xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision cdfce539)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 static struct tick_device tick_broadcast_device;
31 static cpumask_var_t tick_broadcast_mask;
32 static cpumask_var_t tmpmask;
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35 
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41 
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47 	return &tick_broadcast_device;
48 }
49 
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52 	return tick_broadcast_mask;
53 }
54 
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60 	if (bc)
61 		tick_setup_periodic(bc, 1);
62 }
63 
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
70 
71 	if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
72 	    (tick_broadcast_device.evtdev &&
73 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
74 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
75 		return 0;
76 
77 	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
78 	if (cur)
79 		cur->event_handler = clockevents_handle_noop;
80 	tick_broadcast_device.evtdev = dev;
81 	if (!cpumask_empty(tick_broadcast_mask))
82 		tick_broadcast_start_periodic(dev);
83 	/*
84 	 * Inform all cpus about this. We might be in a situation
85 	 * where we did not switch to oneshot mode because the per cpu
86 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
87 	 * of a oneshot capable broadcast device. Without that
88 	 * notification the systems stays stuck in periodic mode
89 	 * forever.
90 	 */
91 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
92 		tick_clock_notify();
93 	return 1;
94 }
95 
96 /*
97  * Check, if the device is the broadcast device
98  */
99 int tick_is_broadcast_device(struct clock_event_device *dev)
100 {
101 	return (dev && tick_broadcast_device.evtdev == dev);
102 }
103 
104 static void err_broadcast(const struct cpumask *mask)
105 {
106 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
107 }
108 
109 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
110 {
111 	if (!dev->broadcast)
112 		dev->broadcast = tick_broadcast;
113 	if (!dev->broadcast) {
114 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
115 			     dev->name);
116 		dev->broadcast = err_broadcast;
117 	}
118 }
119 
120 /*
121  * Check, if the device is disfunctional and a place holder, which
122  * needs to be handled by the broadcast device.
123  */
124 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
125 {
126 	unsigned long flags;
127 	int ret = 0;
128 
129 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
130 
131 	/*
132 	 * Devices might be registered with both periodic and oneshot
133 	 * mode disabled. This signals, that the device needs to be
134 	 * operated from the broadcast device and is a placeholder for
135 	 * the cpu local device.
136 	 */
137 	if (!tick_device_is_functional(dev)) {
138 		dev->event_handler = tick_handle_periodic;
139 		tick_device_setup_broadcast_func(dev);
140 		cpumask_set_cpu(cpu, tick_broadcast_mask);
141 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
142 		ret = 1;
143 	} else {
144 		/*
145 		 * When the new device is not affected by the stop
146 		 * feature and the cpu is marked in the broadcast mask
147 		 * then clear the broadcast bit.
148 		 */
149 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
150 			int cpu = smp_processor_id();
151 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
152 			tick_broadcast_clear_oneshot(cpu);
153 		} else {
154 			tick_device_setup_broadcast_func(dev);
155 		}
156 	}
157 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
158 	return ret;
159 }
160 
161 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
162 int tick_receive_broadcast(void)
163 {
164 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
165 	struct clock_event_device *evt = td->evtdev;
166 
167 	if (!evt)
168 		return -ENODEV;
169 
170 	if (!evt->event_handler)
171 		return -EINVAL;
172 
173 	evt->event_handler(evt);
174 	return 0;
175 }
176 #endif
177 
178 /*
179  * Broadcast the event to the cpus, which are set in the mask (mangled).
