1 /* 2 * linux/kernel/time/tick-common.c 3 * 4 * This file contains the base functions to manage periodic tick 5 * related events. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/module.h> 22 #include <trace/events/power.h> 23 24 #include <asm/irq_regs.h> 25 26 #include "tick-internal.h" 27 28 /* 29 * Tick devices 30 */ 31 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 32 /* 33 * Tick next event: keeps track of the tick time 34 */ 35 ktime_t tick_next_period; 36 ktime_t tick_period; 37 38 /* 39 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 40 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 41 * variable has two functions: 42 * 43 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 44 * timekeeping lock all at once. Only the CPU which is assigned to do the 45 * update is handling it. 46 * 47 * 2) Hand off the duty in the NOHZ idle case by setting the value to 48 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 49 * at it will take over and keep the time keeping alive. The handover 50 * procedure also covers cpu hotplug. 51 */ 52 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 53 54 /* 55 * Debugging: see timer_list.c 56 */ 57 struct tick_device *tick_get_device(int cpu) 58 { 59 return &per_cpu(tick_cpu_device, cpu); 60 } 61 62 /** 63 * tick_is_oneshot_available - check for a oneshot capable event device 64 */ 65 int tick_is_oneshot_available(void) 66 { 67 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 68 69 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 70 return 0; 71 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 72 return 1; 73 return tick_broadcast_oneshot_available(); 74 } 75 76 /* 77 * Periodic tick 78 */ 79 static void tick_periodic(int cpu) 80 { 81 if (tick_do_timer_cpu == cpu) { 82 write_seqlock(&jiffies_lock); 83 84 /* Keep track of the next tick event */ 85 tick_next_period = ktime_add(tick_next_period, tick_period); 86 87 do_timer(1); 88 write_sequnlock(&jiffies_lock); 89 update_wall_time(); 90 } 91 92 update_process_times(user_mode(get_irq_regs())); 93 profile_tick(CPU_PROFILING); 94 } 95 96 /* 97 * Event handler for periodic ticks 98 */ 99 void tick_handle_periodic(struct clock_event_device *dev) 100 { 101 int cpu = smp_processor_id(); 102 ktime_t next = dev->next_event; 103 104 tick_periodic(cpu); 105 106 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 107 /* 108 * The cpu might have transitioned to HIGHRES or NOHZ mode via 109 * update_process_times() -> run_local_timers() -> 110 * hrtimer_run_queues(). 111 */ 112 if (dev->event_handler != tick_handle_periodic) 113 return; 114 #endif 115 116 if (!clockevent_state_oneshot(dev)) 117 return; 118 for (;;) { 119 /* 120 * Setup the next period for devices, which do not have 121 * periodic mode: 122 */ 123 next = ktime_add(next, tick_period); 124 125 if (!clockevents_program_event(dev, next, false)) 126 return; 127 /* 128 * Have to be careful here. If we're in oneshot mode, 129 * before we call tick_periodic() in a loop, we need 130 * to be sure we're using a real hardware clocksource. 131 * Otherwise we could get trapped in an infinite 132 * loop, as the tick_periodic() increments jiffies, 133 * which then will increment time, possibly causing 134 * the loop to trigger again and again. 135 */ 136 if (timekeeping_valid_for_hres()) 137 tick_periodic(cpu); 138 } 139 } 140 141 /* 142 * Setup the device for a periodic tick 143 */ 144 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 145 { 146 tick_set_periodic_handler(dev, broadcast); 147 148 /* Broadcast setup ? */ 149 if (!tick_device_is_functional(dev)) 150 return; 151 152 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 153 !tick_broadcast_oneshot_active()) { 154 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 155 } else { 156 unsigned long seq; 157 ktime_t next; 158 159 do { 160 seq = read_seqbegin(&jiffies_lock); 161 next = tick_next_period; 162 } while (read_seqretry(&jiffies_lock, seq)); 163 164 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 165 166 for (;;) { 167 if (!clockevents_program_event(dev, next, false)) 168 return; 169 next = ktime_add(next, tick_period); 170 } 171 } 172 } 173 174 /* 175 * Setup the tick device 176 */ 177 static void tick_setup_device(struct tick_device *td, 178 struct clock_event_device *newdev, int cpu, 179 const struct cpumask *cpumask) 180 { 181 void (*handler)(struct clock_event_device *) = NULL; 182 ktime_t next_event = 0; 183 184 /* 185 * First device setup ? 186 */ 187 if (!td->evtdev) { 188 /* 189 * If no cpu took the do_timer update, assign it to 190 * this cpu: 191 */ 192 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 193 if (!tick_nohz_full_cpu(cpu)) 194 tick_do_timer_cpu = cpu; 195 else 196 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 197 tick_next_period = ktime_get(); 198 tick_period = NSEC_PER_SEC / HZ; 199 } 200 201 /* 202 * Startup in periodic mode first. 