1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time. It's updated by the 31 * CPU which handles the tick and protected by jiffies_lock. There is 32 * no requirement to write hold the jiffies seqcount for it. 33 */ 34 ktime_t tick_next_period; 35 36 /* 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 39 * variable has two functions: 40 * 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 42 * timekeeping lock all at once. Only the CPU which is assigned to do the 43 * update is handling it. 44 * 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to 46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 47 * at it will take over and keep the time keeping alive. The handover 48 * procedure also covers cpu hotplug. 49 */ 50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 51 #ifdef CONFIG_NO_HZ_FULL 52 /* 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary 55 * when one comes online. 56 */ 57 static int tick_do_timer_boot_cpu __read_mostly = -1; 58 #endif 59 60 /* 61 * Debugging: see timer_list.c 62 */ 63 struct tick_device *tick_get_device(int cpu) 64 { 65 return &per_cpu(tick_cpu_device, cpu); 66 } 67 68 /** 69 * tick_is_oneshot_available - check for a oneshot capable event device 70 */ 71 int tick_is_oneshot_available(void) 72 { 73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 74 75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 76 return 0; 77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return 1; 79 return tick_broadcast_oneshot_available(); 80 } 81 82 /* 83 * Periodic tick 84 */ 85 static void tick_periodic(int cpu) 86 { 87 if (tick_do_timer_cpu == cpu) { 88 raw_spin_lock(&jiffies_lock); 89 write_seqcount_begin(&jiffies_seq); 90 91 /* Keep track of the next tick event */ 92 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 93 94 do_timer(1); 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 update_process_times(user_mode(get_irq_regs())); 101 profile_tick(CPU_PROFILING); 102 } 103 104 /* 105 * Event handler for periodic ticks 106 */ 107 void tick_handle_periodic(struct clock_event_device *dev) 108 { 109 int cpu = smp_processor_id(); 110 ktime_t next = dev->next_event; 111 112 tick_periodic(cpu); 113 114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 115 /* 116 * The cpu might have transitioned to HIGHRES or NOHZ mode via 117 * update_process_times() -> run_local_timers() -> 118 * hrtimer_run_queues(). 119 */ 120 if (dev->event_handler != tick_handle_periodic) 121 return; 122 #endif 123 124 if (!clockevent_state_oneshot(dev)) 125 return; 126 for (;;) { 127 /* 128 * Setup the next period for devices, which do not have 129 * periodic mode: 130 */ 131 next = ktime_add_ns(next, TICK_NSEC); 132 133 if (!clockevents_program_event(dev, next, false)) 134 return; 135 /* 136 * Have to be careful here. If we're in oneshot mode, 137 * before we call tick_periodic() in a loop, we need 138 * to be sure we're using a real hardware clocksource. 139 * Otherwise we could get trapped in an infinite 140 * loop, as the tick_periodic() increments jiffies, 141 * which then will increment time, possibly causing 142 * the loop to trigger again and again. 143 */ 144 if (timekeeping_valid_for_hres()) 145 tick_periodic(cpu); 146 } 147 } 148 149 /* 150 * Setup the device for a periodic tick 151 */ 152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 153 { 154 tick_set_periodic_handler(dev, broadcast); 155 156 /* Broadcast setup ? */ 157 if (!tick_device_is_functional(dev)) 158 return; 159 160 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 161 !tick_broadcast_oneshot_active()) { 162 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 163 } else { 164 unsigned int seq; 165 ktime_t next; 166 167 do { 168 seq = read_seqcount_begin(&jiffies_seq); 169 next = tick_next_period; 170 } while (read_seqcount_retry(&jiffies_seq, seq)); 171 172 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 173 174 for (;;) { 175 if (!clockevents_program_event(dev, next, false)) 176 return; 177 next = ktime_add_ns(next, TICK_NSEC); 178 } 179 } 180 } 181 182 /* 183 * Setup the tick device 184 */ 185 static void tick_setup_device(struct tick_device *td, 186 struct clock_event_device *newdev, int cpu, 187 const struct cpumask *cpumask) 188 { 189 void (*handler)(struct clock_event_device *) = NULL; 190 ktime_t next_event = 0; 191 192 /* 193 * First device setup ? 194 */ 195 if (!td->evtdev) { 196 /* 197 * If no cpu took the do_timer update, assign it to 198 * this cpu: 199 */ 200 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 201 tick_do_timer_cpu = cpu; 202 tick_next_period = ktime_get(); 203 #ifdef CONFIG_NO_HZ_FULL 204 /* 205 * The boot CPU may be nohz_full, in which case the 206 * first housekeeping secondary will take do_timer() 207 * from it. 208 */ 209 if (tick_nohz_full_cpu(cpu)) 210 tick_do_timer_boot_cpu = cpu; 211 212 } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) { 213 tick_do_timer_boot_cpu = -1; 214 /* 215 * The boot CPU will stay in periodic (NOHZ disabled) 216 * mode until clocksource_done_booting() called after 217 * smp_init() selects a high resolution clocksource and 218 * timekeeping_notify() kicks the NOHZ stuff alive. 