180  */
181 static void tick_do_broadcast(struct cpumask *mask)
182 {
183 	int cpu = smp_processor_id();
184 	struct tick_device *td;
185 
186 	/*
187 	 * Check, if the current cpu is in the mask
188 	 */
189 	if (cpumask_test_cpu(cpu, mask)) {
190 		cpumask_clear_cpu(cpu, mask);
191 		td = &per_cpu(tick_cpu_device, cpu);
192 		td->evtdev->event_handler(td->evtdev);
193 	}
194 
195 	if (!cpumask_empty(mask)) {
196 		/*
197 		 * It might be necessary to actually check whether the devices
198 		 * have different broadcast functions. For now, just use the
199 		 * one of the first device. This works as long as we have this
200 		 * misfeature only on x86 (lapic)
201 		 */
202 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
203 		td->evtdev->broadcast(mask);
204 	}
205 }
206 
207 /*
208  * Periodic broadcast:
209  * - invoke the broadcast handlers
210  */
211 static void tick_do_periodic_broadcast(void)
212 {
213 	raw_spin_lock(&tick_broadcast_lock);
214 
215 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
216 	tick_do_broadcast(tmpmask);
217 
218 	raw_spin_unlock(&tick_broadcast_lock);
219 }
220 
221 /*
222  * Event handler for periodic broadcast ticks
223  */
224 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
225 {
226 	ktime_t next;
227 
228 	tick_do_periodic_broadcast();
229 
230 	/*
231 	 * The device is in periodic mode. No reprogramming necessary:
232 	 */
233 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
234 		return;
235 
236 	/*
237 	 * Setup the next period for devices, which do not have
238 	 * periodic mode. We read dev->next_event first and add to it
239 	 * when the event already expired. clockevents_program_event()
240 	 * sets dev->next_event only when the event is really
241 	 * programmed to the device.
242 	 */
243 	for (next = dev->next_event; ;) {
244 		next = ktime_add(next, tick_period);
245 
246 		if (!clockevents_program_event(dev, next, false))
247 			return;
248 		tick_do_periodic_broadcast();
249 	}
250 }
251 
252 /*
253  * Powerstate information: The system enters/leaves a state, where
254  * affected devices might stop
255  */
256 static void tick_do_broadcast_on_off(unsigned long *reason)
257 {
258 	struct clock_event_device *bc, *dev;
259 	struct tick_device *td;
260 	unsigned long flags;
261 	int cpu, bc_stopped;
262 
263 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
264 
265 	cpu = smp_processor_id();
266 	td = &per_cpu(tick_cpu_device, cpu);
267 	dev = td->evtdev;
268 	bc = tick_broadcast_device.evtdev;
269 
270 	/*
271 	 * Is the device not affected by the powerstate ?
272 	 */
273 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
274 		goto out;
275 
276 	if (!tick_device_is_functional(dev))
277 		goto out;
278 
279 	bc_stopped = cpumask_empty(tick_broadcast_mask);
280 
281 	switch (*reason) {
282 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
283 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
284 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
285 			if (tick_broadcast_device.mode ==
286 			    TICKDEV_MODE_PERIODIC)
287 				clockevents_shutdown(dev);
288 		}
289 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
290 			tick_broadcast_force = 1;
291 		break;
292 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
293 		if (!tick_broadcast_force &&
294 		    cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
295 			if (tick_broadcast_device.mode ==
296 			    TICKDEV_MODE_PERIODIC)
297 				tick_setup_periodic(dev, 0);
298 		}
299 		break;
300 	}
301 
302 	if (cpumask_empty(tick_broadcast_mask)) {
303 		if (!bc_stopped)
304 			clockevents_shutdown(bc);
305 	} else if (bc_stopped) {
306 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
307 			tick_broadcast_start_periodic(bc);
308 		else
309 			tick_broadcast_setup_oneshot(bc);
310 	}
311 out:
312 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
313 }
314 
315 /*
316  * Powerstate information: The system enters/leaves a state, where
317  * affected devices might stop.
