1 /* 2 * linux/kernel/time/tick-common.c 3 * 4 * This file contains the base functions to manage periodic tick 5 * related events. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/module.h> 22 23 #include <asm/irq_regs.h> 24 25 #include "tick-internal.h" 26 27 /* 28 * Tick devices 29 */ 30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 31 /* 32 * Tick next event: keeps track of the tick time 33 */ 34 ktime_t tick_next_period; 35 ktime_t tick_period; 36 37 /* 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 40 * variable has two functions: 41 * 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 43 * timekeeping lock all at once. Only the CPU which is assigned to do the 44 * update is handling it. 45 * 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to 47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 48 * at it will take over and keep the time keeping alive. The handover 49 * procedure also covers cpu hotplug. 50 */ 51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 52 53 /* 54 * Debugging: see timer_list.c 55 */ 56 struct tick_device *tick_get_device(int cpu) 57 { 58 return &per_cpu(tick_cpu_device, cpu); 59 } 60 61 /** 62 * tick_is_oneshot_available - check for a oneshot capable event device 63 */ 64 int tick_is_oneshot_available(void) 65 { 66 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 67 68 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 69 return 0; 70 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 71 return 1; 72 return tick_broadcast_oneshot_available(); 73 } 74 75 /* 76 * Periodic tick 77 */ 78 static void tick_periodic(int cpu) 79 { 80 if (tick_do_timer_cpu == cpu) { 81 write_seqlock(&jiffies_lock); 82 83 /* Keep track of the next tick event */ 84 tick_next_period = ktime_add(tick_next_period, tick_period); 85 86 do_timer(1); 87 write_sequnlock(&jiffies_lock); 88 } 89 90 update_process_times(user_mode(get_irq_regs())); 91 profile_tick(CPU_PROFILING); 92 } 93 94 /* 95 * Event handler for periodic ticks 96 */ 97 void tick_handle_periodic(struct clock_event_device *dev) 98 { 99 int cpu = smp_processor_id(); 100 ktime_t next; 101 102 tick_periodic(cpu); 103 104 if (dev->mode != CLOCK_EVT_MODE_ONESHOT) 105 return; 106 /* 107 * Setup the next period for devices, which do not have 108 * periodic mode: 109 */ 110 next = ktime_add(dev->next_event, tick_period); 111 for (;;) { 112 if (!clockevents_program_event(dev, next, false)) 113 return; 114 /* 115 * Have to be careful here. If we're in oneshot mode, 116 * before we call tick_periodic() in a loop, we need 117 * to be sure we're using a real hardware clocksource. 118 * Otherwise we could get trapped in an infinite 119 * loop, as the tick_periodic() increments jiffies, 120 * when then will increment time, posibly causing 121 * the loop to trigger again and again. 122 */ 123 if (timekeeping_valid_for_hres()) 124 tick_periodic(cpu); 125 next = ktime_add(next, tick_period); 126 } 127 } 128 129 /* 130 * Setup the device for a periodic tick 131 */ 132 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 133 { 134 tick_set_periodic_handler(dev, broadcast); 135 136 /* Broadcast setup ? */ 137 if (!tick_device_is_functional(dev)) 138 return; 139 140 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 141 !tick_broadcast_oneshot_active()) { 142 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); 143 } else { 144 unsigned long seq; 145 ktime_t next; 146 147 do { 148 seq = read_seqbegin(&jiffies_lock); 149 next = tick_next_period; 150 } while (read_seqretry(&jiffies_lock, seq)); 151 152 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 153 154 for (;;) { 155 if (!clockevents_program_event(dev, next, false)) 156 return; 157 next = ktime_add(next, tick_period); 158 } 159 } 160 } 161 162 /* 163 * Setup the tick device 164 */ 165 static void tick_setup_device(struct tick_device *td, 166 struct clock_event_device *newdev, int cpu, 167 const struct cpumask *cpumask) 168 { 169 ktime_t next_event; 170 void (*handler)(struct clock_event_device *) = NULL; 171 172 /* 173 * First device setup ? 174 */ 175 if (!td->evtdev) { 176 /* 177 * If no cpu took the do_timer update, assign it to 178 * this cpu: 179 */ 180 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 181 if (!tick_nohz_full_cpu(cpu)) 182 tick_do_timer_cpu = cpu; 183 else 184 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 185 tick_next_period = ktime_get(); 186 tick_period = ktime_set(0, NSEC_PER_SEC / HZ); 187 } 188 189 /* 190 * Startup in periodic mode first. 191 */ 192 td->mode = TICKDEV_MODE_PERIODIC; 193 } else { 194 handler = td->evtdev->event_handler; 195 next_event = td->evtdev->next_event; 196 td->evtdev->event_handler = clockevents_handle_noop; 197 } 198 199 td->evtdev = newdev; 200 201 /* 202 * When the device is not per cpu, pin the interrupt to the 203 * current cpu: 204 */ 205 if (!cpumask_equal(newdev->cpumask, cpumask)) 206 irq_set_affinity(newdev->irq, cpumask); 207 208 /* 209 * When global broadcasting is active, check if the current 210 * device is registered as a placeholder for broadcast mode. 211 * This allows us to handle this x86 misfeature in a generic 212 * way. This function also returns !