1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains functions which emulate a local clock-event 4 * device via a broadcast event source. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/profile.h> 16 #include <linux/sched.h> 17 #include <linux/smp.h> 18 #include <linux/module.h> 19 20 #include "tick-internal.h" 21 22 /* 23 * Broadcast support for broken x86 hardware, where the local apic 24 * timer stops in C3 state. 25 */ 26 27 static struct tick_device tick_broadcast_device; 28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 30 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 31 static int tick_broadcast_forced; 32 33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 34 35 #ifdef CONFIG_TICK_ONESHOT 36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); 37 static void tick_broadcast_clear_oneshot(int cpu); 38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 39 #else 40 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } 41 static inline void tick_broadcast_clear_oneshot(int cpu) { } 42 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 43 #endif 44 45 /* 46 * Debugging: see timer_list.c 47 */ 48 struct tick_device *tick_get_broadcast_device(void) 49 { 50 return &tick_broadcast_device; 51 } 52 53 struct cpumask *tick_get_broadcast_mask(void) 54 { 55 return tick_broadcast_mask; 56 } 57 58 /* 59 * Start the device in periodic mode 60 */ 61 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 62 { 63 if (bc) 64 tick_setup_periodic(bc, 1); 65 } 66 67 /* 68 * Check, if the device can be utilized as broadcast device: 69 */ 70 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 71 struct clock_event_device *newdev) 72 { 73 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 74 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 75 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 76 return false; 77 78 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 79 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 80 return false; 81 82 return !curdev || newdev->rating > curdev->rating; 83 } 84 85 /* 86 * Conditionally install/replace broadcast device 87 */ 88 void tick_install_broadcast_device(struct clock_event_device *dev) 89 { 90 struct clock_event_device *cur = tick_broadcast_device.evtdev; 91 92 if (!tick_check_broadcast_device(cur, dev)) 93 return; 94 95 if (!try_module_get(dev->owner)) 96 return; 97 98 clockevents_exchange_device(cur, dev); 99 if (cur) 100 cur->event_handler = clockevents_handle_noop; 101 tick_broadcast_device.evtdev = dev; 102 if (!cpumask_empty(tick_broadcast_mask)) 103 tick_broadcast_start_periodic(dev); 104 /* 105 * Inform all cpus about this. We might be in a situation 106 * where we did not switch to oneshot mode because the per cpu 107 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 108 * of a oneshot capable broadcast device. Without that 109 * notification the systems stays stuck in periodic mode 110 * forever. 111 */ 112 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 113 tick_clock_notify(); 114 } 115 116 /* 117 * Check, if the device is the broadcast device 118 */ 119 int tick_is_broadcast_device(struct clock_event_device *dev) 120 { 121 return (dev && tick_broadcast_device.evtdev == dev); 122 } 123 124 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 125 { 126 int ret = -ENODEV; 127 128 if (tick_is_broadcast_device(dev)) { 129 raw_spin_lock(&tick_broadcast_lock); 130 ret = __clockevents_update_freq(dev, freq); 131 raw_spin_unlock(&tick_broadcast_lock); 132 } 133 return ret; 134 } 135 136 137 static void err_broadcast(const struct cpumask *mask) 138 { 139 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 140 } 141 142 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 143 { 144 if (!dev->broadcast) 145 dev->broadcast = tick_broadcast; 146 if (!dev->broadcast) { 147 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 148 dev->name); 149 dev->broadcast = err_broadcast; 150 } 151 } 152 153 /* 154 * Check, if the device is disfunctional and a place holder, which 155 * needs to be handled by the broadcast device. 