1 /* 2 * linux/kernel/time/tick-common.c 3 * 4 * This file contains the base functions to manage periodic tick 5 * related events. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/tick.h> 22 23 #include <asm/irq_regs.h> 24 25 #include "tick-internal.h" 26 27 /* 28 * Tick devices 29 */ 30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 31 /* 32 * Tick next event: keeps track of the tick time 33 */ 34 ktime_t tick_next_period; 35 ktime_t tick_period; 36 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 37 static DEFINE_RAW_SPINLOCK(tick_device_lock); 38 39 /* 40 * Debugging: see timer_list.c 41 */ 42 struct tick_device *tick_get_device(int cpu) 43 { 44 return &per_cpu(tick_cpu_device, cpu); 45 } 46 47 /** 48 * tick_is_oneshot_available - check for a oneshot capable event device 49 */ 50 int tick_is_oneshot_available(void) 51 { 52 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 53 54 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 55 return 0; 56 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 57 return 1; 58 return tick_broadcast_oneshot_available(); 59 } 60 61 /* 62 * Periodic tick 63 */ 64 static void tick_periodic(int cpu) 65 { 66 if (tick_do_timer_cpu == cpu) { 67 write_seqlock(&xtime_lock); 68 69 /* Keep track of the next tick event */ 70 tick_next_period = ktime_add(tick_next_period, tick_period); 71 72 do_timer(1); 73 write_sequnlock(&xtime_lock); 74 } 75 76 update_process_times(user_mode(get_irq_regs())); 77 profile_tick(CPU_PROFILING); 78 } 79 80 /* 81 * Event handler for periodic ticks 82 */ 83 void tick_handle_periodic(struct clock_event_device *dev) 84 { 85 int cpu = smp_processor_id(); 86 ktime_t next; 87 88 tick_periodic(cpu); 89 90 if (dev->mode != CLOCK_EVT_MODE_ONESHOT) 91 return; 92 /* 93 * Setup the next period for devices, which do not have 94 * periodic mode: 95 */ 96 next = ktime_add(dev->next_event, tick_period); 97 for (;;) { 98 if (!clockevents_program_event(dev, next, ktime_get())) 99 return; 100 /* 101 * Have to be careful here. If we're in oneshot mode, 102 * before we call tick_periodic() in a loop, we need 103 * to be sure we're using a real hardware clocksource. 104 * Otherwise we could get trapped in an infinite 105 * loop, as the tick_periodic() increments jiffies, 106 * when then will increment time, posibly causing 107 * the loop to trigger again and again. 108 */ 109 if (timekeeping_valid_for_hres()) 110 tick_periodic(cpu); 111 next = ktime_add(next, tick_period); 112 } 113 } 114 115 /* 116 * Setup the device for a periodic tick 117 */ 118 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 119 { 120 tick_set_periodic_handler(dev, broadcast); 121 122 /* Broadcast setup ? */ 123 if (!tick_device_is_functional(dev)) 124 return; 125 126 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 127 !tick_broadcast_oneshot_active()) { 128 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); 129 } else { 130 unsigned long seq; 131 ktime_t next; 132 133 do { 134 seq = read_seqbegin(&xtime_lock); 135 next = tick_next_period; 136 } while (read_seqretry(&xtime_lock, seq)); 137 138 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 139 140 for (;;) { 141 if (!clockevents_program_event(dev, next, ktime_get())) 142 return; 143 next = ktime_add(next, tick_period); 144 } 145 } 146 } 147 148 /* 149 * Setup the tick device 150 */ 151 static void tick_setup_device(struct tick_device *td, 152 struct clock_event_device *newdev, int cpu, 153 const struct cpumask *cpumask) 154 { 155 ktime_t next_event; 156 void (*handler)(struct clock_event_device *) = NULL; 157 158 /* 159 * First device setup ? 160 */ 161 if (!td->evtdev) { 162 /* 163 * If no cpu took the do_timer update, assign it to 164 * this cpu: 165 */ 166 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 167 tick_do_timer_cpu = cpu; 168 tick_next_period = ktime_get(); 169 tick_period = ktime_set(0, NSEC_PER_SEC / HZ); 170 } 171 172 /* 173 * Startup in periodic mode first. 174 */ 175 td->mode = TICKDEV_MODE_PERIODIC; 176 } else { 177 handler = td->evtdev->event_handler; 178 next_event = td->evtdev->next_event; 179 td->evtdev->event_handler = clockevents_handle_noop; 180 } 181 182 td->evtdev = newdev; 183 184 /* 185 * When the device is not per cpu, pin the interrupt to the 186 * current cpu: 187 */ 188 if (!cpumask_equal(newdev->cpumask, cpumask)) 189 irq_set_affinity(newdev->irq, cpumask); 190 191 /* 192 * When global broadcasting is active, check if the current 193 * device is registered as a placeholder for broadcast mode. 194 * This allows us to handle this x86 misfeature in a generic 195 * way. 196 */ 197 if (tick_device_uses_broadcast(newdev, cpu)) 198 return; 199 200 if (td->mode == TICKDEV_MODE_PERIODIC) 201 tick_setup_periodic(newdev, 0); 202 else 203 tick_setup_oneshot(newdev, handler, next_event); 204 } 205 206 /* 207 * Check, if the new registered device should be used. 208 */ 209 static int tick_check_new_device(struct clock_event_device *newdev) 210 { 211 struct clock_event_device *curdev; 212 struct tick_device *td; 213 int cpu, ret = NOTIFY_OK; 214 unsigned long flags; 215 216 raw_spin_lock_irqsave(&tick_device_lock, flags); 217 218 cpu = smp_processor_id(); 219 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 220 goto out_bc; 221 222 td = &per_cpu(tick_cpu_device, cpu); 223 curdev = td->evtdev; 224 225 /* cpu local device ? */ 226 if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) { 227 228 /* 229 * If the cpu affinity of the device interrupt can not 230 * be set, ignore it. 231 */ 232 if (!irq_can_set_affinity(newdev->irq)) 233 goto out_bc; 234 235 /* 236 * If we have a cpu local device already, do not replace it 237 * by a non cpu local device 238 */ 239 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 240 goto out_bc; 241 } 242 243 /* 244 * If we have an active device, then check the rating and the oneshot 245 * feature. 