318  */
319 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
320 {
321 	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
322 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
323 		       "offline CPU #%d\n", *oncpu);
324 	else
325 		tick_do_broadcast_on_off(&reason);
326 }
327 
328 /*
329  * Set the periodic handler depending on broadcast on/off
330  */
331 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
332 {
333 	if (!broadcast)
334 		dev->event_handler = tick_handle_periodic;
335 	else
336 		dev->event_handler = tick_handle_periodic_broadcast;
337 }
338 
339 /*
340  * Remove a CPU from broadcasting
341  */
342 void tick_shutdown_broadcast(unsigned int *cpup)
343 {
344 	struct clock_event_device *bc;
345 	unsigned long flags;
346 	unsigned int cpu = *cpup;
347 
348 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
349 
350 	bc = tick_broadcast_device.evtdev;
351 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
352 
353 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
354 		if (bc && cpumask_empty(tick_broadcast_mask))
355 			clockevents_shutdown(bc);
356 	}
357 
358 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
359 }
360 
361 void tick_suspend_broadcast(void)
362 {
363 	struct clock_event_device *bc;
364 	unsigned long flags;
365 
366 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
367 
368 	bc = tick_broadcast_device.evtdev;
369 	if (bc)
370 		clockevents_shutdown(bc);
371 
372 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
373 }
374 
375 int tick_resume_broadcast(void)
376 {
377 	struct clock_event_device *bc;
378 	unsigned long flags;
379 	int broadcast = 0;
380 
381 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
382 
383 	bc = tick_broadcast_device.evtdev;
384 
385 	if (bc) {
386 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
387 
388 		switch (tick_broadcast_device.mode) {
389 		case TICKDEV_MODE_PERIODIC:
390 			if (!cpumask_empty(tick_broadcast_mask))
391 				tick_broadcast_start_periodic(bc);
392 			broadcast = cpumask_test_cpu(smp_processor_id(),
393 						     tick_broadcast_mask);
394 			break;
395 		case TICKDEV_MODE_ONESHOT:
396 			if (!cpumask_empty(tick_broadcast_mask))
397 				broadcast = tick_resume_broadcast_oneshot(bc);
398 			break;
399 		}
400 	}
401 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
402 
403 	return broadcast;
404 }
405 
406 
407 #ifdef CONFIG_TICK_ONESHOT
408 
409 static cpumask_var_t tick_broadcast_oneshot_mask;
410 static cpumask_var_t tick_broadcast_pending_mask;
411 static cpumask_var_t tick_broadcast_force_mask;
412 
413 /*
414  * Exposed for debugging: see timer_list.c
415  */
416 struct cpumask *tick_get_broadcast_oneshot_mask(void)
417 {
418 	return tick_broadcast_oneshot_mask;
419 }
420 
421 /*
422  * Called before going idle with interrupts disabled. Checks whether a
423  * broadcast event from the other core is about to happen. We detected
424  * that in tick_broadcast_oneshot_control(). The callsite can use this
425  * to avoid a deep idle transition as we are about to get the
426  * broadcast IPI right away.
427  */
428 int tick_check_broadcast_expired(void)
429 {
430 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
431 }
432 
433 /*
434  * Set broadcast interrupt affinity
435  */
436 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
437 					const struct cpumask *cpumask)
438 {
439 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
440 		return;
441 
442 	if (cpumask_equal(bc->cpumask, cpumask))
443 		return;
444 
445 	bc->cpumask = cpumask;
446 	irq_set_affinity(bc->irq, bc->cpumask);
447 }
448 
449 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
450 				    ktime_t expires, int force)
451 {
452 	int ret;
453 
454 	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
455 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
456 
457 	ret = clockevents_program_event(bc, expires, force);
458 	if (!ret)
459 		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
460 	return ret;
461 }
462 
463 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
464 {
465 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
466 	return 0;
467 }
468 
469 /*
470  * Called from irq_enter() when idle was interrupted to reenable the
471  * per cpu device.
472  */
473 void tick_check_oneshot_broadcast(int cpu)
474 {
475 	if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
476 		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
477 
478 		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
479 	}
480 }
481 
482 /*
483  * Handle oneshot mode broadcasting
484  */
485 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
486 {
487 	struct tick_device *td;
488 	ktime_t now, next_event;
489 	int cpu, next_cpu = 0;
490 
491 	raw_spin_lock(&tick_broadcast_lock);
492 again:
493 	dev->next_event.tv64 = KTIME_MAX;
494 	next_event.tv64 = KTIME_MAX;
495 	cpumask_clear(tmpmask);
496 	now = ktime_get();
497 	/* Find all expired events */
498 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
499 		td = &per_cpu(tick_cpu_device, cpu);
500 		if (td->evtdev->next_event.tv64 <= now.tv64) {
501 			cpumask_set_cpu(cpu, tmpmask);
502 			/*
503 			 * Mark the remote cpu in the pending mask, so
504 			 * it can avoid reprogramming the cpu local
505 			 * timer in tick_broadcast_oneshot_control().