156 */ 157 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 158 { 159 struct clock_event_device *bc = tick_broadcast_device.evtdev; 160 unsigned long flags; 161 int ret = 0; 162 163 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 164 165 /* 166 * Devices might be registered with both periodic and oneshot 167 * mode disabled. This signals, that the device needs to be 168 * operated from the broadcast device and is a placeholder for 169 * the cpu local device. 170 */ 171 if (!tick_device_is_functional(dev)) { 172 dev->event_handler = tick_handle_periodic; 173 tick_device_setup_broadcast_func(dev); 174 cpumask_set_cpu(cpu, tick_broadcast_mask); 175 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 176 tick_broadcast_start_periodic(bc); 177 else 178 tick_broadcast_setup_oneshot(bc); 179 ret = 1; 180 } else { 181 /* 182 * Clear the broadcast bit for this cpu if the 183 * device is not power state affected. 184 */ 185 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 186 cpumask_clear_cpu(cpu, tick_broadcast_mask); 187 else 188 tick_device_setup_broadcast_func(dev); 189 190 /* 191 * Clear the broadcast bit if the CPU is not in 192 * periodic broadcast on state. 193 */ 194 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 195 cpumask_clear_cpu(cpu, tick_broadcast_mask); 196 197 switch (tick_broadcast_device.mode) { 198 case TICKDEV_MODE_ONESHOT: 199 /* 200 * If the system is in oneshot mode we can 201 * unconditionally clear the oneshot mask bit, 202 * because the CPU is running and therefore 203 * not in an idle state which causes the power 204 * state affected device to stop. Let the 205 * caller initialize the device. 206 */ 207 tick_broadcast_clear_oneshot(cpu); 208 ret = 0; 209 break; 210 211 case TICKDEV_MODE_PERIODIC: 212 /* 213 * If the system is in periodic mode, check 214 * whether the broadcast device can be 215 * switched off now. 216 */ 217 if (cpumask_empty(tick_broadcast_mask) && bc) 218 clockevents_shutdown(bc); 219 /* 220 * If we kept the cpu in the broadcast mask, 221 * tell the caller to leave the per cpu device 222 * in shutdown state. The periodic interrupt 223 * is delivered by the broadcast device, if 224 * the broadcast device exists and is not 225 * hrtimer based. 226 */ 227 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 228 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 229 break; 230 default: 231 break; 232 } 233 } 234 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 235 return ret; 236 } 237 238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 239 int tick_receive_broadcast(void) 240 { 241 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 242 struct clock_event_device *evt = td->evtdev; 243 244 if (!evt) 245 return -ENODEV; 246 247 if (!evt->event_handler) 248 return -EINVAL; 249 250 evt->event_handler(evt); 251 return 0; 252 } 253 #endif 254 255 /* 256 * Broadcast the event to the cpus, which are set in the mask (mangled). 257 */ 258 static bool tick_do_broadcast(struct cpumask *mask) 259 { 260 int cpu = smp_processor_id(); 261 struct tick_device *td; 262 bool local = false; 263 264 /* 265 * Check, if the current cpu is in the mask 266 */ 267 if (cpumask_test_cpu(cpu, mask)) { 268 struct clock_event_device *bc = tick_broadcast_device.evtdev; 269 270 cpumask_clear_cpu(cpu, mask); 271 /* 272 * We only run the local handler, if the broadcast 273 * device is not hrtimer based. Otherwise we run into 274 * a hrtimer recursion. 275 * 276 * local timer_interrupt() 277 * local_handler() 278 * expire_hrtimers() 279 * bc_handler() 280 * local_handler() 281 * expire_hrtimers() 282 */ 283 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 284 } 285 286 if (!cpumask_empty(mask)) { 287 /* 288 * It might be necessary to actually check whether the devices 289 * have different broadcast functions. For now, just use the 290 * one of the first device. This works as long as we have this 291 * misfeature only on x86 (lapic) 292 */ 293 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 294 td->evtdev->broadcast(mask); 295 } 296 return local; 297 } 298 299 /* 300 * Periodic broadcast: 