xref: /openbmc/linux/kernel/time/tick-common.c (revision 82ced6fd)
1 /*
2  * linux/kernel/time/tick-common.c
3  *
4  * This file contains the base functions to manage periodic tick
5  * related events.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include <asm/irq_regs.h>
24 
25 #include "tick-internal.h"
26 
27 /*
28  * Tick devices
29  */
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 /*
32  * Tick next event: keeps track of the tick time
33  */
34 ktime_t tick_next_period;
35 ktime_t tick_period;
36 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
37 DEFINE_SPINLOCK(tick_device_lock);
38 
39 /*
40  * Debugging: see timer_list.c
41  */
42 struct tick_device *tick_get_device(int cpu)
43 {
44 	return &per_cpu(tick_cpu_device, cpu);
45 }
46 
47 /**
48  * tick_is_oneshot_available - check for a oneshot capable event device
49  */
50 int tick_is_oneshot_available(void)
51 {
52 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
53 
54 	return dev && (dev->features & CLOCK_EVT_FEAT_ONESHOT);
55 }
56 
57 /*
58  * Periodic tick
59  */
60 static void tick_periodic(int cpu)
61 {
62 	if (tick_do_timer_cpu == cpu) {
63 		write_seqlock(&xtime_lock);
64 
65 		/* Keep track of the next tick event */
66 		tick_next_period = ktime_add(tick_next_period, tick_period);
67 
68 		do_timer(1);
69 		write_sequnlock(&xtime_lock);
70 	}
71 
72 	update_process_times(user_mode(get_irq_regs()));
73 	profile_tick(CPU_PROFILING);
74 }
75 
76 /*
77  * Event handler for periodic ticks
78  */
79 void tick_handle_periodic(struct clock_event_device *dev)
80 {
81 	int cpu = smp_processor_id();
82 	ktime_t next;
83 
84 	tick_periodic(cpu);
85 
86 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
87 		return;
88 	/*
89 	 * Setup the next period for devices, which do not have
90 	 * periodic mode:
91 	 */
92 	next = ktime_add(dev->next_event, tick_period);
93 	for (;;) {
94 		if (!clockevents_program_event(dev, next, ktime_get()))
95 			return;
96 		/*
97 		 * Have to be careful here. If we're in oneshot mode,
98 		 * before we call tick_periodic() in a loop, we need
99 		 * to be sure we're using a real hardware clocksource.
100 		 * Otherwise we could get trapped in an infinite
101 		 * loop, as the tick_periodic() increments jiffies,
102 		 * when then will increment time, posibly causing
103 		 * the loop to trigger again and again.
104 		 */
105 		if (timekeeping_valid_for_hres())
106 			tick_periodic(cpu);
107 		next = ktime_add(next, tick_period);
108 	}
109 }
110 
111 /*
112  * Setup the device for a periodic tick
113  */
114 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
115 {
116 	tick_set_periodic_handler(dev, broadcast);
117 
118 	/* Broadcast setup ? */
119 	if (!tick_device_is_functional(dev))
120 		return;
121 
122 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
123 	    !tick_broadcast_oneshot_active()) {
124 		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
125 	} else {
126 		unsigned long seq;
127 		ktime_t next;
128 
129 		do {
130 			seq = read_seqbegin(&xtime_lock);
131 			next = tick_next_period;
132 		} while (read_seqretry(&xtime_lock, seq));
133 
134 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
135 
136 		for (;;) {
137 			if (!clockevents_program_event(dev, next, ktime_get()))
138 				return;
139 			next = ktime_add(next, tick_period);
140 		}
141 	}
142 }
143 
144 /*
145  * Setup the tick device
146  */
147 static void tick_setup_device(struct tick_device *td,
148 			      struct clock_event_device *newdev, int cpu,
149 			      const struct cpumask *cpumask)
150 {
151 	ktime_t next_event;
152 	void (*handler)(struct clock_event_device *) = NULL;
153 
154 	/*
155 	 * First device setup ?
156 	 */
157 	if (!td->evtdev) {
158 		/*
159 		 * If no cpu took the do_timer update, assign it to
160 		 * this cpu:
161 		 */
162 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
163 			tick_do_timer_cpu = cpu;
164 			tick_next_period = ktime_get();
165 			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
166 		}
167 
168 		/*
169 		 * Startup in periodic mode first.
170 		 */
171 		td->mode = TICKDEV_MODE_PERIODIC;
172 	} else {
173 		handler = td->evtdev->event_handler;
174 		next_event = td->evtdev->next_event;
175 		td->evtdev->event_handler = clockevents_handle_noop;
176 	}
177 
178 	td->evtdev = newdev;
179 
180 	/*
181 	 * When the device is not per cpu, pin the interrupt to the
182 	 * current cpu:
183 	 */
184 	if (!cpumask_equal(newdev->cpumask, cpumask))
185 		irq_set_affinity(newdev->irq, cpumask);
186 
187 	/*
188 	 * When global broadcasting is active, check if the current
189 	 * device is registered as a placeholder for broadcast mode.
190 	 * This allows us to handle this x86 misfeature in a generic
191 	 * way.
192 	 */
193 	if (tick_device_uses_broadcast(newdev, cpu))
194 		return;
195 
196 	if (td->mode == TICKDEV_MODE_PERIODIC)
197 		tick_setup_periodic(newdev, 0);
198 	else
199 		tick_setup_oneshot(newdev, handler, next_event);
200 }
201 
202 /*
203  * Check, if the new registered device should be used.
