xref: /openbmc/linux/kernel/time/tick-common.c (revision 25985edc)
1 /*
2  * linux/kernel/time/tick-common.c
3  *
4  * This file contains the base functions to manage periodic tick
5  * related events.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time
32  */
33 ktime_t tick_next_period;
34 ktime_t tick_period;
35 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
36 static DEFINE_RAW_SPINLOCK(tick_device_lock);
37 
38 /*
39  * Debugging: see timer_list.c
40  */
41 struct tick_device *tick_get_device(int cpu)
42 {
43 	return &per_cpu(tick_cpu_device, cpu);
44 }
45 
46 /**
47  * tick_is_oneshot_available - check for a oneshot capable event device
48  */
49 int tick_is_oneshot_available(void)
50 {
51 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
52 
53 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
54 		return 0;
55 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
56 		return 1;
57 	return tick_broadcast_oneshot_available();
58 }
59 
60 /*
61  * Periodic tick
62  */
63 static void tick_periodic(int cpu)
64 {
65 	if (tick_do_timer_cpu == cpu) {
66 		write_seqlock(&xtime_lock);
67 
68 		/* Keep track of the next tick event */
69 		tick_next_period = ktime_add(tick_next_period, tick_period);
70 
71 		do_timer(1);
72 		write_sequnlock(&xtime_lock);
73 	}
74 
75 	update_process_times(user_mode(get_irq_regs()));
76 	profile_tick(CPU_PROFILING);
77 }
78 
79 /*
80  * Event handler for periodic ticks
81  */
82 void tick_handle_periodic(struct clock_event_device *dev)
83 {
84 	int cpu = smp_processor_id();
85 	ktime_t next;
86 
87 	tick_periodic(cpu);
88 
89 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
90 		return;
91 	/*
92 	 * Setup the next period for devices, which do not have
93 	 * periodic mode:
94 	 */
95 	next = ktime_add(dev->next_event, tick_period);
96 	for (;;) {
97 		if (!clockevents_program_event(dev, next, ktime_get()))
98 			return;
99 		/*
100 		 * Have to be careful here. If we're in oneshot mode,
101 		 * before we call tick_periodic() in a loop, we need
102 		 * to be sure we're using a real hardware clocksource.
103 		 * Otherwise we could get trapped in an infinite
104 		 * loop, as the tick_periodic() increments jiffies,
105 		 * when then will increment time, posibly causing
106 		 * the loop to trigger again and again.
107 		 */
108 		if (timekeeping_valid_for_hres())
109 			tick_periodic(cpu);
110 		next = ktime_add(next, tick_period);
111 	}
112 }
113 
114 /*
115  * Setup the device for a periodic tick
116  */
117 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
118 {
119 	tick_set_periodic_handler(dev, broadcast);
120 
121 	/* Broadcast setup ? */
122 	if (!tick_device_is_functional(dev))
123 		return;
124 
125 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
126 	    !tick_broadcast_oneshot_active()) {
127 		clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
128 	} else {
129 		unsigned long seq;
130 		ktime_t next;
131 
132 		do {
133 			seq = read_seqbegin(&xtime_lock);
134 			next = tick_next_period;
135 		} while (read_seqretry(&xtime_lock, seq));
136 
137 		clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
138 
139 		for (;;) {
140 			if (!clockevents_program_event(dev, next, ktime_get()))
141 				return;
142 			next = ktime_add(next, tick_period);
143 		}
144 	}
145 }
146 
147 /*
148  * Setup the tick device
149  */
150 static void tick_setup_device(struct tick_device *td,
151 			      struct clock_event_device *newdev, int cpu,
152 			      const struct cpumask *cpumask)
153 {
154 	ktime_t next_event;
155 	void (*handler)(struct clock_event_device *) = NULL;
156 
157 	/*
158 	 * First device setup ?