301 * - invoke the broadcast handlers 302 */ 303 static bool tick_do_periodic_broadcast(void) 304 { 305 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 306 return tick_do_broadcast(tmpmask); 307 } 308 309 /* 310 * Event handler for periodic broadcast ticks 311 */ 312 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 313 { 314 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 315 bool bc_local; 316 317 raw_spin_lock(&tick_broadcast_lock); 318 319 /* Handle spurious interrupts gracefully */ 320 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 321 raw_spin_unlock(&tick_broadcast_lock); 322 return; 323 } 324 325 bc_local = tick_do_periodic_broadcast(); 326 327 if (clockevent_state_oneshot(dev)) { 328 ktime_t next = ktime_add(dev->next_event, tick_period); 329 330 clockevents_program_event(dev, next, true); 331 } 332 raw_spin_unlock(&tick_broadcast_lock); 333 334 /* 335 * We run the handler of the local cpu after dropping 336 * tick_broadcast_lock because the handler might deadlock when 337 * trying to switch to oneshot mode. 338 */ 339 if (bc_local) 340 td->evtdev->event_handler(td->evtdev); 341 } 342 343 /** 344 * tick_broadcast_control - Enable/disable or force broadcast mode 345 * @mode: The selected broadcast mode 346 * 347 * Called when the system enters a state where affected tick devices 348 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 349 */ 350 void tick_broadcast_control(enum tick_broadcast_mode mode) 351 { 352 struct clock_event_device *bc, *dev; 353 struct tick_device *td; 354 int cpu, bc_stopped; 355 unsigned long flags; 356 357 /* Protects also the local clockevent device. */ 358 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 359 td = this_cpu_ptr(&tick_cpu_device); 360 dev = td->evtdev; 361 362 /* 363 * Is the device not affected by the powerstate ? 364 */ 365 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 366 goto out; 367 368 if (!tick_device_is_functional(dev)) 369 goto out; 370 371 cpu = smp_processor_id(); 372 bc = tick_broadcast_device.evtdev; 373 bc_stopped = cpumask_empty(tick_broadcast_mask); 374 375 switch (mode) { 376 case TICK_BROADCAST_FORCE: 377 tick_broadcast_forced = 1; 378 /* fall through */ 379 case TICK_BROADCAST_ON: 380 cpumask_set_cpu(cpu, tick_broadcast_on); 381 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 382 /* 383 * Only shutdown the cpu local device, if: 384 * 385 * - the broadcast device exists 386 * - the broadcast device is not a hrtimer based one 387 * - the broadcast device is in periodic mode to 388 * avoid a hickup during switch to oneshot mode 389 */ 390 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 391 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 392 clockevents_shutdown(dev); 393 } 394 break; 395 396 case TICK_BROADCAST_OFF: 397 if (tick_broadcast_forced) 398 break; 399 cpumask_clear_cpu(cpu, tick_broadcast_on); 400 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 401 if (tick_broadcast_device.mode == 402 TICKDEV_MODE_PERIODIC) 403 tick_setup_periodic(dev, 0); 404 } 405 break; 406 } 407 408 if (bc) { 409 if (cpumask_empty(tick_broadcast_mask)) { 410 if (!bc_stopped) 411 clockevents_shutdown(bc); 412 } else if (bc_stopped) { 413 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 414 tick_broadcast_start_periodic(bc); 415 else 416 tick_broadcast_setup_oneshot(bc); 417 } 418 } 419 out: 420 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 421 } 422 EXPORT_SYMBOL_GPL(tick_broadcast_control); 423 424 /* 425 * Set the periodic handler depending on broadcast on/off 426 */ 427 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 428 { 429 if (!broadcast) 430 dev->event_handler = tick_handle_periodic; 431 else 432 dev->event_handler = tick_handle_periodic_broadcast; 433 } 434 435 #ifdef CONFIG_HOTPLUG_CPU 436 /* 437 * Remove a CPU from broadcasting 438 */ 439 void tick_shutdown_broadcast(unsigned int cpu) 440 { 441 struct clock_event_device *bc; 442 unsigned long flags; 443 444 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 445 446 bc = tick_broadcast_device.evtdev; 447 cpumask_clear_cpu(cpu, tick_broadcast_mask); 