xref: /openbmc/linux/kernel/time/tick-common.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <trace/events/power.h>
19 
20 #include <asm/irq_regs.h>
21 
22 #include "tick-internal.h"
23 
24 /*
25  * Tick devices
26  */
27 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
28 /*
29  * Tick next event: keeps track of the tick time
30  */
31 ktime_t tick_next_period;
32 ktime_t tick_period;
33 
34 /*
35  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
36  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
37  * variable has two functions:
38  *
39  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
40  *    timekeeping lock all at once. Only the CPU which is assigned to do the
41  *    update is handling it.
42  *
43  * 2) Hand off the duty in the NOHZ idle case by setting the value to
44  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
45  *    at it will take over and keep the time keeping alive.  The handover
46  *    procedure also covers cpu hotplug.
47  */
48 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
49 
50 /*
51  * Debugging: see timer_list.c
52  */
53 struct tick_device *tick_get_device(int cpu)
54 {
55 	return &per_cpu(tick_cpu_device, cpu);
56 }
57 
58 /**
59  * tick_is_oneshot_available - check for a oneshot capable event device
60  */
61 int tick_is_oneshot_available(void)
62 {
63 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
64 
65 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
66 		return 0;
67 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
68 		return 1;
69 	return tick_broadcast_oneshot_available();
70 }
71 
72 /*
73  * Periodic tick
74  */
75 static void tick_periodic(int cpu)
76 {
77 	if (tick_do_timer_cpu == cpu) {
78 		write_seqlock(&jiffies_lock);
79 
80 		/* Keep track of the next tick event */
81 		tick_next_period = ktime_add(tick_next_period, tick_period);
82 
83 		do_timer(1);
84 		write_sequnlock(&jiffies_lock);
85 		update_wall_time();
86 	}
87 
88 	update_process_times(user_mode(get_irq_regs()));
89 	profile_tick(CPU_PROFILING);
90 }
91 
92 /*
93  * Event handler for periodic ticks
94  */
95 void tick_handle_periodic(struct clock_event_device *dev)
96 {
97 	int cpu = smp_processor_id();
98 	ktime_t next = dev->next_event;
99 
100 	tick_periodic(cpu);
101 
102 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
103 	/*
104 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
105 	 * update_process_times() -> run_local_timers() ->
106 	 * hrtimer_run_queues().
107 	 */
108 	if (dev->event_handler != tick_handle_periodic)
109 		return;
110 #endif
111 
112 	if (!clockevent_state_oneshot(dev))
113 		return;
114 	for (;;) {
115 		/*
116 		 * Setup the next period for devices, which do not have
117 		 * periodic mode:
118 		 */
119 		next = ktime_add(next, tick_period);
120 
121 		if (!clockevents_program_event(dev, next, false))
122 			return;
123 		/*
124 		 * Have to be careful here. If we're in oneshot mode,
125 		 * before we call tick_periodic() in a loop, we need
126 		 * to be sure we're using a real hardware clocksource.
127 		 * Otherwise we could get trapped in an infinite
128 		 * loop, as the tick_periodic() increments jiffies,
129 		 * which then will increment time, possibly causing
130 		 * the loop to trigger again and again.
131 		 */
132 		if (timekeeping_valid_for_hres())
133 			tick_periodic(cpu);
134 	}
135 }
136 
137 /*
138  * Setup the device for a periodic tick
139  */
140 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
141 {
142 	tick_set_periodic_handler(dev, broadcast);
143 
144 	/* Broadcast setup ? */
145 	if (!tick_device_is_functional(dev))
146 		return;
147 
148 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
149 	    !tick_broadcast_oneshot_active()) {
150 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
151 	} else {
152 		unsigned long seq;
153 		ktime_t next;
154 
155 		do {
156 			seq = read_seqbegin(&jiffies_lock);
157 			next = tick_next_period;
158 		} while (read_seqretry(&jiffies_lock, seq));
159 
160 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
161 
162 		for (;;) {
163 			if (!clockevents_program_event(dev, next, false))
164 				return;
165 			next = ktime_add(next, tick_period);
166 		}
167 	}
168 }
169 
170 /*
171  * Setup the tick device
172  */
173 static void tick_setup_device(struct tick_device *td,
174 			      struct clock_event_device *newdev, int cpu,
175 			      const struct cpumask *cpumask)
176 {
177 	void (*handler)(struct clock_event_device *) = NULL;
178 	ktime_t next_event = 0;
179 
180 	/*
181 	 * First device setup ?
182 	 */
183 	if (!td->evtdev) {
184 		/*
185 		 * If no cpu took the do_timer update, assign it to
186 		 * this cpu:
187 		 */
188 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
189 			if (!tick_nohz_full_cpu(cpu))
190 				tick_do_timer_cpu = cpu;
191 			else
192 				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
193 			tick_next_period = ktime_get();
194 			tick_period = NSEC_PER_SEC / HZ;
195 		}
196 
197 		/*
198 		 * Startup in periodic mode first.