=0 when we keep the 213 * current active broadcast state for this CPU. 214 */ 215 if (tick_device_uses_broadcast(newdev, cpu)) 216 return; 217 218 if (td->mode == TICKDEV_MODE_PERIODIC) 219 tick_setup_periodic(newdev, 0); 220 else 221 tick_setup_oneshot(newdev, handler, next_event); 222 } 223 224 void tick_install_replacement(struct clock_event_device *newdev) 225 { 226 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 227 int cpu = smp_processor_id(); 228 229 clockevents_exchange_device(td->evtdev, newdev); 230 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 231 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 232 tick_oneshot_notify(); 233 } 234 235 static bool tick_check_percpu(struct clock_event_device *curdev, 236 struct clock_event_device *newdev, int cpu) 237 { 238 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 239 return false; 240 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 241 return true; 242 /* Check if irq affinity can be set */ 243 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 244 return false; 245 /* Prefer an existing cpu local device */ 246 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 247 return false; 248 return true; 249 } 250 251 static bool tick_check_preferred(struct clock_event_device *curdev, 252 struct clock_event_device *newdev) 253 { 254 /* Prefer oneshot capable device */ 255 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 256 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 257 return false; 258 if (tick_oneshot_mode_active()) 259 return false; 260 } 261 262 /* 263 * Use the higher rated one, but prefer a CPU local device with a lower 264 * rating than a non-CPU local device 265 */ 266 return !curdev || 267 newdev->rating > curdev->rating || 268 !cpumask_equal(curdev->cpumask, newdev->cpumask); 269 } 270 271 /* 272 * Check whether the new device is a better fit than curdev. curdev 273 * can be NULL ! 274 */ 275 bool tick_check_replacement(struct clock_event_device *curdev, 276 struct clock_event_device *newdev) 277 { 278 if (tick_check_percpu(curdev, newdev, smp_processor_id())) 279 return false; 280 281 return tick_check_preferred(curdev, newdev); 282 } 283 284 /* 285 * Check, if the new registered device should be used. Called with 286 * clockevents_lock held and interrupts disabled. 287 */ 288 void tick_check_new_device(struct clock_event_device *newdev) 289 { 290 struct clock_event_device *curdev; 291 struct tick_device *td; 292 int cpu; 293 294 cpu = smp_processor_id(); 295 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 296 goto out_bc; 297 298 td = &per_cpu(tick_cpu_device, cpu); 299 curdev = td->evtdev; 300 301 /* cpu local device ? */ 302 if (!tick_check_percpu(curdev, newdev, cpu)) 303 goto out_bc; 304 305 /* Preference decision */ 306 if (!tick_check_preferred(curdev, newdev)) 307 goto out_bc; 308 309 if (!try_module_get(newdev->owner)) 310 return; 311 312 /* 313 * Replace the eventually existing device by the new 314 * device. If the current device is the broadcast device, do 315 * not give it back to the clockevents layer ! 316 */ 317 if (tick_is_broadcast_device(curdev)) { 318 clockevents_shutdown(curdev); 319 curdev = NULL; 320 } 321 clockevents_exchange_device(curdev, newdev); 322 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 323 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 324 tick_oneshot_notify(); 325 return; 326 327 out_bc: 328 /* 329 * Can the new device be used as a broadcast device ? 330 */ 331 tick_install_broadcast_device(newdev); 332 } 333 334 /* 335 * Transfer the do_timer job away from a dying cpu. 336 * 337 * Called with interrupts disabled. 338 */ 339 void tick_handover_do_timer(int *cpup) 340 { 341 if (*cpup == tick_do_timer_cpu) { 342 int cpu = cpumask_first(cpu_online_mask); 343 344 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 345 TICK_DO_TIMER_NONE; 346 } 347 } 348 349 /* 350 * Shutdown an event device on a given cpu: 351 * 352 * This is called on a life CPU, when a CPU is dead. So we cannot 353 * access the hardware device itself. 354 * We just set the mode and remove it from the lists. 355 */ 356 void tick_shutdown(unsigned int *cpup) 357 { 358 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); 359 struct clock_event_device *dev = td->evtdev; 360 361 td->mode = TICKDEV_MODE_PERIODIC; 362 if (dev) { 363 /* 364 * Prevent that the clock events layer tries to call 365 * the set mode function! 366 */ 367 dev->mode = CLOCK_EVT_MODE_UNUSED; 368 clockevents_exchange_device(dev, NULL); 369 dev->event_handler = clockevents_handle_noop; 370 td->evtdev = NULL; 371 } 372 } 373 374 void tick_suspend(void) 375 { 376 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 377 378 clockevents_shutdown(td->evtdev); 379 } 380 381 void tick_resume(void) 382 { 383 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 384 int broadcast = tick_resume_broadcast(); 385 386 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); 387 388 if (!broadcast) { 389 if (td->mode == TICKDEV_MODE_PERIODIC) 390 tick_setup_periodic(td->evtdev, 0); 391 else 392 tick_resume_oneshot(); 393 } 394 } 395 396 /** 397 * tick_init - initialize the tick control 398 */ 399 void __init tick_init(void) 400 { 401 tick_broadcast_init(); 402 } 403