448 cpumask_clear_cpu(cpu, tick_broadcast_on); 449 450 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 451 if (bc && cpumask_empty(tick_broadcast_mask)) 452 clockevents_shutdown(bc); 453 } 454 455 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 456 } 457 #endif 458 459 void tick_suspend_broadcast(void) 460 { 461 struct clock_event_device *bc; 462 unsigned long flags; 463 464 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 465 466 bc = tick_broadcast_device.evtdev; 467 if (bc) 468 clockevents_shutdown(bc); 469 470 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 471 } 472 473 /* 474 * This is called from tick_resume_local() on a resuming CPU. That's 475 * called from the core resume function, tick_unfreeze() and the magic XEN 476 * resume hackery. 477 * 478 * In none of these cases the broadcast device mode can change and the 479 * bit of the resuming CPU in the broadcast mask is safe as well. 480 */ 481 bool tick_resume_check_broadcast(void) 482 { 483 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 484 return false; 485 else 486 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 487 } 488 489 void tick_resume_broadcast(void) 490 { 491 struct clock_event_device *bc; 492 unsigned long flags; 493 494 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 495 496 bc = tick_broadcast_device.evtdev; 497 498 if (bc) { 499 clockevents_tick_resume(bc); 500 501 switch (tick_broadcast_device.mode) { 502 case TICKDEV_MODE_PERIODIC: 503 if (!cpumask_empty(tick_broadcast_mask)) 504 tick_broadcast_start_periodic(bc); 505 break; 506 case TICKDEV_MODE_ONESHOT: 507 if (!cpumask_empty(tick_broadcast_mask)) 508 tick_resume_broadcast_oneshot(bc); 509 break; 510 } 511 } 512 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 513 } 514 515 #ifdef CONFIG_TICK_ONESHOT 516 517 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 518 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 519 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 520 521 /* 522 * Exposed for debugging: see timer_list.c 523 */ 524 struct cpumask *tick_get_broadcast_oneshot_mask(void) 525 { 526 return tick_broadcast_oneshot_mask; 527 } 528 529 /* 530 * Called before going idle with interrupts disabled. Checks whether a 531 * broadcast event from the other core is about to happen. We detected 532 * that in tick_broadcast_oneshot_control(). The callsite can use this 533 * to avoid a deep idle transition as we are about to get the 534 * broadcast IPI right away. 535 */ 536 int tick_check_broadcast_expired(void) 537 { 538 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 539 } 540 541 /* 542 * Set broadcast interrupt affinity 543 */ 544 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 545 const struct cpumask *cpumask) 546 { 547 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 548 return; 549 550 if (cpumask_equal(bc->cpumask, cpumask)) 551 return; 552 553 bc->cpumask = cpumask; 554 irq_set_affinity(bc->irq, bc->cpumask); 555 } 556 557 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 558 ktime_t expires) 559 { 560 if (!clockevent_state_oneshot(bc)) 561 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 562 563 clockevents_program_event(bc, expires, 1); 564 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 565 } 566 567 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 568 { 569 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 570 } 571 572 /* 573 * Called from irq_enter() when idle was interrupted to reenable the 574 * per cpu device. 575 */ 576 void tick_check_oneshot_broadcast_this_cpu(void) 577 { 578 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 579 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 580 581 /* 582 * We might be in the middle of switching over from 583 * periodic to oneshot. If the CPU has not yet 584 * switched over, leave the device alone. 