xref: /openbmc/linux/kernel/time/tick-common.c (revision 77d84ff8)
1 /*
2  * linux/kernel/time/tick-common.c
3  *
4  * This file contains the base functions to manage periodic tick
5  * related events.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/module.h>
22 
23 #include <asm/irq_regs.h>
24 
25 #include "tick-internal.h"
26 
27 /*
28  * Tick devices
29  */
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 /*
32  * Tick next event: keeps track of the tick time
33  */
34 ktime_t tick_next_period;
35 ktime_t tick_period;
36 
37 /*
38  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40  * variable has two functions:
41  *
42  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43  *    timekeeping lock all at once. Only the CPU which is assigned to do the
44  *    update is handling it.
45  *
46  * 2) Hand off the duty in the NOHZ idle case by setting the value to
47  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48  *    at it will take over and keep the time keeping alive.  The handover
49  *    procedure also covers cpu hotplug.
50  */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 
53 /*
54  * Debugging: see timer_list.c
55  */
56 struct tick_device *tick_get_device(int cpu)
57 {
58 	return &per_cpu(tick_cpu_device, cpu);
59 }
60 
61 /**
62  * tick_is_oneshot_available - check for a oneshot capable event device
63  */
64 int tick_is_oneshot_available(void)
65 {
66 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
67 
68 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
69 		return 0;
70 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
71 		return 1;
72 	return tick_broadcast_oneshot_available();
73 }
74 
75 /*
76  * Periodic tick
77  */
78 static void tick_periodic(int cpu)
79 {
80 	if (tick_do_timer_cpu == cpu) {
81 		write_seqlock(&jiffies_lock);
82 
83 		/* Keep track of the next tick event */
84 		tick_next_period = ktime_add(tick_next_period, tick_period);
85 
86 		do_timer(1);
87 		write_sequnlock(&jiffies_lock);
88 	}
89 
90 	update_process_times(user_mode(get_irq_regs()));
91 	profile_tick(CPU_PROFILING);
92 }
93 
94 /*
95  * Event handler for periodic ticks
96  */
97 void tick_handle_periodic(struct clock_event_device *dev)
98 {
99 	int cpu = smp_processor_id();
100 	ktime_t next;
101 
102 	tick_periodic(cpu);
103 
104 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
105 		return;
106 	/*
107 	 * Setup the next period for devices, which do not have
108 	 * periodic mode:
109 	 */
110 	next = ktime_add(dev->next_event, tick_period);
111 	for (;;) {
112 		if (!clockevents_program_event(dev, next, false))
113 			return;
114 		/*
115 		 * Have to be careful here. If we're in oneshot mode,
116 		 * before we call tick_periodic() in a loop, we need
117 		 * to be sure we're using a real hardware clocksource.
118 		 * Otherwise we could get trapped in an infinite
119 		 * loop, as the tick_periodic() increments jiffies,
120 		 * when then will increment time, posibly causing
121 		 * the loop to trigger again and again.
122 		 */
123 		if (timekeeping_valid_for_hres())
124 			tick_periodic(cpu);
125 		next = ktime_add(next, tick_period);
126 	}
127 }
128 
129 /*
130  * Setup the device for a periodic tick
131  */
132 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
133 {
134 	tick_set_periodic_handler(dev, broadcast);
135 
136 	/* Broadcast setup ? */
137 	if (!tick_device_is_functional(dev))
138 		return;
139 
140 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
141 	    !tick_broadcast_oneshot_active()) {
142 		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
143 	} else {
144 		unsigned long seq;
145 		ktime_t next;
146 
147 		do {
148 			seq = read_seqbegin(&jiffies_lock);
149 			next = tick_next_period;
150 		} while (read_seqretry(&jiffies_lock, seq));
151 
152 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
153 
154 		for (;;) {
155 			if (!clockevents_program_event(dev, next, false))
156 				return;
157 			next = ktime_add(next, tick_period);
158 		}
159 	}
160 }
161 
162 /*
163  * Setup the tick device
164  */
165 static void tick_setup_device(struct tick_device *td,
166 			      struct clock_event_device *newdev, int cpu,
167 			      const struct cpumask *cpumask)
168 {
169 	ktime_t next_event;
170 	void (*handler)(struct clock_event_device *) = NULL;
171 
172 	/*
173 	 * First device setup ?
174 	 */
175 	if (!td->evtdev) {
176 		/*
177 		 * If no cpu took the do_timer update, assign it to
178 		 * this cpu:
179 		 */
180 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
181 			if (!tick_nohz_full_cpu(cpu))
182 				tick_do_timer_cpu = cpu;
183 			else
184 				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
185 			tick_next_period = ktime_get();
186 			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
187 		}
188 
189 		/*
190 		 * Startup in periodic mode first.
191 		 */
192 		td->mode = TICKDEV_MODE_PERIODIC;
193 	} else {
194 		handler = td->evtdev->event_handler;
195 		next_event = td->evtdev->next_event;
196 		td->evtdev->event_handler = clockevents_handle_noop;
197 	}
198 
199 	td->evtdev = newdev;
200 
201 	/*
202 	 * When the device is not per cpu, pin the interrupt to the
203 	 * current cpu:
204 	 */
205 	if (!cpumask_equal(newdev->cpumask, cpumask))
206 		irq_set_affinity(newdev->irq, cpumask);
207 
208 	/*
209 	 * When global broadcasting is active, check if the current
210 	 * device is registered as a placeholder for broadcast mode.
