xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 static struct tick_device tick_broadcast_device;
31 /* FIXME: Use cpumask_var_t. */
32 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
33 static DECLARE_BITMAP(tmpmask, NR_CPUS);
34 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35 static int tick_broadcast_force;
36 
37 #ifdef CONFIG_TICK_ONESHOT
38 static void tick_broadcast_clear_oneshot(int cpu);
39 #else
40 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 #endif
42 
43 /*
44  * Debugging: see timer_list.c
45  */
46 struct tick_device *tick_get_broadcast_device(void)
47 {
48 	return &tick_broadcast_device;
49 }
50 
51 struct cpumask *tick_get_broadcast_mask(void)
52 {
53 	return to_cpumask(tick_broadcast_mask);
54 }
55 
56 /*
57  * Start the device in periodic mode
58  */
59 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
60 {
61 	if (bc)
62 		tick_setup_periodic(bc, 1);
63 }
64 
65 /*
66  * Check, if the device can be utilized as broadcast device:
67  */
68 int tick_check_broadcast_device(struct clock_event_device *dev)
69 {
70 	if ((tick_broadcast_device.evtdev &&
71 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
72 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 		return 0;
74 
75 	clockevents_exchange_device(NULL, dev);
76 	tick_broadcast_device.evtdev = dev;
77 	if (!cpumask_empty(tick_get_broadcast_mask()))
78 		tick_broadcast_start_periodic(dev);
79 	return 1;
80 }
81 
82 /*
83  * Check, if the device is the broadcast device
84  */
85 int tick_is_broadcast_device(struct clock_event_device *dev)
86 {
87 	return (dev && tick_broadcast_device.evtdev == dev);
88 }
89 
90 /*
91  * Check, if the device is disfunctional and a place holder, which
92  * needs to be handled by the broadcast device.
93  */
94 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
95 {
96 	unsigned long flags;
97 	int ret = 0;
98 
99 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
100 
101 	/*
102 	 * Devices might be registered with both periodic and oneshot
103 	 * mode disabled. This signals, that the device needs to be
104 	 * operated from the broadcast device and is a placeholder for
105 	 * the cpu local device.
106 	 */
107 	if (!tick_device_is_functional(dev)) {
108 		dev->event_handler = tick_handle_periodic;
109 		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
110 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
111 		ret = 1;
112 	} else {
113 		/*
114 		 * When the new device is not affected by the stop
115 		 * feature and the cpu is marked in the broadcast mask
116 		 * then clear the broadcast bit.
117 		 */
118 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
119 			int cpu = smp_processor_id();
120 
121 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
122 			tick_broadcast_clear_oneshot(cpu);
123 		}
124 	}
125 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
126 	return ret;
127 }
128 
129 /*
130  * Broadcast the event to the cpus, which are set in the mask (mangled).
131  */
132 static void tick_do_broadcast(struct cpumask *mask)
133 {
134 	int cpu = smp_processor_id();
135 	struct tick_device *td;
136 
137 	/*
138 	 * Check, if the current cpu is in the mask
139 	 */
140 	if (cpumask_test_cpu(cpu, mask)) {
141 		cpumask_clear_cpu(cpu, mask);
142 		td = &per_cpu(tick_cpu_device, cpu);
143 		td->evtdev->event_handler(td->evtdev);
144 	}
145 
146 	if (!cpumask_empty(mask)) {
147 		/*
148 		 * It might be necessary to actually check whether the devices
149 		 * have different broadcast functions. For now, just use the
150 		 * one of the first device. This works as long as we have this
151 		 * misfeature only on x86 (lapic)
152 		 */
153 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
154 		td->evtdev->broadcast(mask);
155 	}
156 }
157 
158 /*
159  * Periodic broadcast:
160  * - invoke the broadcast handlers
161  */
162 static void tick_do_periodic_broadcast(void)
163 {
164 	raw_spin_lock(&tick_broadcast_lock);
165 
166 	cpumask_and(to_cpumask(tmpmask),
167 		    cpu_online_mask, tick_get_broadcast_mask());
168 	tick_do_broadcast(to_cpumask(tmpmask));
169 
170 	raw_spin_unlock(&tick_broadcast_lock);
171 }
172 
173 /*
174  * Event handler for periodic broadcast ticks
175  */
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177 {
178 	ktime_t next;
179 
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode. We read dev->next_event first and add to it
191 	 * when the event already expired. clockevents_program_event()
192 	 * sets dev->next_event only when the event is really
193 	 * programmed to the device.
194 	 */
195 	for (next = dev->next_event; ;) {
196 		next = ktime_add(next, tick_period);
197 
198 		if (!clockevents_program_event(dev, next, ktime_get()))
199 			return;
200 		tick_do_periodic_broadcast();
201 	}
202 }
203 
204 /*
205  * Powerstate information: The system enters/leaves a state, where
206  * affected devices might stop
207  */
208 static void tick_do_broadcast_on_off(unsigned long *reason)
209 {
210 	struct clock_event_device *bc, *dev;
211 	struct tick_device *td;
212 	unsigned long flags;
213 	int cpu, bc_stopped;
214 
215 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
216 
217 	cpu = smp_processor_id();
218 	td = &per_cpu(tick_cpu_device, cpu);
219 	dev = td->evtdev;
220 	bc = tick_broadcast_device.evtdev;
221 
222 	/*
223 	 * Is the device not affected by the powerstate ?