585 */ 586 if (td->mode == TICKDEV_MODE_ONESHOT) { 587 clockevents_switch_state(td->evtdev, 588 CLOCK_EVT_STATE_ONESHOT); 589 } 590 } 591 } 592 593 /* 594 * Handle oneshot mode broadcasting 595 */ 596 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 597 { 598 struct tick_device *td; 599 ktime_t now, next_event; 600 int cpu, next_cpu = 0; 601 bool bc_local; 602 603 raw_spin_lock(&tick_broadcast_lock); 604 dev->next_event = KTIME_MAX; 605 next_event = KTIME_MAX; 606 cpumask_clear(tmpmask); 607 now = ktime_get(); 608 /* Find all expired events */ 609 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 610 /* 611 * Required for !SMP because for_each_cpu() reports 612 * unconditionally CPU0 as set on UP kernels. 613 */ 614 if (!IS_ENABLED(CONFIG_SMP) && 615 cpumask_empty(tick_broadcast_oneshot_mask)) 616 break; 617 618 td = &per_cpu(tick_cpu_device, cpu); 619 if (td->evtdev->next_event <= now) { 620 cpumask_set_cpu(cpu, tmpmask); 621 /* 622 * Mark the remote cpu in the pending mask, so 623 * it can avoid reprogramming the cpu local 624 * timer in tick_broadcast_oneshot_control(). 625 */ 626 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 627 } else if (td->evtdev->next_event < next_event) { 628 next_event = td->evtdev->next_event; 629 next_cpu = cpu; 630 } 631 } 632 633 /* 634 * Remove the current cpu from the pending mask. The event is 635 * delivered immediately in tick_do_broadcast() ! 636 */ 637 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 638 639 /* Take care of enforced broadcast requests */ 640 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 641 cpumask_clear(tick_broadcast_force_mask); 642 643 /* 644 * Sanity check. Catch the case where we try to broadcast to 645 * offline cpus. 646 */ 647 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 648 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 649 650 /* 651 * Wakeup the cpus which have an expired event. 652 */ 653 bc_local = tick_do_broadcast(tmpmask); 654 655 /* 656 * Two reasons for reprogram: 657 * 658 * - The global event did not expire any CPU local 659 * events. This happens in dyntick mode, as the maximum PIT 660 * delta is quite small. 661 * 662 * - There are pending events on sleeping CPUs which were not 663 * in the event mask 664 */ 665 if (next_event != KTIME_MAX) 666 tick_broadcast_set_event(dev, next_cpu, next_event); 667 668 raw_spin_unlock(&tick_broadcast_lock); 669 670 if (bc_local) { 671 td = this_cpu_ptr(&tick_cpu_device); 672 td->evtdev->event_handler(td->evtdev); 673 } 674 } 675 676 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 677 { 678 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 679 return 0; 680 if (bc->next_event == KTIME_MAX) 681 return 0; 682 return bc->bound_on == cpu ? -EBUSY : 0; 683 } 684 685 static void broadcast_shutdown_local(struct clock_event_device *bc, 686 struct clock_event_device *dev) 687 { 688 /* 689 * For hrtimer based broadcasting we cannot shutdown the cpu 690 * local device if our own event is the first one to expire or 691 * if we own the broadcast timer. 692 */ 693 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 694 if (broadcast_needs_cpu(bc, smp_processor_id())) 695 return; 696 if (dev->next_event < bc->next_event) 697 return; 698 } 699 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 700 } 701 702 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 703 { 704 struct clock_event_device *bc, *dev; 705 int cpu, ret = 0; 706 ktime_t now; 707 708 /* 709 * If there is no broadcast device, tell the caller not to go 710 * into deep idle. 711 */ 712 if (!tick_broadcast_device.evtdev) 713 return -EBUSY; 714 715 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 716 717 raw_spin_lock(&tick_broadcast_lock); 718 bc = tick_broadcast_device.evtdev; 719 cpu = smp_processor_id(); 720 721 if (state == TICK_BROADCAST_ENTER) { 722 /* 723 * If the current CPU owns the hrtimer broadcast 724 * mechanism, it cannot go deep idle and we do not add 725 * the CPU to the broadcast mask. We don't have to go 726 * through the EXIT path as the local timer is not 727 * shutdown. 728 */ 729 ret = broadcast_needs_cpu(bc, cpu); 730 if (ret) 731 goto out; 732 733 /* 734 * If the broadcast device is in periodic mode, we 735 * return. 