199 		 */
200 		td->mode = TICKDEV_MODE_PERIODIC;
201 	} else {
202 		handler = td->evtdev->event_handler;
203 		next_event = td->evtdev->next_event;
204 		td->evtdev->event_handler = clockevents_handle_noop;
205 	}
206 
207 	td->evtdev = newdev;
208 
209 	/*
210 	 * When the device is not per cpu, pin the interrupt to the
211 	 * current cpu:
212 	 */
213 	if (!cpumask_equal(newdev->cpumask, cpumask))
214 		irq_set_affinity(newdev->irq, cpumask);
215 
216 	/*
217 	 * When global broadcasting is active, check if the current
218 	 * device is registered as a placeholder for broadcast mode.
219 	 * This allows us to handle this x86 misfeature in a generic
220 	 * way. This function also returns !=0 when we keep the
221 	 * current active broadcast state for this CPU.
222 	 */
223 	if (tick_device_uses_broadcast(newdev, cpu))
224 		return;
225 
226 	if (td->mode == TICKDEV_MODE_PERIODIC)
227 		tick_setup_periodic(newdev, 0);
228 	else
229 		tick_setup_oneshot(newdev, handler, next_event);
230 }
231 
232 void tick_install_replacement(struct clock_event_device *newdev)
233 {
234 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
235 	int cpu = smp_processor_id();
236 
237 	clockevents_exchange_device(td->evtdev, newdev);
238 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
239 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
240 		tick_oneshot_notify();
241 }
242 
243 static bool tick_check_percpu(struct clock_event_device *curdev,
244 			      struct clock_event_device *newdev, int cpu)
245 {
246 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
247 		return false;
248 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
249 		return true;
250 	/* Check if irq affinity can be set */
251 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
252 		return false;
253 	/* Prefer an existing cpu local device */
254 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
255 		return false;
256 	return true;
257 }
258 
259 static bool tick_check_preferred(struct clock_event_device *curdev,
260 				 struct clock_event_device *newdev)
261 {
262 	/* Prefer oneshot capable device */
263 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
264 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
265 			return false;
266 		if (tick_oneshot_mode_active())
267 			return false;
268 	}
269 
270 	/*
271 	 * Use the higher rated one, but prefer a CPU local device with a lower
272 	 * rating than a non-CPU local device
273 	 */
274 	return !curdev ||
275 		newdev->rating > curdev->rating ||
276 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
277 }
278 
279 /*
280  * Check whether the new device is a better fit than curdev. curdev
281  * can be NULL !
282  */
283 bool tick_check_replacement(struct clock_event_device *curdev,
284 			    struct clock_event_device *newdev)
285 {
286 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
287 		return false;
288 
289 	return tick_check_preferred(curdev, newdev);
290 }
291 
292 /*
293  * Check, if the new registered device should be used. Called with
294  * clockevents_lock held and interrupts disabled.
295  */
296 void tick_check_new_device(struct clock_event_device *newdev)
297 {
298 	struct clock_event_device *curdev;
299 	struct tick_device *td;
300 	int cpu;
301 
302 	cpu = smp_processor_id();
303 	td = &per_cpu(tick_cpu_device, cpu);
304 	curdev = td->evtdev;
305 
306 	/* cpu local device ? */
307 	if (!tick_check_percpu(curdev, newdev, cpu))
308 		goto out_bc;
309 
310 	/* Preference decision */
311 	if (!tick_check_preferred(curdev, newdev))
312 		goto out_bc;
313 
314 	if (!try_module_get(newdev->owner))
315 		return;
316 
317 	/*
318 	 * Replace the eventually existing device by the new
319 	 * device. If the current device is the broadcast device, do
320 	 * not give it back to the clockevents layer !
321 	 */
322 	if (tick_is_broadcast_device(curdev)) {
323 		clockevents_shutdown(curdev);
324 		curdev = NULL;
325 	}
326 	clockevents_exchange_device(curdev, newdev);
327 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
328 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
329 		tick_oneshot_notify();
330 	return;
331 
332 out_bc:
333 	/*
334 	 * Can the new device be used as a broadcast device ?
335 	 */
336 	tick_install_broadcast_device(newdev);
337 }
338 
339 /**
340  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
341  * @state:	The target state (enter/exit)
342  *
343  * The system enters/leaves a state, where affected devices might stop
344  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
345  *
346  * Called with interrupts disabled, so clockevents_lock is not
347  * required here because the local clock event device cannot go away
348  * under us.
349  */
350 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
351 {
352 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
353 
354 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
355 		return 0;
356 
357 	return __tick_broadcast_oneshot_control(state);
358 }
359 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
360 
361 #ifdef CONFIG_HOTPLUG_CPU
362 /*
363  * Transfer the do_timer job away from a dying cpu.