224 	 */
225 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 		goto out;
227 
228 	if (!tick_device_is_functional(dev))
229 		goto out;
230 
231 	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
232 
233 	switch (*reason) {
234 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
237 			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
238 			if (tick_broadcast_device.mode ==
239 			    TICKDEV_MODE_PERIODIC)
240 				clockevents_shutdown(dev);
241 		}
242 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 			tick_broadcast_force = 1;
244 		break;
245 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 		if (!tick_broadcast_force &&
247 		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
248 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
249 			if (tick_broadcast_device.mode ==
250 			    TICKDEV_MODE_PERIODIC)
251 				tick_setup_periodic(dev, 0);
252 		}
253 		break;
254 	}
255 
256 	if (cpumask_empty(tick_get_broadcast_mask())) {
257 		if (!bc_stopped)
258 			clockevents_shutdown(bc);
259 	} else if (bc_stopped) {
260 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261 			tick_broadcast_start_periodic(bc);
262 		else
263 			tick_broadcast_setup_oneshot(bc);
264 	}
265 out:
266 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
267 }
268 
269 /*
270  * Powerstate information: The system enters/leaves a state, where
271  * affected devices might stop.
272  */
273 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
274 {
275 	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
276 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 		       "offline CPU #%d\n", *oncpu);
278 	else
279 		tick_do_broadcast_on_off(&reason);
280 }
281 
282 /*
283  * Set the periodic handler depending on broadcast on/off
284  */
285 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
286 {
287 	if (!broadcast)
288 		dev->event_handler = tick_handle_periodic;
289 	else
290 		dev->event_handler = tick_handle_periodic_broadcast;
291 }
292 
293 /*
294  * Remove a CPU from broadcasting
295  */
296 void tick_shutdown_broadcast(unsigned int *cpup)
297 {
298 	struct clock_event_device *bc;
299 	unsigned long flags;
300 	unsigned int cpu = *cpup;
301 
302 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
303 
304 	bc = tick_broadcast_device.evtdev;
305 	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
306 
307 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
308 		if (bc && cpumask_empty(tick_get_broadcast_mask()))
309 			clockevents_shutdown(bc);
310 	}
311 
312 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
313 }
314 
315 void tick_suspend_broadcast(void)
316 {
317 	struct clock_event_device *bc;
318 	unsigned long flags;
319 
320 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
321 
322 	bc = tick_broadcast_device.evtdev;
323 	if (bc)
324 		clockevents_shutdown(bc);
325 
326 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
327 }
328 
329 int tick_resume_broadcast(void)
330 {
331 	struct clock_event_device *bc;
332 	unsigned long flags;
333 	int broadcast = 0;
334 
335 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
336 
337 	bc = tick_broadcast_device.evtdev;
338 
339 	if (bc) {
340 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
341 
342 		switch (tick_broadcast_device.mode) {
343 		case TICKDEV_MODE_PERIODIC:
344 			if (!cpumask_empty(tick_get_broadcast_mask()))
345 				tick_broadcast_start_periodic(bc);
346 			broadcast = cpumask_test_cpu(smp_processor_id(),
347 						     tick_get_broadcast_mask());
348 			break;
349 		case TICKDEV_MODE_ONESHOT:
350 			broadcast = tick_resume_broadcast_oneshot(bc);
351 			break;
352 		}
353 	}
354 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355 
356 	return broadcast;
357 }
358 
359 
360 #ifdef CONFIG_TICK_ONESHOT
361 
362 /* FIXME: use cpumask_var_t. */
363 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
364 
365 /*
366  * Exposed for debugging: see timer_list.c
367  */
368 struct cpumask *tick_get_broadcast_oneshot_mask(void)
369 {
370 	return to_cpumask(tick_broadcast_oneshot_mask);
371 }
372 
373 static int tick_broadcast_set_event(ktime_t expires, int force)
374 {
375 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 
377 	return tick_dev_program_event(bc, expires, force);
378 }
379 
380 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381 {
382 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383 	return 0;
384 }
385 
386 /*
387  * Called from irq_enter() when idle was interrupted to reenable the
388  * per cpu device.
389  */
390 void tick_check_oneshot_broadcast(int cpu)
391 {
392 	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
393 		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
394 
395 		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
396 	}
397 }
398 
399 /*
400  * Handle oneshot mode broadcasting
401  */
402 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
403 {
404 	struct tick_device *td;
405 	ktime_t now, next_event;
406 	int cpu;
407 
408 	raw_spin_lock(&tick_broadcast_lock);
409 again:
410 	dev->next_event.tv64 = KTIME_MAX;
411 	next_event.tv64 = KTIME_MAX;
412 	cpumask_clear(to_cpumask(tmpmask));
413 	now = ktime_get();
414 	/* Find all expired events */
415 	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
416 		td = &per_cpu(tick_cpu_device, cpu);
417 		if (td->evtdev->next_event.tv64 <= now.tv64)
418 			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
419 		else if (td->evtdev->next_event.tv64 < next_event.tv64)
420 			next_event.tv64 = td->evtdev->next_event.tv64;
421 	}
422 
423 	/*
424 	 * Wakeup the cpus which have an expired event.