219 * 220 * So this WRITE_ONCE can only race with the READ_ONCE 221 * check in tick_periodic() but this race is harmless. 222 */ 223 WRITE_ONCE(tick_do_timer_cpu, cpu); 224 #endif 225 } 226 227 /* 228 * Startup in periodic mode first. 229 */ 230 td->mode = TICKDEV_MODE_PERIODIC; 231 } else { 232 handler = td->evtdev->event_handler; 233 next_event = td->evtdev->next_event; 234 td->evtdev->event_handler = clockevents_handle_noop; 235 } 236 237 td->evtdev = newdev; 238 239 /* 240 * When the device is not per cpu, pin the interrupt to the 241 * current cpu: 242 */ 243 if (!cpumask_equal(newdev->cpumask, cpumask)) 244 irq_set_affinity(newdev->irq, cpumask); 245 246 /* 247 * When global broadcasting is active, check if the current 248 * device is registered as a placeholder for broadcast mode. 249 * This allows us to handle this x86 misfeature in a generic 250 * way. This function also returns !=0 when we keep the 251 * current active broadcast state for this CPU. 252 */ 253 if (tick_device_uses_broadcast(newdev, cpu)) 254 return; 255 256 if (td->mode == TICKDEV_MODE_PERIODIC) 257 tick_setup_periodic(newdev, 0); 258 else 259 tick_setup_oneshot(newdev, handler, next_event); 260 } 261 262 void tick_install_replacement(struct clock_event_device *newdev) 263 { 264 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 265 int cpu = smp_processor_id(); 266 267 clockevents_exchange_device(td->evtdev, newdev); 268 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 269 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 270 tick_oneshot_notify(); 271 } 272 273 static bool tick_check_percpu(struct clock_event_device *curdev, 274 struct clock_event_device *newdev, int cpu) 275 { 276 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 277 return false; 278 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 279 return true; 280 /* Check if irq affinity can be set */ 281 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 282 return false; 283 /* Prefer an existing cpu local device */ 284 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 285 return false; 286 return true; 287 } 288 289 static bool tick_check_preferred(struct clock_event_device *curdev, 290 struct clock_event_device *newdev) 291 { 292 /* Prefer oneshot capable device */ 293 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 294 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 295 return false; 296 if (tick_oneshot_mode_active()) 297 return false; 298 } 299 300 /* 301 * Use the higher rated one, but prefer a CPU local device with a lower 302 * rating than a non-CPU local device 303 */ 304 return !curdev || 305 newdev->rating > curdev->rating || 306 !cpumask_equal(curdev->cpumask, newdev->cpumask); 307 } 308 309 /* 310 * Check whether the new device is a better fit than curdev. curdev 311 * can be NULL ! 312 */ 313 bool tick_check_replacement(struct clock_event_device *curdev, 314 struct clock_event_device *newdev) 315 { 316 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 317 return false; 318 319 return tick_check_preferred(curdev, newdev); 320 } 321 322 /* 323 * Check, if the new registered device should be used. Called with 324 * clockevents_lock held and interrupts disabled. 325 */ 326 void tick_check_new_device(struct clock_event_device *newdev) 327 { 328 struct clock_event_device *curdev; 329 struct tick_device *td; 330 int cpu; 331 332 cpu = smp_processor_id(); 333 td = &per_cpu(tick_cpu_device, cpu); 334 curdev = td->evtdev; 335 336 if (!tick_check_replacement(curdev, newdev)) 337 goto out_bc; 338 339 if (!try_module_get(newdev->owner)) 340 return; 341 342 /* 343 * Replace the eventually existing device by the new 344 * device. If the current device is the broadcast device, do 345 * not give it back to the clockevents layer ! 346 */ 347 if (tick_is_broadcast_device(curdev)) { 348 clockevents_shutdown(curdev); 349 curdev = NULL; 350 } 351 clockevents_exchange_device(curdev, newdev); 352 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 353 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 354 tick_oneshot_notify(); 355 return; 356 357 out_bc: 358 /* 359 * Can the new device be used as a broadcast device ? 360 */ 361 tick_install_broadcast_device(newdev, cpu); 362 } 363 364 /** 365 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 366 * @state: The target state (enter/exit) 367 * 368 * The system enters/leaves a state, where affected devices might stop 369 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 370 * 371 * Called with interrupts disabled, so clockevents_lock is not 372 * required here because the local clock event device cannot go away 373 * under us. 374 */ 375 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 376 { 377 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 378 379 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 380 return 0; 381 382 return __tick_broadcast_oneshot_control(state); 383 } 384 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 385 386 #ifdef CONFIG_HOTPLUG_CPU 387 /* 388 * Transfer the do_timer job away from a dying cpu. 389 * 390 * Called with interrupts disabled. No locking required. If 391 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 392 */ 393 void tick_handover_do_timer(void) 394 { 395 if (tick_do_timer_cpu == smp_processor_id()) 396 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 397 } 398 399 /* 400 * Shutdown an event device on a given cpu: 401 * 402 * This is called on a life CPU, when a CPU is dead. So we cannot 403 * access the hardware device itself. 