203 */ 204 td->mode = TICKDEV_MODE_PERIODIC; 205 } else { 206 handler = td->evtdev->event_handler; 207 next_event = td->evtdev->next_event; 208 td->evtdev->event_handler = clockevents_handle_noop; 209 } 210 211 td->evtdev = newdev; 212 213 /* 214 * When the device is not per cpu, pin the interrupt to the 215 * current cpu: 216 */ 217 if (!cpumask_equal(newdev->cpumask, cpumask)) 218 irq_set_affinity(newdev->irq, cpumask); 219 220 /* 221 * When global broadcasting is active, check if the current 222 * device is registered as a placeholder for broadcast mode. 223 * This allows us to handle this x86 misfeature in a generic 224 * way. This function also returns !=0 when we keep the 225 * current active broadcast state for this CPU. 226 */ 227 if (tick_device_uses_broadcast(newdev, cpu)) 228 return; 229 230 if (td->mode == TICKDEV_MODE_PERIODIC) 231 tick_setup_periodic(newdev, 0); 232 else 233 tick_setup_oneshot(newdev, handler, next_event); 234 } 235 236 void tick_install_replacement(struct clock_event_device *newdev) 237 { 238 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 239 int cpu = smp_processor_id(); 240 241 clockevents_exchange_device(td->evtdev, newdev); 242 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 243 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 244 tick_oneshot_notify(); 245 } 246 247 static bool tick_check_percpu(struct clock_event_device *curdev, 248 struct clock_event_device *newdev, int cpu) 249 { 250 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 251 return false; 252 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 253 return true; 254 /* Check if irq affinity can be set */ 255 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 256 return false; 257 /* Prefer an existing cpu local device */ 258 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 259 return false; 260 return true; 261 } 262 263 static bool tick_check_preferred(struct clock_event_device *curdev, 264 struct clock_event_device *newdev) 265 { 266 /* Prefer oneshot capable device */ 267 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 268 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 269 return false; 270 if (tick_oneshot_mode_active()) 271 return false; 272 } 273 274 /* 275 * Use the higher rated one, but prefer a CPU local device with a lower 276 * rating than a non-CPU local device 277 */ 278 return !curdev || 279 newdev->rating > curdev->rating || 280 !cpumask_equal(curdev->cpumask, newdev->cpumask); 281 } 282 283 /* 284 * Check whether the new device is a better fit than curdev. curdev 285 * can be NULL ! 286 */ 287 bool tick_check_replacement(struct clock_event_device *curdev, 288 struct clock_event_device *newdev) 289 { 290 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 291 return false; 292 293 return tick_check_preferred(curdev, newdev); 294 } 295 296 /* 297 * Check, if the new registered device should be used. Called with 298 * clockevents_lock held and interrupts disabled. 299 */ 300 void tick_check_new_device(struct clock_event_device *newdev) 301 { 302 struct clock_event_device *curdev; 303 struct tick_device *td; 304 int cpu; 305 306 cpu = smp_processor_id(); 307 td = &per_cpu(tick_cpu_device, cpu); 308 curdev = td->evtdev; 309 310 /* cpu local device ? */ 311 if (!tick_check_percpu(curdev, newdev, cpu)) 312 goto out_bc; 313 314 /* Preference decision */ 315 if (!tick_check_preferred(curdev, newdev)) 316 goto out_bc; 317 318 if (!try_module_get(newdev->owner)) 319 return; 320 321 /* 322 * Replace the eventually existing device by the new 323 * device. If the current device is the broadcast device, do 324 * not give it back to the clockevents layer ! 325 */ 326 if (tick_is_broadcast_device(curdev)) { 327 clockevents_shutdown(curdev); 328 curdev = NULL; 329 } 330 clockevents_exchange_device(curdev, newdev); 331 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 332 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 333 tick_oneshot_notify(); 334 return; 335 336 out_bc: 337 /* 338 * Can the new device be used as a broadcast device ? 339 */ 340 tick_install_broadcast_device(newdev); 341 } 342 343 /** 344 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 345 * @state: The target state (enter/exit) 346 * 347 * The system enters/leaves a state, where affected devices might stop 348 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 349 * 350 * Called with interrupts disabled, so clockevents_lock is not 351 * required here because the local clock event device cannot go away 352 * under us. 353 */ 354 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 355 { 356 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 357 358 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 359 return 0; 360 361 return __tick_broadcast_oneshot_control(state); 362 } 363 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 364 365 #ifdef CONFIG_HOTPLUG_CPU 366 /* 367 * Transfer the do_timer job away from a dying cpu. 368 * 369 * Called with interrupts disabled. Not locking required. If 370 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 371 */ 372 void tick_handover_do_timer(void) 373 { 374 if (tick_do_timer_cpu == smp_processor_id()) { 375 int cpu = cpumask_first(cpu_online_mask); 376 377 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 378 TICK_DO_TIMER_NONE; 379 } 380 } 381 382 /* 383 * Shutdown an event device on a given cpu: 384 * 385 * This is called on a life CPU, when a CPU is dead. So we cannot 386 * access the hardware device itself. 