364  *
365  * Called with interrupts disabled. Not locking required. If
366  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
367  */
368 void tick_handover_do_timer(void)
369 {
370 	if (tick_do_timer_cpu == smp_processor_id()) {
371 		int cpu = cpumask_first(cpu_online_mask);
372 
373 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
374 			TICK_DO_TIMER_NONE;
375 	}
376 }
377 
378 /*
379  * Shutdown an event device on a given cpu:
380  *
381  * This is called on a life CPU, when a CPU is dead. So we cannot
382  * access the hardware device itself.
383  * We just set the mode and remove it from the lists.
384  */
385 void tick_shutdown(unsigned int cpu)
386 {
387 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
388 	struct clock_event_device *dev = td->evtdev;
389 
390 	td->mode = TICKDEV_MODE_PERIODIC;
391 	if (dev) {
392 		/*
393 		 * Prevent that the clock events layer tries to call
394 		 * the set mode function!
395 		 */
396 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
397 		clockevents_exchange_device(dev, NULL);
398 		dev->event_handler = clockevents_handle_noop;
399 		td->evtdev = NULL;
400 	}
401 }
402 #endif
403 
404 /**
405  * tick_suspend_local - Suspend the local tick device
406  *
407  * Called from the local cpu for freeze with interrupts disabled.
408  *
409  * No locks required. Nothing can change the per cpu device.
410  */
411 void tick_suspend_local(void)
412 {
413 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
414 
415 	clockevents_shutdown(td->evtdev);
416 }
417 
418 /**
419  * tick_resume_local - Resume the local tick device
420  *
421  * Called from the local CPU for unfreeze or XEN resume magic.
422  *
423  * No locks required. Nothing can change the per cpu device.
424  */
425 void tick_resume_local(void)
426 {
427 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
428 	bool broadcast = tick_resume_check_broadcast();
429 
430 	clockevents_tick_resume(td->evtdev);
431 	if (!broadcast) {
432 		if (td->mode == TICKDEV_MODE_PERIODIC)
433 			tick_setup_periodic(td->evtdev, 0);
434 		else
435 			tick_resume_oneshot();
436 	}
437 }
438 
439 /**
440  * tick_suspend - Suspend the tick and the broadcast device
441  *
442  * Called from syscore_suspend() via timekeeping_suspend with only one
443  * CPU online and interrupts disabled or from tick_unfreeze() under
444  * tick_freeze_lock.
445  *
446  * No locks required. Nothing can change the per cpu device.
447  */
448 void tick_suspend(void)
449 {
450 	tick_suspend_local();
451 	tick_suspend_broadcast();
452 }
453 
454 /**
455  * tick_resume - Resume the tick and the broadcast device
456  *
457  * Called from syscore_resume() via timekeeping_resume with only one
458  * CPU online and interrupts disabled.
459  *
460  * No locks required. Nothing can change the per cpu device.
461  */
462 void tick_resume(void)
463 {
464 	tick_resume_broadcast();
465 	tick_resume_local();
466 }
467 
468 #ifdef CONFIG_SUSPEND
469 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
470 static unsigned int tick_freeze_depth;
471 
472 /**
473  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
474  *
475  * Check if this is the last online CPU executing the function and if so,
476  * suspend timekeeping.  Otherwise suspend the local tick.
477  *
478  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
479  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
480  */
481 void tick_freeze(void)
482 {
483 	raw_spin_lock(&tick_freeze_lock);
484 
485 	tick_freeze_depth++;
486 	if (tick_freeze_depth == num_online_cpus()) {
487 		trace_suspend_resume(TPS("timekeeping_freeze"),
488 				     smp_processor_id(), true);
489 		system_state = SYSTEM_SUSPEND;
490 		timekeeping_suspend();
491 	} else {
492 		tick_suspend_local();
493 	}
494 
495 	raw_spin_unlock(&tick_freeze_lock);
496 }
497 
498 /**
499  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
500  *
501  * Check if this is the first CPU executing the function and if so, resume
502  * timekeeping.  Otherwise resume the local tick.
503  *
504  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
505  * Interrupts must not be enabled after the preceding %tick_freeze().
506  */
507 void tick_unfreeze(void)
508 {
509 	raw_spin_lock(&tick_freeze_lock);
510 
511 	if (tick_freeze_depth == num_online_cpus()) {
512 		timekeeping_resume();
513 		system_state = SYSTEM_RUNNING;
514 		trace_suspend_resume(TPS("timekeeping_freeze"),
515 				     smp_processor_id(), false);
516 	} else {
517 		tick_resume_local();
518 	}
519 
520 	tick_freeze_depth--;
521 
522 	raw_spin_unlock(&tick_freeze_lock);
523 }
524 #endif /* CONFIG_SUSPEND */
525 
526 /**
527  * tick_init - initialize the tick control
528  */
529 void __init tick_init(void)
530 {
531 	tick_broadcast_init();
532 	tick_nohz_init();
533 }
534