425 	 */
426 	tick_do_broadcast(to_cpumask(tmpmask));
427 
428 	/*
429 	 * Two reasons for reprogram:
430 	 *
431 	 * - The global event did not expire any CPU local
432 	 * events. This happens in dyntick mode, as the maximum PIT
433 	 * delta is quite small.
434 	 *
435 	 * - There are pending events on sleeping CPUs which were not
436 	 * in the event mask
437 	 */
438 	if (next_event.tv64 != KTIME_MAX) {
439 		/*
440 		 * Rearm the broadcast device. If event expired,
441 		 * repeat the above
442 		 */
443 		if (tick_broadcast_set_event(next_event, 0))
444 			goto again;
445 	}
446 	raw_spin_unlock(&tick_broadcast_lock);
447 }
448 
449 /*
450  * Powerstate information: The system enters/leaves a state, where
451  * affected devices might stop
452  */
453 void tick_broadcast_oneshot_control(unsigned long reason)
454 {
455 	struct clock_event_device *bc, *dev;
456 	struct tick_device *td;
457 	unsigned long flags;
458 	int cpu;
459 
460 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
461 
462 	/*
463 	 * Periodic mode does not care about the enter/exit of power
464 	 * states
465 	 */
466 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
467 		goto out;
468 
469 	bc = tick_broadcast_device.evtdev;
470 	cpu = smp_processor_id();
471 	td = &per_cpu(tick_cpu_device, cpu);
472 	dev = td->evtdev;
473 
474 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
475 		goto out;
476 
477 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
478 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
479 			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
480 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
481 			if (dev->next_event.tv64 < bc->next_event.tv64)
482 				tick_broadcast_set_event(dev->next_event, 1);
483 		}
484 	} else {
485 		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
486 			cpumask_clear_cpu(cpu,
487 					  tick_get_broadcast_oneshot_mask());
488 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
489 			if (dev->next_event.tv64 != KTIME_MAX)
490 				tick_program_event(dev->next_event, 1);
491 		}
492 	}
493 
494 out:
495 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
496 }
497 
498 /*
499  * Reset the one shot broadcast for a cpu
500  *
501  * Called with tick_broadcast_lock held
502  */
503 static void tick_broadcast_clear_oneshot(int cpu)
504 {
505 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
506 }
507 
508 static void tick_broadcast_init_next_event(struct cpumask *mask,
509 					   ktime_t expires)
510 {
511 	struct tick_device *td;
512 	int cpu;
513 
514 	for_each_cpu(cpu, mask) {
515 		td = &per_cpu(tick_cpu_device, cpu);
516 		if (td->evtdev)
517 			td->evtdev->next_event = expires;
518 	}
519 }
520 
521 /**
522  * tick_broadcast_setup_oneshot - setup the broadcast device
523  */
524 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
525 {
526 	/* Set it up only once ! */
527 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
528 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
529 		int cpu = smp_processor_id();
530 
531 		bc->event_handler = tick_handle_oneshot_broadcast;
532 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533 
534 		/* Take the do_timer update */
535 		tick_do_timer_cpu = cpu;
536 
537 		/*
538 		 * We must be careful here. There might be other CPUs
539 		 * waiting for periodic broadcast. We need to set the
540 		 * oneshot_mask bits for those and program the
541 		 * broadcast device to fire.
542 		 */
543 		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
544 		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
545 		cpumask_or(tick_get_broadcast_oneshot_mask(),
546 			   tick_get_broadcast_oneshot_mask(),
547 			   to_cpumask(tmpmask));
548 
549 		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
550 			tick_broadcast_init_next_event(to_cpumask(tmpmask),
551 						       tick_next_period);
552 			tick_broadcast_set_event(tick_next_period, 1);
553 		} else
554 			bc->next_event.tv64 = KTIME_MAX;
555 	}
556 }
557 
558 /*
559  * Select oneshot operating mode for the broadcast device
560  */
561 void tick_broadcast_switch_to_oneshot(void)
562 {
563 	struct clock_event_device *bc;
564 	unsigned long flags;
565 
566 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
567 
568 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
569 	bc = tick_broadcast_device.evtdev;
570 	if (bc)
571 		tick_broadcast_setup_oneshot(bc);
572 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
573 }
574 
575 
576 /*
577  * Remove a dead CPU from broadcasting
578  */
579 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
580 {
581 	unsigned long flags;
582 	unsigned int cpu = *cpup;
583 
584 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
585 
586 	/*
587 	 * Clear the broadcast mask flag for the dead cpu, but do not
588 	 * stop the broadcast device!
589 	 */
590 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
591 
592 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
593 }
594 
595 /*
596  * Check, whether the broadcast device is in one shot mode
597  */
598 int tick_broadcast_oneshot_active(void)
599 {
600 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
601 }
602 
603 #endif
604