 /* Broadcast setup ? */ 153 if (!tick_device_is_functional(dev)) 154 return; 155 156 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 157 !tick_broadcast_oneshot_active()) { 158 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 159 } else { 160 unsigned int seq; 161 ktime_t next; 162 163 do { 164 seq = read_seqbegin(&jiffies_lock); 165 next = tick_next_period; 166 } while (read_seqretry(&jiffies_lock, seq)); 167 168 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 169 170 for (;;) { 171 if (!clockevents_program_event(dev, next, false)) 172 return; 173 next = ktime_add(next, tick_period); 174 } 175 } 176 } 177 178 #ifdef CONFIG_NO_HZ_FULL 179 static void giveup_do_timer(void *info) 180 { 181 int cpu = *(unsigned int *)info; 182 183 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 184 185 tick_do_timer_cpu = cpu; 186 } 187 188 static void tick_take_do_timer_from_boot(void) 189 { 190 int cpu = smp_processor_id(); 191 int from = tick_do_timer_boot_cpu; 192 193 if (from >= 0 && from != cpu) 194 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 195 } 196 #endif 197 198 /* 199 * Setup the tick device 200 */ 201 static void tick_setup_device(struct tick_device *td, 202 struct clock_event_device *newdev, int cpu, 203 const struct cpumask *cpumask) 204 { 205 void (*handler)(struct clock_event_device *) = NULL; 206 ktime_t next_event = 0; 207 208 /* 209 * First device setup ? 210 */ 211 if (!td->evtdev) { 212 /* 213 * If no cpu took the do_timer update, assign it to 214 * this cpu: 215 */ 216 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 217 tick_do_timer_cpu = cpu; 218 219 tick_next_period = ktime_get(); 220 tick_period = NSEC_PER_SEC / HZ; 221 #ifdef CONFIG_NO_HZ_FULL 222 /* 223 * The boot CPU may be nohz_full, in which case set 224 * tick_do_timer_boot_cpu so the first housekeeping 225 * secondary that comes up will take do_timer from 226 * us. 227 */ 228 if (tick_nohz_full_cpu(cpu)) 229 tick_do_timer_boot_cpu = cpu; 230 231 } else if (tick_do_timer_boot_cpu != -1 && 232 !tick_nohz_full_cpu(cpu)) { 233 tick_take_do_timer_from_boot(); 234 tick_do_timer_boot_cpu = -1; 235 WARN_ON(tick_do_timer_cpu != cpu); 236 #endif 237 } 238 239 /* 240 * Startup in periodic mode first. 241 */ 242 td->mode = TICKDEV_MODE_PERIODIC; 243 } else { 244 handler = td->evtdev->event_handler; 245 next_event = td->evtdev->next_event; 246 td->evtdev->event_handler = clockevents_handle_noop; 247 } 248 249 td->evtdev = newdev; 250 251 /* 252 * When the device is not per cpu, pin the interrupt to the 253 * current cpu: 254 */ 255 if (!cpumask_equal(newdev->cpumask, cpumask)) 256 irq_set_affinity(newdev->irq, cpumask); 257 258 /* 259 * When global broadcasting is active, check if the current 260 * device is registered as a placeholder for broadcast mode. 261 * This allows us to handle this x86 misfeature in a generic 262 * way. This function also returns !=0 when we keep the 263 * current active broadcast state for this CPU. 264 */ 265 if (tick_device_uses_broadcast(newdev, cpu)) 266 return; 267 268 if (td->mode == TICKDEV_MODE_PERIODIC) 269 tick_setup_periodic(newdev, 0); 270 else 271 tick_setup_oneshot(newdev, handler, next_event); 272 } 273 274 void tick_install_replacement(struct clock_event_device *newdev) 275 { 276 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 277 int cpu = smp_processor_id(); 278 279 clockevents_exchange_device(td->evtdev, newdev); 280 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 281 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 282 tick_oneshot_notify(); 283 } 284 285 static bool tick_check_percpu(struct clock_event_device *curdev, 286 struct clock_event_device *newdev, int cpu) 287 { 288 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 289 return false; 290 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 291 return true; 292 /* Check if irq affinity can be set */ 293 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 294 return