404 * We just set the mode and remove it from the lists. 405 */ 406 void tick_shutdown(unsigned int cpu) 407 { 408 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 409 struct clock_event_device *dev = td->evtdev; 410 411 td->mode = TICKDEV_MODE_PERIODIC; 412 if (dev) { 413 /* 414 * Prevent that the clock events layer tries to call 415 * the set mode function! 416 */ 417 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 418 clockevents_exchange_device(dev, NULL); 419 dev->event_handler = clockevents_handle_noop; 420 td->evtdev = NULL; 421 } 422 } 423 #endif 424 425 /** 426 * tick_suspend_local - Suspend the local tick device 427 * 428 * Called from the local cpu for freeze with interrupts disabled. 429 * 430 * No locks required. Nothing can change the per cpu device. 431 */ 432 void tick_suspend_local(void) 433 { 434 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 435 436 clockevents_shutdown(td->evtdev); 437 } 438 439 /** 440 * tick_resume_local - Resume the local tick device 441 * 442 * Called from the local CPU for unfreeze or XEN resume magic. 443 * 444 * No locks required. Nothing can change the per cpu device. 445 */ 446 void tick_resume_local(void) 447 { 448 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 449 bool broadcast = tick_resume_check_broadcast(); 450 451 clockevents_tick_resume(td->evtdev); 452 if (!broadcast) { 453 if (td->mode == TICKDEV_MODE_PERIODIC) 454 tick_setup_periodic(td->evtdev, 0); 455 else 456 tick_resume_oneshot(); 457 } 458 459 /* 460 * Ensure that hrtimers are up to date and the clockevents device 461 * is reprogrammed correctly when high resolution timers are 462 * enabled. 463 */ 464 hrtimers_resume_local(); 465 } 466 467 /** 468 * tick_suspend - Suspend the tick and the broadcast device 469 * 470 * Called from syscore_suspend() via timekeeping_suspend with only one 471 * CPU online and interrupts disabled or from tick_unfreeze() under 472 * tick_freeze_lock. 473 * 474 * No locks required. Nothing can change the per cpu device. 475 */ 476 void tick_suspend(void) 477 { 478 tick_suspend_local(); 479 tick_suspend_broadcast(); 480 } 481 482 /** 483 * tick_resume - Resume the tick and the broadcast device 484 * 485 * Called from syscore_resume() via timekeeping_resume with only one 486 * CPU online and interrupts disabled. 487 * 488 * No locks required. Nothing can change the per cpu device. 489 */ 490 void tick_resume(void) 491 { 492 tick_resume_broadcast(); 493 tick_resume_local(); 494 } 495 496 #ifdef CONFIG_SUSPEND 497 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 498 static unsigned int tick_freeze_depth; 499 500 /** 501 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 502 * 503 * Check if this is the last online CPU executing the function and if so, 504 * suspend timekeeping. Otherwise suspend the local tick. 505 * 506 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 507 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 508 */ 509 void tick_freeze(void) 510 { 511 raw_spin_lock(&tick_freeze_lock); 512 513 tick_freeze_depth++; 514 if (tick_freeze_depth == num_online_cpus()) { 515 trace_suspend_resume(TPS("timekeeping_freeze"), 516 smp_processor_id(), true); 517 system_state = SYSTEM_SUSPEND; 518 sched_clock_suspend(); 519 timekeeping_suspend(); 520 } else { 521 tick_suspend_local(); 522 } 523 524 raw_spin_unlock(&tick_freeze_lock); 525 } 526 527 /** 528 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 529 * 530 * Check if this is the first CPU executing the function and if so, resume 531 * timekeeping. Otherwise resume the local tick. 532 * 533 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 534 * Interrupts must not be enabled after the preceding %tick_freeze(). 535 */ 536 void tick_unfreeze(void) 537 { 538 raw_spin_lock(&tick_freeze_lock); 539 540 if (tick_freeze_depth == num_online_cpus()) { 541 timekeeping_resume(); 542 sched_clock_resume(); 543 system_state = SYSTEM_RUNNING; 544 trace_suspend_resume(TPS("timekeeping_freeze"), 545 smp_processor_id(), false); 546 } else { 547 touch_softlockup_watchdog(); 548 tick_resume_local(); 549 } 550 551 tick_freeze_depth--; 552 553 raw_spin_unlock(&tick_freeze_lock); 554 } 555 #endif /* CONFIG_SUSPEND */ 556 557 /** 558 * tick_init - initialize the tick control 559 */ 560 void __init tick_init(void) 561 { 562 tick_broadcast_init(); 563 tick_nohz_init(); 564 } 565