159 	 */
160 	if (!td->evtdev) {
161 		/*
162 		 * If no cpu took the do_timer update, assign it to
163 		 * this cpu:
164 		 */
165 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
166 			tick_do_timer_cpu = cpu;
167 			tick_next_period = ktime_get();
168 			tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
169 		}
170 
171 		/*
172 		 * Startup in periodic mode first.
173 		 */
174 		td->mode = TICKDEV_MODE_PERIODIC;
175 	} else {
176 		handler = td->evtdev->event_handler;
177 		next_event = td->evtdev->next_event;
178 		td->evtdev->event_handler = clockevents_handle_noop;
179 	}
180 
181 	td->evtdev = newdev;
182 
183 	/*
184 	 * When the device is not per cpu, pin the interrupt to the
185 	 * current cpu:
186 	 */
187 	if (!cpumask_equal(newdev->cpumask, cpumask))
188 		irq_set_affinity(newdev->irq, cpumask);
189 
190 	/*
191 	 * When global broadcasting is active, check if the current
192 	 * device is registered as a placeholder for broadcast mode.
193 	 * This allows us to handle this x86 misfeature in a generic
194 	 * way.
195 	 */
196 	if (tick_device_uses_broadcast(newdev, cpu))
197 		return;
198 
199 	if (td->mode == TICKDEV_MODE_PERIODIC)
200 		tick_setup_periodic(newdev, 0);
201 	else
202 		tick_setup_oneshot(newdev, handler, next_event);
203 }
204 
205 /*
206  * Check, if the new registered device should be used.
207  */
208 static int tick_check_new_device(struct clock_event_device *newdev)
209 {
210 	struct clock_event_device *curdev;
211 	struct tick_device *td;
212 	int cpu, ret = NOTIFY_OK;
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&tick_device_lock, flags);
216 
217 	cpu = smp_processor_id();
218 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
219 		goto out_bc;
220 
221 	td = &per_cpu(tick_cpu_device, cpu);
222 	curdev = td->evtdev;
223 
224 	/* cpu local device ? */
225 	if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
226 
227 		/*
228 		 * If the cpu affinity of the device interrupt can not
229 		 * be set, ignore it.
230 		 */
231 		if (!irq_can_set_affinity(newdev->irq))
232 			goto out_bc;
233 
234 		/*
235 		 * If we have a cpu local device already, do not replace it
236 		 * by a non cpu local device
237 		 */
238 		if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
239 			goto out_bc;
240 	}
241 
242 	/*
243 	 * If we have an active device, then check the rating and the oneshot
244 	 * feature.
245 	 */
246 	if (curdev) {
247 		/*
248 		 * Prefer one shot capable devices !
249 		 */
250 		if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
251 		    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
252 			goto out_bc;
253 		/*
254 		 * Check the rating
255 		 */
256 		if (curdev->rating >= newdev->rating)
257 			goto out_bc;
258 	}
259 
260 	/*
261 	 * Replace the eventually existing device by the new
262 	 * device. If the current device is the broadcast device, do
263 	 * not give it back to the clockevents layer !
264 	 */
265 	if (tick_is_broadcast_device(curdev)) {
266 		clockevents_shutdown(curdev);
267 		curdev = NULL;
268 	}
269 	clockevents_exchange_device(curdev, newdev);
270 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
271 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
272 		tick_oneshot_notify();
273 
274 	raw_spin_unlock_irqrestore(&tick_device_lock, flags);
275 	return NOTIFY_STOP;
276 
277 out_bc:
278 	/*
279 	 * Can the new device be used as a broadcast device ?
280 	 */
281 	if (tick_check_broadcast_device(newdev))
282 		ret = NOTIFY_STOP;
283 
284 	raw_spin_unlock_irqrestore(&tick_device_lock, flags);
285 
286 	return ret;
287 }
288 
289 /*
290  * Transfer the do_timer job away from a dying cpu.
291  *
292  * Called with interrupts disabled.