246 */ 247 if (curdev) { 248 /* 249 * Prefer one shot capable devices ! 250 */ 251 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) && 252 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 253 goto out_bc; 254 /* 255 * Check the rating 256 */ 257 if (curdev->rating >= newdev->rating) 258 goto out_bc; 259 } 260 261 /* 262 * Replace the eventually existing device by the new 263 * device. If the current device is the broadcast device, do 264 * not give it back to the clockevents layer ! 265 */ 266 if (tick_is_broadcast_device(curdev)) { 267 clockevents_shutdown(curdev); 268 curdev = NULL; 269 } 270 clockevents_exchange_device(curdev, newdev); 271 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 272 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 273 tick_oneshot_notify(); 274 275 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 276 return NOTIFY_STOP; 277 278 out_bc: 279 /* 280 * Can the new device be used as a broadcast device ? 281 */ 282 if (tick_check_broadcast_device(newdev)) 283 ret = NOTIFY_STOP; 284 285 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 286 287 return ret; 288 } 289 290 /* 291 * Transfer the do_timer job away from a dying cpu. 292 * 293 * Called with interrupts disabled. 294 */ 295 static void tick_handover_do_timer(int *cpup) 296 { 297 if (*cpup == tick_do_timer_cpu) { 298 int cpu = cpumask_first(cpu_online_mask); 299 300 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 301 TICK_DO_TIMER_NONE; 302 } 303 } 304 305 /* 306 * Shutdown an event device on a given cpu: 307 * 308 * This is called on a life CPU, when a CPU is dead. So we cannot 309 * access the hardware device itself. 310 * We just set the mode and remove it from the lists. 311 */ 312 static void tick_shutdown(unsigned int *cpup) 313 { 314 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); 315 struct clock_event_device *dev = td->evtdev; 316 unsigned long flags; 317 318 raw_spin_lock_irqsave(&tick_device_lock, flags); 319 td->mode = TICKDEV_MODE_PERIODIC; 320 if (dev) { 321 /* 322 * Prevent that the clock events layer tries to call 323 * the set mode function! 324 */ 325 dev->mode = CLOCK_EVT_MODE_UNUSED; 326 clockevents_exchange_device(dev, NULL); 327 td->evtdev = NULL; 328 } 329 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 330 } 331 332 static void tick_suspend(void) 333 { 334 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 335 unsigned long flags; 336 337 raw_spin_lock_irqsave(&tick_device_lock, flags); 338 clockevents_shutdown(td->evtdev); 339 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 340 } 341 342 static void tick_resume(void) 343 { 344 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 345 unsigned long flags; 346 int broadcast = tick_resume_broadcast(); 347 348 raw_spin_lock_irqsave(&tick_device_lock, flags); 349 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); 350 351 if (!broadcast) { 352 if (td->mode == TICKDEV_MODE_PERIODIC) 353 tick_setup_periodic(td->evtdev, 0); 354 else 355 tick_resume_oneshot(); 356 } 357 raw_spin_unlock_irqrestore(&tick_device_lock, flags); 358 } 359 360 /* 361 * Notification about clock event devices 362 */ 363 static int tick_notify(struct notifier_block *nb, unsigned long reason, 364 void *dev) 365 { 366 switch (reason) { 367 368 case CLOCK_EVT_NOTIFY_ADD: 369 return tick_check_new_device(dev); 370 371 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 372 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 373 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 374 tick_broadcast_on_off(reason, dev); 375 break; 376 377 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER: 378 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT: 379 tick_broadcast_oneshot_control(reason); 380 break; 381 382 case CLOCK_EVT_NOTIFY_CPU_DYING: 383 tick_handover_do_timer(dev); 384 break; 385 386 case CLOCK_EVT_NOTIFY_CPU_DEAD: 387 tick_shutdown_broadcast_oneshot(dev); 388 tick_shutdown_broadcast(dev); 389 tick_shutdown(dev); 390 break; 391 392 case CLOCK_EVT_NOTIFY_SUSPEND: 393 tick_suspend(); 394 tick_suspend_broadcast(); 395 break; 396 397 case CLOCK_EVT_NOTIFY_RESUME: 398 tick_resume(); 399 break; 400 401 default: 402 break; 403 } 404 405 return NOTIFY_OK; 406 } 407 408 static struct notifier_block tick_notifier = { 409 .notifier_call = tick_notify, 410 }; 411 412 /** 413 * tick_init - initialize the tick control 414 * 415 * Register the notifier with the clockevents framework 416 */ 417 void __init tick_init(void) 418 { 419 clockevents_register_notifier(&tick_notifier); 420 } 421