506 			 */
507 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
508 		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
509 			next_event.tv64 = td->evtdev->next_event.tv64;
510 			next_cpu = cpu;
511 		}
512 	}
513 
514 	/* Take care of enforced broadcast requests */
515 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
516 	cpumask_clear(tick_broadcast_force_mask);
517 
518 	/*
519 	 * Wakeup the cpus which have an expired event.
520 	 */
521 	tick_do_broadcast(tmpmask);
522 
523 	/*
524 	 * Two reasons for reprogram:
525 	 *
526 	 * - The global event did not expire any CPU local
527 	 * events. This happens in dyntick mode, as the maximum PIT
528 	 * delta is quite small.
529 	 *
530 	 * - There are pending events on sleeping CPUs which were not
531 	 * in the event mask
532 	 */
533 	if (next_event.tv64 != KTIME_MAX) {
534 		/*
535 		 * Rearm the broadcast device. If event expired,
536 		 * repeat the above
537 		 */
538 		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
539 			goto again;
540 	}
541 	raw_spin_unlock(&tick_broadcast_lock);
542 }
543 
544 /*
545  * Powerstate information: The system enters/leaves a state, where
546  * affected devices might stop
547  */
548 void tick_broadcast_oneshot_control(unsigned long reason)
549 {
550 	struct clock_event_device *bc, *dev;
551 	struct tick_device *td;
552 	unsigned long flags;
553 	ktime_t now;
554 	int cpu;
555 
556 	/*
557 	 * Periodic mode does not care about the enter/exit of power
558 	 * states
559 	 */
560 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
561 		return;
562 
563 	/*
564 	 * We are called with preemtion disabled from the depth of the
565 	 * idle code, so we can't be moved away.
566 	 */
567 	cpu = smp_processor_id();
568 	td = &per_cpu(tick_cpu_device, cpu);
569 	dev = td->evtdev;
570 
571 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
572 		return;
573 
574 	bc = tick_broadcast_device.evtdev;
575 
576 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
577 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
578 		WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
579 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
580 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
581 			/*
582 			 * We only reprogram the broadcast timer if we
583 			 * did not mark ourself in the force mask and
584 			 * if the cpu local event is earlier than the
585 			 * broadcast event. If the current CPU is in
586 			 * the force mask, then we are going to be
587 			 * woken by the IPI right away.
588 			 */
589 			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
590 			    dev->next_event.tv64 < bc->next_event.tv64)
591 				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
592 		}
593 	} else {
594 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
595 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
596 			if (dev->next_event.tv64 == KTIME_MAX)
597 				goto out;
598 			/*
599 			 * The cpu which was handling the broadcast
600 			 * timer marked this cpu in the broadcast
601 			 * pending mask and fired the broadcast
602 			 * IPI. So we are going to handle the expired
603 			 * event anyway via the broadcast IPI
604 			 * handler. No need to reprogram the timer
605 			 * with an already expired event.
606 			 */
607 			if (cpumask_test_and_clear_cpu(cpu,
608 				       tick_broadcast_pending_mask))
609 				goto out;
610 
611 			/*
612 			 * If the pending bit is not set, then we are
613 			 * either the CPU handling the broadcast
614 			 * interrupt or we got woken by something else.
615 			 *
616 			 * We are not longer in the broadcast mask, so
617 			 * if the cpu local expiry time is already
618 			 * reached, we would reprogram the cpu local
619 			 * timer with an already expired event.
620 			 *
621 			 * This can lead to a ping-pong when we return
622 			 * to idle and therefor rearm the broadcast
623 			 * timer before the cpu local timer was able
624 			 * to fire. This happens because the forced
625 			 * reprogramming makes sure that the event
626 			 * will happen in the future and depending on
627 			 * the min_delta setting this might be far
628 			 * enough out that the ping-pong starts.
629 			 *
630 			 * If the cpu local next_event has expired
631 			 * then we know that the broadcast timer
632 			 * next_event has expired as well and
633 			 * broadcast is about to be handled. So we
634 			 * avoid reprogramming and enforce that the
635 			 * broadcast handler, which did not run yet,
636 			 * will invoke the cpu local handler.