293  */
294 static void tick_handover_do_timer(int *cpup)
295 {
296 	if (*cpup == tick_do_timer_cpu) {
297 		int cpu = cpumask_first(cpu_online_mask);
298 
299 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
300 			TICK_DO_TIMER_NONE;
301 	}
302 }
303 
304 /*
305  * Shutdown an event device on a given cpu:
306  *
307  * This is called on a life CPU, when a CPU is dead. So we cannot
308  * access the hardware device itself.
309  * We just set the mode and remove it from the lists.
310  */
311 static void tick_shutdown(unsigned int *cpup)
312 {
313 	struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
314 	struct clock_event_device *dev = td->evtdev;
315 	unsigned long flags;
316 
317 	raw_spin_lock_irqsave(&tick_device_lock, flags);
318 	td->mode = TICKDEV_MODE_PERIODIC;
319 	if (dev) {
320 		/*
321 		 * Prevent that the clock events layer tries to call
322 		 * the set mode function!
323 		 */
324 		dev->mode = CLOCK_EVT_MODE_UNUSED;
325 		clockevents_exchange_device(dev, NULL);
326 		td->evtdev = NULL;
327 	}
328 	raw_spin_unlock_irqrestore(&tick_device_lock, flags);
329 }
330 
331 static void tick_suspend(void)
332 {
333 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
334 	unsigned long flags;
335 
336 	raw_spin_lock_irqsave(&tick_device_lock, flags);
337 	clockevents_shutdown(td->evtdev);
338 	raw_spin_unlock_irqrestore(&tick_device_lock, flags);
339 }
340 
341 static void tick_resume(void)
342 {
343 	struct tick_device *td = &__get_cpu_var(tick_cpu_device);
344 	unsigned long flags;
345 	int broadcast = tick_resume_broadcast();
346 
347 	raw_spin_lock_irqsave(&tick_device_lock, flags);
348 	clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
349 
350 	if (!broadcast) {
351 		if (td->mode == TICKDEV_MODE_PERIODIC)
352 			tick_setup_periodic(td->evtdev, 0);
353 		else
354 			tick_resume_oneshot();
355 	}
356 	raw_spin_unlock_irqrestore(&tick_device_lock, flags);
357 }
358 
359 /*
360  * Notification about clock event devices
361  */
362 static int tick_notify(struct notifier_block *nb, unsigned long reason,
363 			       void *dev)
364 {
365 	switch (reason) {
366 
367 	case CLOCK_EVT_NOTIFY_ADD:
368 		return tick_check_new_device(dev);
369 
370 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
371 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
372 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
373 		tick_broadcast_on_off(reason, dev);
374 		break;
375 
376 	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
377 	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
378 		tick_broadcast_oneshot_control(reason);
379 		break;
380 
381 	case CLOCK_EVT_NOTIFY_CPU_DYING:
382 		tick_handover_do_timer(dev);
383 		break;
384 
385 	case CLOCK_EVT_NOTIFY_CPU_DEAD:
386 		tick_shutdown_broadcast_oneshot(dev);
387 		tick_shutdown_broadcast(dev);
388 		tick_shutdown(dev);
389 		break;
390 
391 	case CLOCK_EVT_NOTIFY_SUSPEND:
392 		tick_suspend();
393 		tick_suspend_broadcast();
394 		break;
395 
396 	case CLOCK_EVT_NOTIFY_RESUME:
397 		tick_resume();
398 		break;
399 
400 	default:
401 		break;
402 	}
403 
404 	return NOTIFY_OK;
405 }
406 
407 static struct notifier_block tick_notifier = {
408 	.notifier_call = tick_notify,
409 };
410 
411 /**
412  * tick_init - initialize the tick control
413  *
414  * Register the notifier with the clockevents framework
415  */
416 void __init tick_init(void)
417 {
418 	clockevents_register_notifier(&tick_notifier);
419 }
420