false; 295 /* Prefer an existing cpu local device */ 296 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 297 return false; 298 return true; 299 } 300 301 static bool tick_check_preferred(struct clock_event_device *curdev, 302 struct clock_event_device *newdev) 303 { 304 /* Prefer oneshot capable device */ 305 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 306 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 307 return false; 308 if (tick_oneshot_mode_active()) 309 return false; 310 } 311 312 /* 313 * Use the higher rated one, but prefer a CPU local device with a lower 314 * rating than a non-CPU local device 315 */ 316 return !curdev || 317 newdev->rating > curdev->rating || 318 !cpumask_equal(curdev->cpumask, newdev->cpumask); 319 } 320 321 /* 322 * Check whether the new device is a better fit than curdev. curdev 323 * can be NULL ! 324 */ 325 bool tick_check_replacement(struct clock_event_device *curdev, 326 struct clock_event_device *newdev) 327 { 328 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 329 return false; 330 331 return tick_check_preferred(curdev, newdev); 332 } 333 334 /* 335 * Check, if the new registered device should be used. Called with 336 * clockevents_lock held and interrupts disabled. 337 */ 338 void tick_check_new_device(struct clock_event_device *newdev) 339 { 340 struct clock_event_device *curdev; 341 struct tick_device *td; 342 int cpu; 343 344 cpu = smp_processor_id(); 345 td = &per_cpu(tick_cpu_device, cpu); 346 curdev = td->evtdev; 347 348 /* cpu local device ? */ 349 if (!tick_check_percpu(curdev, newdev, cpu)) 350 goto out_bc; 351 352 /* Preference decision */ 353 if (!tick_check_preferred(curdev, newdev)) 354 goto out_bc; 355 356 if (!try_module_get(newdev->owner)) 357 return; 358 359 /* 360 * Replace the eventually existing device by the new 361 * device. If the current device is the broadcast device, do 362 * not give it back to the clockevents layer ! 363 */ 364 if (tick_is_broadcast_device(curdev)) { 365 clockevents_shutdown(curdev); 366 curdev = NULL; 367 } 368 clockevents_exchange_device(curdev, newdev); 369 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 370 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 371 tick_oneshot_notify(); 372 return; 373 374 out_bc: 375 /* 376 * Can the new device be used as a broadcast device ? 377 */ 378 tick_install_broadcast_device(newdev); 379 } 380 381 /** 382 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 383 * @state: The target state (enter/exit) 384 * 385 * The system enters/leaves a state, where affected devices might stop 386 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 387 * 388 * Called with interrupts disabled, so clockevents_lock is not 389 * required here because the local clock event device cannot go away 390 * under us. 391 */ 392 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 393 { 394 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 395 396 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 397 return 0; 398 399 return __tick_broadcast_oneshot_control(state); 400 } 401 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 402 403 #ifdef CONFIG_HOTPLUG_CPU 404 /* 405 * Transfer the do_timer job away from a dying cpu. 406 * 407 * Called with interrupts disabled. Not locking required. If 408 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 409 */ 410 void tick_handover_do_timer(void) 411 { 412 if (tick_do_timer_cpu == smp_processor_id()) { 413 int cpu = cpumask_first(cpu_online_mask); 414 415 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 416 TICK_DO_TIMER_NONE; 417 } 418 } 419 420 /* 421 * Shutdown an event device on a given cpu: 422 * 423 * This is called on a life CPU, when a CPU is dead. So we cannot 424 * access the hardware device itself. 425 * We just set the mode and remove it from the lists. 