736 */ 737 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 738 /* If it is a hrtimer based broadcast, return busy */ 739 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 740 ret = -EBUSY; 741 goto out; 742 } 743 744 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 745 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 746 747 /* Conditionally shut down the local timer. */ 748 broadcast_shutdown_local(bc, dev); 749 750 /* 751 * We only reprogram the broadcast timer if we 752 * did not mark ourself in the force mask and 753 * if the cpu local event is earlier than the 754 * broadcast event. If the current CPU is in 755 * the force mask, then we are going to be 756 * woken by the IPI right away; we return 757 * busy, so the CPU does not try to go deep 758 * idle. 759 */ 760 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 761 ret = -EBUSY; 762 } else if (dev->next_event < bc->next_event) { 763 tick_broadcast_set_event(bc, cpu, dev->next_event); 764 /* 765 * In case of hrtimer broadcasts the 766 * programming might have moved the 767 * timer to this cpu. If yes, remove 768 * us from the broadcast mask and 769 * return busy. 770 */ 771 ret = broadcast_needs_cpu(bc, cpu); 772 if (ret) { 773 cpumask_clear_cpu(cpu, 774 tick_broadcast_oneshot_mask); 775 } 776 } 777 } 778 } else { 779 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 780 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 781 /* 782 * The cpu which was handling the broadcast 783 * timer marked this cpu in the broadcast 784 * pending mask and fired the broadcast 785 * IPI. So we are going to handle the expired 786 * event anyway via the broadcast IPI 787 * handler. No need to reprogram the timer 788 * with an already expired event. 789 */ 790 if (cpumask_test_and_clear_cpu(cpu, 791 tick_broadcast_pending_mask)) 792 goto out; 793 794 /* 795 * Bail out if there is no next event. 796 */ 797 if (dev->next_event == KTIME_MAX) 798 goto out; 799 /* 800 * If the pending bit is not set, then we are 801 * either the CPU handling the broadcast 802 * interrupt or we got woken by something else. 803 * 804 * We are not longer in the broadcast mask, so 805 * if the cpu local expiry time is already 806 * reached, we would reprogram the cpu local 807 * timer with an already expired event. 808 * 809 * This can lead to a ping-pong when we return 810 * to idle and therefor rearm the broadcast 811 * timer before the cpu local timer was able 812 * to fire. This happens because the forced 813 * reprogramming makes sure that the event 814 * will happen in the future and depending on 815 * the min_delta setting this might be far 816 * enough out that the ping-pong starts. 817 * 818 * If the cpu local next_event has expired 819 * then we know that the broadcast timer 820 * next_event has expired as well and 821 * broadcast is about to be handled. So we 822 * avoid reprogramming and enforce that the 823 * broadcast handler, which did not run yet, 824 * will invoke the cpu local handler. 825 * 826 * We cannot call the handler directly from 827 * here, because we might be in a NOHZ phase 828 * and we did not go through the irq_enter() 829 * nohz fixups. 830 */ 831 now = ktime_get(); 832 if (dev->next_event <= now) { 833 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 834 goto out; 835 } 836 /* 837 * We got woken by something else. Reprogram 838 * the cpu local timer device. 839 */ 840 tick_program_event(dev->next_event, 1); 841 } 842 } 843 out: 844 raw_spin_unlock(&tick_broadcast_lock); 845 return ret; 846 } 847 848 /* 849 * Reset the one shot broadcast for a cpu 850 * 851 * Called with tick_broadcast_lock held 852 */ 853 static void tick_broadcast_clear_oneshot(int cpu) 854 { 855 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 856 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 857 } 858 859 static void tick_broadcast_init_next_event(struct cpumask *mask, 860 ktime_t expires) 861 { 862 struct tick_device *td; 863 int cpu; 864 865 for_each_cpu(cpu, mask) { 866 td = &per_cpu(tick_cpu_device, cpu); 867 if (td->evtdev) 868 td->evtdev->next_event = expires; 869 } 870 } 871 872 /** 873 * tick_broadcast_setup_oneshot - setup the