637 			 *
638 			 * We cannot call the handler directly from
639 			 * here, because we might be in a NOHZ phase
640 			 * and we did not go through the irq_enter()
641 			 * nohz fixups.
642 			 */
643 			now = ktime_get();
644 			if (dev->next_event.tv64 <= now.tv64) {
645 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
646 				goto out;
647 			}
648 			/*
649 			 * We got woken by something else. Reprogram
650 			 * the cpu local timer device.
651 			 */
652 			tick_program_event(dev->next_event, 1);
653 		}
654 	}
655 out:
656 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
657 }
658 
659 /*
660  * Reset the one shot broadcast for a cpu
661  *
662  * Called with tick_broadcast_lock held
663  */
664 static void tick_broadcast_clear_oneshot(int cpu)
665 {
666 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
667 }
668 
669 static void tick_broadcast_init_next_event(struct cpumask *mask,
670 					   ktime_t expires)
671 {
672 	struct tick_device *td;
673 	int cpu;
674 
675 	for_each_cpu(cpu, mask) {
676 		td = &per_cpu(tick_cpu_device, cpu);
677 		if (td->evtdev)
678 			td->evtdev->next_event = expires;
679 	}
680 }
681 
682 /**
683  * tick_broadcast_setup_oneshot - setup the broadcast device
684  */
685 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
686 {
687 	int cpu = smp_processor_id();
688 
689 	/* Set it up only once ! */
690 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
691 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
692 
693 		bc->event_handler = tick_handle_oneshot_broadcast;
694 
695 		/* Take the do_timer update */
696 		if (!tick_nohz_full_cpu(cpu))
697 			tick_do_timer_cpu = cpu;
698 
699 		/*
700 		 * We must be careful here. There might be other CPUs
701 		 * waiting for periodic broadcast. We need to set the
702 		 * oneshot_mask bits for those and program the
703 		 * broadcast device to fire.
704 		 */
705 		cpumask_copy(tmpmask, tick_broadcast_mask);
706 		cpumask_clear_cpu(cpu, tmpmask);
707 		cpumask_or(tick_broadcast_oneshot_mask,
708 			   tick_broadcast_oneshot_mask, tmpmask);
709 
710 		if (was_periodic && !cpumask_empty(tmpmask)) {
711 			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
712 			tick_broadcast_init_next_event(tmpmask,
713 						       tick_next_period);
714 			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
715 		} else
716 			bc->next_event.tv64 = KTIME_MAX;
717 	} else {
718 		/*
719 		 * The first cpu which switches to oneshot mode sets
720 		 * the bit for all other cpus which are in the general
721 		 * (periodic) broadcast mask. So the bit is set and
722 		 * would prevent the first broadcast enter after this
723 		 * to program the bc device.
724 		 */
725 		tick_broadcast_clear_oneshot(cpu);
726 	}
727 }
728 
729 /*
730  * Select oneshot operating mode for the broadcast device
731  */
732 void tick_broadcast_switch_to_oneshot(void)
733 {
734 	struct clock_event_device *bc;
735 	unsigned long flags;
736 
737 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
738 
739 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
740 	bc = tick_broadcast_device.evtdev;
741 	if (bc)
742 		tick_broadcast_setup_oneshot(bc);
743 
744 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
745 }
746 
747 
748 /*
749  * Remove a dead CPU from broadcasting
750  */
751 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
752 {
753 	unsigned long flags;
754 	unsigned int cpu = *cpup;
755 
756 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
757 
758 	/*
759 	 * Clear the broadcast mask flag for the dead cpu, but do not
760 	 * stop the broadcast device!
761 	 */
762 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
763 
764 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
765 }
766 
767 /*
768  * Check, whether the broadcast device is in one shot mode
769  */
770 int tick_broadcast_oneshot_active(void)
771 {
772 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
773 }
774 
775 /*
776  * Check whether the broadcast device supports oneshot.
777  */
778 bool tick_broadcast_oneshot_available(void)
779 {
780 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
781 
782 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
783 }
784 
785 #endif
786 
787 void __init tick_broadcast_init(void)
788 {
789 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
790 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
791 #ifdef CONFIG_TICK_ONESHOT
792 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
793 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
794 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
795 #endif
796 }
797