426 */ 427 void tick_shutdown(unsigned int cpu) 428 { 429 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 430 struct clock_event_device *dev = td->evtdev; 431 432 td->mode = TICKDEV_MODE_PERIODIC; 433 if (dev) { 434 /* 435 * Prevent that the clock events layer tries to call 436 * the set mode function! 437 */ 438 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 439 clockevents_exchange_device(dev, NULL); 440 dev->event_handler = clockevents_handle_noop; 441 td->evtdev = NULL; 442 } 443 } 444 #endif 445 446 /** 447 * tick_suspend_local - Suspend the local tick device 448 * 449 * Called from the local cpu for freeze with interrupts disabled. 450 * 451 * No locks required. Nothing can change the per cpu device. 452 */ 453 void tick_suspend_local(void) 454 { 455 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 456 457 clockevents_shutdown(td->evtdev); 458 } 459 460 /** 461 * tick_resume_local - Resume the local tick device 462 * 463 * Called from the local CPU for unfreeze or XEN resume magic. 464 * 465 * No locks required. Nothing can change the per cpu device. 466 */ 467 void tick_resume_local(void) 468 { 469 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 470 bool broadcast = tick_resume_check_broadcast(); 471 472 clockevents_tick_resume(td->evtdev); 473 if (!broadcast) { 474 if (td->mode == TICKDEV_MODE_PERIODIC) 475 tick_setup_periodic(td->evtdev, 0); 476 else 477 tick_resume_oneshot(); 478 } 479 } 480 481 /** 482 * tick_suspend - Suspend the tick and the broadcast device 483 * 484 * Called from syscore_suspend() via timekeeping_suspend with only one 485 * CPU online and interrupts disabled or from tick_unfreeze() under 486 * tick_freeze_lock. 487 * 488 * No locks required. Nothing can change the per cpu device. 489 */ 490 void tick_suspend(void) 491 { 492 tick_suspend_local(); 493 tick_suspend_broadcast(); 494 } 495 496 /** 497 * tick_resume - Resume the tick and the broadcast device 498 * 499 * Called from syscore_resume() via timekeeping_resume with only one 500 * CPU online and interrupts disabled. 501 * 502 * No locks required. Nothing can change the per cpu device. 503 */ 504 void tick_resume(void) 505 { 506 tick_resume_broadcast(); 507 tick_resume_local(); 508 } 509 510 #ifdef CONFIG_SUSPEND 511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 512 static unsigned int tick_freeze_depth; 513 514 /** 515 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 516 * 517 * Check if this is the last online CPU executing the function and if so, 518 * suspend timekeeping. Otherwise suspend the local tick. 519 * 520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 521 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 522 */ 523 void tick_freeze(void) 524 { 525 raw_spin_lock(&tick_freeze_lock); 526 527 tick_freeze_depth++; 528 if (tick_freeze_depth == num_online_cpus()) { 529 trace_suspend_resume(TPS("timekeeping_freeze"), 530 smp_processor_id(), true); 531 system_state = SYSTEM_SUSPEND; 532 sched_clock_suspend(); 533 timekeeping_suspend(); 534 } else { 535 tick_suspend_local(); 536 } 537 538 raw_spin_unlock(&tick_freeze_lock); 539 } 540 541 /** 542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 543 * 544 * Check if this is the first CPU executing the function and if so, resume 545 * timekeeping. Otherwise resume the local tick. 546 * 547 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 548 * Interrupts must not be enabled after the preceding %tick_freeze(). 549 */ 550 void tick_unfreeze(void) 551 { 552 raw_spin_lock(&tick_freeze_lock); 553 554 if (tick_freeze_depth == num_online_cpus()) { 555 timekeeping_resume(); 556 sched_clock_resume(); 557 system_state = SYSTEM_RUNNING; 558 trace_suspend_resume(TPS("timekeeping_freeze"), 559 smp_processor_id(), false); 560 } else { 561 tick_resume_local(); 562 } 563 564 tick_freeze_depth--; 565 566 raw_spin_unlock(&tick_freeze_lock); 567 } 568 #endif /* CONFIG_SUSPEND */ 569 570 /** 571 * tick_init - initialize the tick control 572 */ 573 void __init tick_init(void) 574 { 575 tick_broadcast_init(); 576 tick_nohz_init(); 577 } 578