387 * We just set the mode and remove it from the lists. 388 */ 389 void tick_shutdown(unsigned int cpu) 390 { 391 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 392 struct clock_event_device *dev = td->evtdev; 393 394 td->mode = TICKDEV_MODE_PERIODIC; 395 if (dev) { 396 /* 397 * Prevent that the clock events layer tries to call 398 * the set mode function! 399 */ 400 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 401 clockevents_exchange_device(dev, NULL); 402 dev->event_handler = clockevents_handle_noop; 403 td->evtdev = NULL; 404 } 405 } 406 #endif 407 408 /** 409 * tick_suspend_local - Suspend the local tick device 410 * 411 * Called from the local cpu for freeze with interrupts disabled. 412 * 413 * No locks required. Nothing can change the per cpu device. 414 */ 415 void tick_suspend_local(void) 416 { 417 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 418 419 clockevents_shutdown(td->evtdev); 420 } 421 422 static void tick_forward_next_period(void) 423 { 424 ktime_t delta, now = ktime_get(); 425 u64 n; 426 427 delta = ktime_sub(now, tick_next_period); 428 n = ktime_divns(delta, tick_period); 429 tick_next_period += n * tick_period; 430 if (tick_next_period < now) 431 tick_next_period += tick_period; 432 tick_sched_forward_next_period(); 433 } 434 435 /** 436 * tick_resume_local - Resume the local tick device 437 * 438 * Called from the local CPU for unfreeze or XEN resume magic. 439 * 440 * No locks required. Nothing can change the per cpu device. 441 */ 442 void tick_resume_local(void) 443 { 444 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 445 bool broadcast = tick_resume_check_broadcast(); 446 447 tick_forward_next_period(); 448 449 clockevents_tick_resume(td->evtdev); 450 if (!broadcast) { 451 if (td->mode == TICKDEV_MODE_PERIODIC) 452 tick_setup_periodic(td->evtdev, 0); 453 else 454 tick_resume_oneshot(); 455 } 456 } 457 458 /** 459 * tick_suspend - Suspend the tick and the broadcast device 460 * 461 * Called from syscore_suspend() via timekeeping_suspend with only one 462 * CPU online and interrupts disabled or from tick_unfreeze() under 463 * tick_freeze_lock. 464 * 465 * No locks required. Nothing can change the per cpu device. 466 */ 467 void tick_suspend(void) 468 { 469 tick_suspend_local(); 470 tick_suspend_broadcast(); 471 } 472 473 /** 474 * tick_resume - Resume the tick and the broadcast device 475 * 476 * Called from syscore_resume() via timekeeping_resume with only one 477 * CPU online and interrupts disabled. 478 * 479 * No locks required. Nothing can change the per cpu device. 480 */ 481 void tick_resume(void) 482 { 483 tick_resume_broadcast(); 484 tick_resume_local(); 485 } 486 487 #ifdef CONFIG_SUSPEND 488 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 489 static unsigned int tick_freeze_depth; 490 491 /** 492 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 493 * 494 * Check if this is the last online CPU executing the function and if so, 495 * suspend timekeeping. Otherwise suspend the local tick. 496 * 497 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 498 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 499 */ 500 void tick_freeze(void) 501 { 502 raw_spin_lock(&tick_freeze_lock); 503 504 tick_freeze_depth++; 505 if (tick_freeze_depth == num_online_cpus()) { 506 trace_suspend_resume(TPS("timekeeping_freeze"), 507 smp_processor_id(), true); 508 timekeeping_suspend(); 509 } else { 510 tick_suspend_local(); 511 } 512 513 raw_spin_unlock(&tick_freeze_lock); 514 } 515 516 /** 517 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 518 * 519 * Check if this is the first CPU executing the function and if so, resume 520 * timekeeping. Otherwise resume the local tick. 521 * 522 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 523 * Interrupts must not be enabled after the preceding %tick_freeze(). 524 */ 525 void tick_unfreeze(void) 526 { 527 raw_spin_lock(&tick_freeze_lock); 528 529 if (tick_freeze_depth == num_online_cpus()) { 530 timekeeping_resume(); 531 trace_suspend_resume(TPS("timekeeping_freeze"), 532 smp_processor_id(), false); 533 } else { 534 tick_resume_local(); 535 } 536 537 tick_freeze_depth--; 538 539 raw_spin_unlock(&tick_freeze_lock); 540 } 541 #endif /* CONFIG_SUSPEND */ 542 543 /** 544 * tick_init - initialize the tick control 545 */ 546 void __init tick_init(void) 547 { 548 tick_broadcast_init(); 549 tick_nohz_init(); 550 } 551