1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/irq.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/tick.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Broadcast support for broken x86 hardware, where the local apic 27 * timer stops in C3 state. 28 */ 29 30 struct tick_device tick_broadcast_device; 31 static cpumask_t tick_broadcast_mask; 32 static DEFINE_SPINLOCK(tick_broadcast_lock); 33 34 #ifdef CONFIG_TICK_ONESHOT 35 static void tick_broadcast_clear_oneshot(int cpu); 36 #else 37 static inline void tick_broadcast_clear_oneshot(int cpu) { } 38 #endif 39 40 /* 41 * Debugging: see timer_list.c 42 */ 43 struct tick_device *tick_get_broadcast_device(void) 44 { 45 return &tick_broadcast_device; 46 } 47 48 cpumask_t *tick_get_broadcast_mask(void) 49 { 50 return &tick_broadcast_mask; 51 } 52 53 /* 54 * Start the device in periodic mode 55 */ 56 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 57 { 58 if (bc) 59 tick_setup_periodic(bc, 1); 60 } 61 62 /* 63 * Check, if the device can be utilized as broadcast device: 64 */ 65 int tick_check_broadcast_device(struct clock_event_device *dev) 66 { 67 if (tick_broadcast_device.evtdev || 68 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 69 return 0; 70 71 clockevents_exchange_device(NULL, dev); 72 tick_broadcast_device.evtdev = dev; 73 if (!cpus_empty(tick_broadcast_mask)) 74 tick_broadcast_start_periodic(dev); 75 return 1; 76 } 77 78 /* 79 * Check, if the device is the broadcast device 80 */ 81 int tick_is_broadcast_device(struct clock_event_device *dev) 82 { 83 return (dev && tick_broadcast_device.evtdev == dev); 84 } 85 86 /* 87 * Check, if the device is disfunctional and a place holder, which 88 * needs to be handled by the broadcast device. 89 */ 90 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 91 { 92 unsigned long flags; 93 int ret = 0; 94 95 spin_lock_irqsave(&tick_broadcast_lock, flags); 96 97 /* 98 * Devices might be registered with both periodic and oneshot 99 * mode disabled. This signals, that the device needs to be 100 * operated from the broadcast device and is a placeholder for 101 * the cpu local device. 102 */ 103 if (!tick_device_is_functional(dev)) { 104 dev->event_handler = tick_handle_periodic; 105 cpu_set(cpu, tick_broadcast_mask); 106 tick_broadcast_start_periodic(tick_broadcast_device.evtdev); 107 ret = 1; 108 } else { 109 /* 110 * When the new device is not affected by the stop 111 * feature and the cpu is marked in the broadcast mask 112 * then clear the broadcast bit. 113 */ 114 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { 115 int cpu = smp_processor_id(); 116 117 cpu_clear(cpu, tick_broadcast_mask); 118 tick_broadcast_clear_oneshot(cpu); 119 } 120 } 121 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 122 return ret; 123 } 124 125 /* 126 * Broadcast the event to the cpus, which are set in the mask 127 */ 128 int tick_do_broadcast(cpumask_t mask) 129 { 130 int ret = 0, cpu = smp_processor_id(); 131 struct tick_device *td; 132 133 /* 134 * Check, if the current cpu is in the mask 135 */ 136 if (cpu_isset(cpu, mask)) { 137 cpu_clear(cpu, mask); 138 td = &per_cpu(tick_cpu_device, cpu); 139 td->evtdev->event_handler(td->evtdev); 140 ret = 1; 141 } 142 143 if (!cpus_empty(mask)) { 144 /* 145 * It might be necessary to actually check whether the devices 146 * have different broadcast functions. For now, just use the 147 * one of the first device. This works as long as we have this 148 * misfeature only on x86 (lapic) 149 */ 150 cpu = first_cpu(mask); 151 td = &per_cpu(tick_cpu_device, cpu); 152 td->evtdev->broadcast(mask); 153 ret = 1; 154 } 155 return ret; 156 } 157 158 /* 159 * Periodic broadcast: 160 * - invoke the broadcast handlers 161 */ 162 static void tick_do_periodic_broadcast(void) 163 { 164 cpumask_t mask; 165 166 spin_lock(&tick_broadcast_lock); 167 168 cpus_and(mask, cpu_online_map, tick_broadcast_mask); 169 tick_do_broadcast(mask); 170 171 spin_unlock(&tick_broadcast_lock); 172 } 173 174 /* 175 * Event handler for periodic broadcast ticks 176 */ 177 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 178 { 179 dev->next_event.tv64 = KTIME_MAX; 180 181 tick_do_periodic_broadcast(); 182 183 /* 184 * The device is in periodic mode. No reprogramming necessary: 185 */ 186 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 187 return; 188 189 /* 190 * Setup the next period for devices, which do not have 191 * periodic mode: 192 */ 193 for (;;) { 194 ktime_t next = ktime_add(dev->next_event, tick_period); 195 196 if (!clockevents_program_event(dev, next, ktime_get())) 197 return; 198 tick_do_periodic_broadcast(); 199 } 200 } 201 202 /* 203 * Powerstate information: The system enters/leaves a state, where 204 * affected devices might stop 205 */ 206 static void tick_do_broadcast_on_off(void *why) 207 { 208 struct clock_event_device *bc, *dev; 209 struct tick_device *td; 210 unsigned long flags, *reason = why; 211 int cpu; 212 213 spin_lock_irqsave(&tick_broadcast_lock, flags); 214 215 cpu = smp_processor_id(); 216 td = &per_cpu(tick_cpu_device, cpu); 217 dev = td->evtdev; 218 bc = tick_broadcast_device.evtdev; 219 220 /* 221 * Is the device in broadcast mode forever or is it not 222 * affected by the powerstate ? 