broadcast device 874 */ 875 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 876 { 877 int cpu = smp_processor_id(); 878 879 if (!bc) 880 return; 881 882 /* Set it up only once ! */ 883 if (bc->event_handler != tick_handle_oneshot_broadcast) { 884 int was_periodic = clockevent_state_periodic(bc); 885 886 bc->event_handler = tick_handle_oneshot_broadcast; 887 888 /* 889 * We must be careful here. There might be other CPUs 890 * waiting for periodic broadcast. We need to set the 891 * oneshot_mask bits for those and program the 892 * broadcast device to fire. 893 */ 894 cpumask_copy(tmpmask, tick_broadcast_mask); 895 cpumask_clear_cpu(cpu, tmpmask); 896 cpumask_or(tick_broadcast_oneshot_mask, 897 tick_broadcast_oneshot_mask, tmpmask); 898 899 if (was_periodic && !cpumask_empty(tmpmask)) { 900 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 901 tick_broadcast_init_next_event(tmpmask, 902 tick_next_period); 903 tick_broadcast_set_event(bc, cpu, tick_next_period); 904 } else 905 bc->next_event = KTIME_MAX; 906 } else { 907 /* 908 * The first cpu which switches to oneshot mode sets 909 * the bit for all other cpus which are in the general 910 * (periodic) broadcast mask. So the bit is set and 911 * would prevent the first broadcast enter after this 912 * to program the bc device. 913 */ 914 tick_broadcast_clear_oneshot(cpu); 915 } 916 } 917 918 /* 919 * Select oneshot operating mode for the broadcast device 920 */ 921 void tick_broadcast_switch_to_oneshot(void) 922 { 923 struct clock_event_device *bc; 924 unsigned long flags; 925 926 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 927 928 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 929 bc = tick_broadcast_device.evtdev; 930 if (bc) 931 tick_broadcast_setup_oneshot(bc); 932 933 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 934 } 935 936 #ifdef CONFIG_HOTPLUG_CPU 937 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 938 { 939 struct clock_event_device *bc; 940 unsigned long flags; 941 942 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 943 bc = tick_broadcast_device.evtdev; 944 945 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 946 /* This moves the broadcast assignment to this CPU: */ 947 clockevents_program_event(bc, bc->next_event, 1); 948 } 949 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 950 } 951 952 /* 953 * Remove a dead CPU from broadcasting 954 */ 955 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 956 { 957 unsigned long flags; 958 959 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 960 961 /* 962 * Clear the broadcast masks for the dead cpu, but do not stop 963 * the broadcast device! 964 */ 965 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 966 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 967 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 968 969 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 970 } 971 #endif 972 973 /* 974 * Check, whether the broadcast device is in one shot mode 975 */ 976 int tick_broadcast_oneshot_active(void) 977 { 978 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 979 } 980 981 /* 982 * Check whether the broadcast device supports oneshot. 983 */ 984 bool tick_broadcast_oneshot_available(void) 985 { 986 struct clock_event_device *bc = tick_broadcast_device.evtdev; 987 988 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 989 } 990 991 #else 992 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 993 { 994 struct clock_event_device *bc = tick_broadcast_device.evtdev; 995 996 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 997 return -EBUSY; 998 999 return 0; 1000 } 1001 #endif 1002 1003 void __init tick_broadcast_init(void) 1004 { 1005 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1006 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1007 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1008 #ifdef CONFIG_TICK_ONESHOT 1009 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1010 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1011 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1012 #endif 1013 } 1014