211 	 * This allows us to handle this x86 misfeature in a generic
212 	 * way. This function also returns !=0 when we keep the
213 	 * current active broadcast state for this CPU.
214 	 */
215 	if (tick_device_uses_broadcast(newdev, cpu))
216 		return;
217 
218 	if (td->mode == TICKDEV_MODE_PERIODIC)
219 		tick_setup_periodic(newdev, 0);
220 	else
221 		tick_setup_oneshot(newdev, handler, next_event);
222 }
223 
224 void tick_install_replacement(struct clock_event_device *newdev)
225 {
226 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
227 	int cpu = smp_processor_id();
228 
229 	clockevents_exchange_device(td->evtdev, newdev);
230 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
231 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
232 		tick_oneshot_notify();
233 }
234 
235 static bool tick_check_percpu(struct clock_event_device *curdev,
236 			      struct clock_event_device *newdev, int cpu)
237 {
238 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
239 		return false;
240 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
241 		return true;
242 	/* Check if irq affinity can be set */
243 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
244 		return false;
245 	/* Prefer an existing cpu local device */
246 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
247 		return false;
248 	return true;
249 }
250 
251 static bool tick_check_preferred(struct clock_event_device *curdev,
252 				 struct clock_event_device *newdev)
253 {
254 	/* Prefer oneshot capable device */
255 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
256 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
257 			return false;
258 		if (tick_oneshot_mode_active())
259 			return false;
260 	}
261 
262 	/*
263 	 * Use the higher rated one, but prefer a CPU local device with a lower
264 	 * rating than a non-CPU local device
265 	 */
266 	return !curdev ||
267 		newdev->rating > curdev->rating ||
268 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
269 }
270 
271 /*
272  * Check whether the new device is a better fit than curdev. curdev
273  * can be NULL !
274  */
275 bool tick_check_replacement(struct clock_event_device *curdev,
276 			    struct clock_event_device *newdev)
277 {
278 	if (tick_check_percpu(curdev, newdev, smp_processor_id()))
279 		return false;
280 
281 	return tick_check_preferred(curdev, newdev);
282 }
283 
284 /*
285  * Check, if the new registered device should be used. Called with
286  * clockevents_lock held and interrupts disabled.
287  */
288 void tick_check_new_device(struct clock_event_device *newdev)
289 {
290 	struct clock_event_device *curdev;
291 	struct tick_device *td;
292 	int cpu;
293 
294 	cpu = smp_processor_id();
295 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
296 		goto out_bc;
297 
298 	td = &per_cpu(tick_cpu_device, cpu);
299 	curdev = td->evtdev;
300 
301 	/* cpu local device ? */
302 	if (!tick_check_percpu(curdev, newdev, cpu))
303 		goto out_bc;
304 
305 	/* Preference decision */
306 	if (!tick_check_preferred(curdev, newdev))
307 		goto out_bc;
308 
309 	if (!try_module_get(newdev->owner))
310 		return;
311 
312 	/*
313 	 * Replace the eventually existing device by the new
314 	 * device. If the current device is the broadcast device, do
315 	 * not give it back to the clockevents layer !
316 	 */
317 	if (tick_is_broadcast_device(curdev)) {
318 		clockevents_shutdown(curdev);
319 		curdev = NULL;
320 	}
321 	clockevents_exchange_device(curdev, newdev);
322 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
323 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
324 		tick_oneshot_notify();
325 	return;
326 
327 out_bc:
328 	/*
329 	 * Can the new device be used as a broadcast device ?
330 	 */
331 	tick_install_broadcast_device(newdev);
332 }
333 
334 /*
335  * Transfer the do_timer job away from a dying cpu.
336  *
337  * Called with interrupts disabled.
338  */
339 void tick_handover_do_timer(int *cpup)
340 {
341 	if (*cpup == tick_do_timer_cpu) {
342 		int cpu = cpumask_first(cpu_online_mask);
343 
344 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
345 			TICK_DO_TIMER_NONE;
346 	}
347 }
348 
349 /*
350  * Shutdown an event device on a given cpu:
351  *
352  * This is called on a life CPU, when a CPU is dead. So we cannot
353  * access the hardware device itself.
354  * We just set the mode and remove it from the lists.
355  */
356 void tick_shutdown(unsigned int *cpup)
357 {
358 	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
359 	struct clock_event_device *dev = td->evtdev;
360 
361 	td->mode = TICKDEV_MODE_PERIODIC;
362 	if (dev) {
363 		/*
364 		 * Prevent that the clock events layer tries to call
365 		 * the set mode function!
366 		 */
367 		dev->mode = CLOCK_EVT_MODE_UNUSED;
368 		clockevents_exchange_device(dev, NULL);
369 		dev->event_handler = clockevents_handle_noop;
370 		td->evtdev = NULL;
371 	}
372 }
373 
374 void tick_suspend(void)
375 {
376 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
377 
378 	clockevents_shutdown(td->evtdev);
379 }
380 
381 void tick_resume(void)
382 {
383 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
384 	int broadcast = tick_resume_broadcast();
385 
386 	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
387 
388 	if (!broadcast) {
389 		if (td->mode == TICKDEV_MODE_PERIODIC)
390 			tick_setup_periodic(td->evtdev, 0);
391 		else
392 			tick_resume_oneshot();
393 	}
394 }
395 
396 /**
397  * tick_init - initialize the tick control
398  */
399 void __init tick_init(void)
400 {
401 	tick_broadcast_init();
402 }
403