223 */ 224 if (!dev || !tick_device_is_functional(dev) || 225 !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 226 goto out; 227 228 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) { 229 if (!cpu_isset(cpu, tick_broadcast_mask)) { 230 cpu_set(cpu, tick_broadcast_mask); 231 if (td->mode == TICKDEV_MODE_PERIODIC) 232 clockevents_set_mode(dev, 233 CLOCK_EVT_MODE_SHUTDOWN); 234 } 235 } else { 236 if (cpu_isset(cpu, tick_broadcast_mask)) { 237 cpu_clear(cpu, tick_broadcast_mask); 238 if (td->mode == TICKDEV_MODE_PERIODIC) 239 tick_setup_periodic(dev, 0); 240 } 241 } 242 243 if (cpus_empty(tick_broadcast_mask)) 244 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 245 else { 246 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 247 tick_broadcast_start_periodic(bc); 248 else 249 tick_broadcast_setup_oneshot(bc); 250 } 251 out: 252 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 253 } 254 255 /* 256 * Powerstate information: The system enters/leaves a state, where 257 * affected devices might stop. 258 */ 259 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 260 { 261 int cpu = get_cpu(); 262 263 if (!cpu_isset(*oncpu, cpu_online_map)) { 264 printk(KERN_ERR "tick-braodcast: ignoring broadcast for " 265 "offline CPU #%d\n", *oncpu); 266 } else { 267 268 if (cpu == *oncpu) 269 tick_do_broadcast_on_off(&reason); 270 else 271 smp_call_function_single(*oncpu, 272 tick_do_broadcast_on_off, 273 &reason, 1, 1); 274 } 275 put_cpu(); 276 } 277 278 /* 279 * Set the periodic handler depending on broadcast on/off 280 */ 281 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 282 { 283 if (!broadcast) 284 dev->event_handler = tick_handle_periodic; 285 else 286 dev->event_handler = tick_handle_periodic_broadcast; 287 } 288 289 /* 290 * Remove a CPU from broadcasting 291 */ 292 void tick_shutdown_broadcast(unsigned int *cpup) 293 { 294 struct clock_event_device *bc; 295 unsigned long flags; 296 unsigned int cpu = *cpup; 297 298 spin_lock_irqsave(&tick_broadcast_lock, flags); 299 300 bc = tick_broadcast_device.evtdev; 301 cpu_clear(cpu, tick_broadcast_mask); 302 303 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 304 if (bc && cpus_empty(tick_broadcast_mask)) 305 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 306 } 307 308 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 309 } 310 311 void tick_suspend_broadcast(void) 312 { 313 struct clock_event_device *bc; 314 unsigned long flags; 315 316 spin_lock_irqsave(&tick_broadcast_lock, flags); 317 318 bc = tick_broadcast_device.evtdev; 319 if (bc) 320 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 321 322 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 323 } 324 325 int tick_resume_broadcast(void) 326 { 327 struct clock_event_device *bc; 328 unsigned long flags; 329 int broadcast = 0; 330 331 spin_lock_irqsave(&tick_broadcast_lock, flags); 332 333 bc = tick_broadcast_device.evtdev; 334 335 if (bc) { 336 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 337 338 switch (tick_broadcast_device.mode) { 339 case TICKDEV_MODE_PERIODIC: 340 if(!cpus_empty(tick_broadcast_mask)) 341 tick_broadcast_start_periodic(bc); 342 broadcast = cpu_isset(smp_processor_id(), 343 tick_broadcast_mask); 344 break; 345 case TICKDEV_MODE_ONESHOT: 346 broadcast = tick_resume_broadcast_oneshot(bc); 347 break; 348 } 349 } 350 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 351 352 return broadcast; 353 } 354 355 356 #ifdef CONFIG_TICK_ONESHOT 357 358 static cpumask_t tick_broadcast_oneshot_mask; 359 360 /* 361 * Debugging: see timer_list.c 362 */ 363 cpumask_t *tick_get_broadcast_oneshot_mask(void) 364 { 365 return &tick_broadcast_oneshot_mask; 366 } 367 368 static int tick_broadcast_set_event(ktime_t expires, int force) 369 { 370 struct clock_event_device *bc = tick_broadcast_device.evtdev; 371 ktime_t now = ktime_get(); 372 int res; 373 374 for(;;) { 375 res = clockevents_program_event(bc, expires, now); 376 if (!res || !force) 377 return res; 378 now = ktime_get(); 379 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns)); 380 } 381 } 382 383 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 384 { 385 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 386 387 if(!cpus_empty(tick_broadcast_oneshot_mask)) 388 tick_broadcast_set_event(ktime_get(), 1); 389 390 return cpu_isset(smp_processor_id(), tick_broadcast_oneshot_mask); 391 } 392 393 /* 394 * Reprogram the broadcast device: 395 * 396 * Called with tick_broadcast_lock held and interrupts disabled. 