204  */
205 static int tick_check_new_device(struct clock_event_device *newdev)
206 {
207 	struct clock_event_device *curdev;
208 	struct tick_device *td;
209 	int cpu, ret = NOTIFY_OK;
210 	unsigned long flags;
211 
212 	spin_lock_irqsave(&tick_device_lock, flags);
213 
214 	cpu = smp_processor_id();
215 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
216 		goto out_bc;
217 
218 	td = &per_cpu(tick_cpu_device, cpu);
219 	curdev = td->evtdev;
220 
221 	/* cpu local device ? */
222 	if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
223 
224 		/*
225 		 * If the cpu affinity of the device interrupt can not
226 		 * be set, ignore it.
227 		 */
228 		if (!irq_can_set_affinity(newdev->irq))
229 			goto out_bc;
230 
231 		/*
232 		 * If we have a cpu local device already, do not replace it
233 		 * by a non cpu local device
234 		 */
235 		if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
236 			goto out_bc;
237 	}
238 
239 	/*
240 	 * If we have an active device, then check the rating and the oneshot
241 	 * feature.
242 	 */
243 	if (curdev) {
244 		/*
245 		 * Prefer one shot capable devices !
246 		 */
247 		if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
248 		    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
249 			goto out_bc;
250 		/*
251 		 * Check the rating
252 		 */
253 		if (curdev->rating >= newdev->rating)
254 			goto out_bc;
255 	}
256 
257 	/*
258 	 * Replace the eventually existing device by the new
259 	 * device. If the current device is the broadcast device, do
260 	 * not give it back to the clockevents layer !
261 	 */
262 	if (tick_is_broadcast_device(curdev)) {
263 		clockevents_shutdown(curdev);
264 		curdev = NULL;
265 	}
266 	clockevents_exchange_device(curdev, newdev);
267 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
268 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
269 		tick_oneshot_notify();
270 
271 	spin_unlock_irqrestore(&tick_device_lock, flags);
272 	return NOTIFY_STOP;
273 
274 out_bc:
275 	/*
276 	 * Can the new device be used as a broadcast device ?
277 	 */
278 	if (tick_check_broadcast_device(newdev))
279 		ret = NOTIFY_STOP;
280 
281 	spin_unlock_irqrestore(&tick_device_lock, flags);
282 
283 	return ret;
284 }
285 
286 /*
287  * Transfer the do_timer job away from a dying cpu.
288  *
289  * Called with interrupts disabled.
290  */
291 static void tick_handover_do_timer(int *cpup)
292 {
293 	if (*cpup == tick_do_timer_cpu) {
294 		int cpu = cpumask_first(cpu_online_mask);
295 
296 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
297 			TICK_DO_TIMER_NONE;
298 	}
299 }
300 
301 /*
302  * Shutdown an event device on a given cpu:
303  *
304  * This is called on a life CPU, when a CPU is dead. So we cannot
305  * access the hardware device itself.
306  * We just set the mode and remove it from the lists.
307  */
308 static void tick_shutdown(unsigned int *cpup)
309 {
310 	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
311 	struct clock_event_device *dev = td->evtdev;
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&tick_device_lock, flags);
315 	td->mode = TICKDEV_MODE_PERIODIC;
316 	if (dev) {
317 		/*
318 		 * Prevent that the clock events layer tries to call
319 		 * the set mode function!
320 		 */
321 		dev->mode = CLOCK_EVT_MODE_UNUSED;
322 		clockevents_exchange_device(dev, NULL);
323 		td->evtdev = NULL;
324 	}
325 	spin_unlock_irqrestore(&tick_device_lock, flags);
326 }
327 
328 static void tick_suspend(void)
329 {
330 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&tick_device_lock, flags);
334 	clockevents_shutdown(td->evtdev);
335 	spin_unlock_irqrestore(&tick_device_lock, flags);
336 }
337 
338 static void tick_resume(void)
339 {
340 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
341 	unsigned long flags;
342 	int broadcast = tick_resume_broadcast();
343 
344 	spin_lock_irqsave(&tick_device_lock, flags);
345 	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
346 
347 	if (!broadcast) {
348 		if (td->mode == TICKDEV_MODE_PERIODIC)
349 			tick_setup_periodic(td->evtdev, 0);
350 		else
351 			tick_resume_oneshot();
352 	}
353 	spin_unlock_irqrestore(&tick_device_lock, flags);
354 }
355 
356 /*
357  * Notification about clock event devices
358  */
359 static int tick_notify(struct notifier_block *nb, unsigned long reason,
360 			       void *dev)
361 {
362 	switch (reason) {
363 
364 	case CLOCK_EVT_NOTIFY_ADD:
365 		return tick_check_new_device(dev);
366 
367 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
368 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
369 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
370 		tick_broadcast_on_off(reason, dev);
371 		break;
372 
373 	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
374 	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
375 		tick_broadcast_oneshot_control(reason);
376 		break;
377 
378 	case CLOCK_EVT_NOTIFY_CPU_DYING:
379 		tick_handover_do_timer(dev);
380 		break;
381 
382 	case CLOCK_EVT_NOTIFY_CPU_DEAD:
383 		tick_shutdown_broadcast_oneshot(dev);
384 		tick_shutdown_broadcast(dev);
385 		tick_shutdown(dev);
386 		break;
387 
388 	case CLOCK_EVT_NOTIFY_SUSPEND:
389 		tick_suspend();
390 		tick_suspend_broadcast();
391 		break;
392 
393 	case CLOCK_EVT_NOTIFY_RESUME:
394 		tick_resume();
395 		break;
396 
397 	default:
398 		break;
399 	}
400 
401 	return NOTIFY_OK;
402 }
403 
404 static struct notifier_block tick_notifier = {
405 	.notifier_call = tick_notify,
406 };
407 
408 /**
409  * tick_init - initialize the tick control
410  *
411  * Register the notifier with the clockevents framework
412  */
413 void __init tick_init(void)
414 {
415 	clockevents_register_notifier(&tick_notifier);
416 }
417