397 */ 398 static int tick_broadcast_reprogram(void) 399 { 400 ktime_t expires = { .tv64 = KTIME_MAX }; 401 struct tick_device *td; 402 int cpu; 403 404 /* 405 * Find the event which expires next: 406 */ 407 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 408 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 409 td = &per_cpu(tick_cpu_device, cpu); 410 if (td->evtdev->next_event.tv64 < expires.tv64) 411 expires = td->evtdev->next_event; 412 } 413 414 if (expires.tv64 == KTIME_MAX) 415 return 0; 416 417 return tick_broadcast_set_event(expires, 0); 418 } 419 420 /* 421 * Handle oneshot mode broadcasting 422 */ 423 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 424 { 425 struct tick_device *td; 426 cpumask_t mask; 427 ktime_t now; 428 int cpu; 429 430 spin_lock(&tick_broadcast_lock); 431 again: 432 dev->next_event.tv64 = KTIME_MAX; 433 mask = CPU_MASK_NONE; 434 now = ktime_get(); 435 /* Find all expired events */ 436 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 437 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 438 td = &per_cpu(tick_cpu_device, cpu); 439 if (td->evtdev->next_event.tv64 <= now.tv64) 440 cpu_set(cpu, mask); 441 } 442 443 /* 444 * Wakeup the cpus which have an expired event. The broadcast 445 * device is reprogrammed in the return from idle code. 446 */ 447 if (!tick_do_broadcast(mask)) { 448 /* 449 * The global event did not expire any CPU local 450 * events. This happens in dyntick mode, as the 451 * maximum PIT delta is quite small. 452 */ 453 if (tick_broadcast_reprogram()) 454 goto again; 455 } 456 spin_unlock(&tick_broadcast_lock); 457 } 458 459 /* 460 * Powerstate information: The system enters/leaves a state, where 461 * affected devices might stop 462 */ 463 void tick_broadcast_oneshot_control(unsigned long reason) 464 { 465 struct clock_event_device *bc, *dev; 466 struct tick_device *td; 467 unsigned long flags; 468 int cpu; 469 470 spin_lock_irqsave(&tick_broadcast_lock, flags); 471 472 /* 473 * Periodic mode does not care about the enter/exit of power 474 * states 475 */ 476 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 477 goto out; 478 479 bc = tick_broadcast_device.evtdev; 480 cpu = smp_processor_id(); 481 td = &per_cpu(tick_cpu_device, cpu); 482 dev = td->evtdev; 483 484 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 485 goto out; 486 487 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 488 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 489 cpu_set(cpu, tick_broadcast_oneshot_mask); 490 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 491 if (dev->next_event.tv64 < bc->next_event.tv64) 492 tick_broadcast_set_event(dev->next_event, 1); 493 } 494 } else { 495 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 496 cpu_clear(cpu, tick_broadcast_oneshot_mask); 497 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 498 if (dev->next_event.tv64 != KTIME_MAX) 499 tick_program_event(dev->next_event, 1); 500 } 501 } 502 503 out: 504 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 505 } 506 507 /* 508 * Reset the one shot broadcast for a cpu 509 * 510 * Called with tick_broadcast_lock held 511 */ 512 static void tick_broadcast_clear_oneshot(int cpu) 513 { 514 cpu_clear(cpu, tick_broadcast_oneshot_mask); 515 } 516 517 /** 518 * tick_broadcast_setup_highres - setup the broadcast device for highres 519 */ 520 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 521 { 522 if (bc->mode != CLOCK_EVT_MODE_ONESHOT) { 523 bc->event_handler = tick_handle_oneshot_broadcast; 524 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 525 bc->next_event.tv64 = KTIME_MAX; 526 } 527 } 528 529 /* 530 * Select oneshot operating mode for the broadcast device 531 */ 532 void tick_broadcast_switch_to_oneshot(void) 533 { 534 struct clock_event_device *bc; 535 unsigned long flags; 536 537 spin_lock_irqsave(&tick_broadcast_lock, flags); 538 539 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 540 bc = tick_broadcast_device.evtdev; 541 if (bc) 542 tick_broadcast_setup_oneshot(bc); 543 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 544 } 545 546 547 /* 548 * Remove a dead CPU from broadcasting 549 */ 550 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 551 { 552 struct clock_event_device *bc; 553 unsigned long flags; 554 unsigned int cpu = *cpup; 555 556 spin_lock_irqsave(&tick_broadcast_lock, flags); 557 558 bc = tick_broadcast_device.evtdev; 559 cpu_clear(cpu, tick_broadcast_oneshot_mask); 560 561 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) { 562 if (bc && cpus_empty(tick_broadcast_oneshot_mask)) 563 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 564 } 565 566 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 567 } 568 569 #endif 570