xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19 
20 #include "tick-internal.h"
21 
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26 
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32 
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 # ifdef CONFIG_HOTPLUG_CPU
40 static void tick_broadcast_oneshot_offline(unsigned int cpu);
41 # endif
42 #else
43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
44 static inline void tick_broadcast_clear_oneshot(int cpu) { }
45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
46 # ifdef CONFIG_HOTPLUG_CPU
47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
48 # endif
49 #endif
50 
51 /*
52  * Debugging: see timer_list.c
53  */
54 struct tick_device *tick_get_broadcast_device(void)
55 {
56 	return &tick_broadcast_device;
57 }
58 
59 struct cpumask *tick_get_broadcast_mask(void)
60 {
61 	return tick_broadcast_mask;
62 }
63 
64 /*
65  * Start the device in periodic mode
66  */
67 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
68 {
69 	if (bc)
70 		tick_setup_periodic(bc, 1);
71 }
72 
73 /*
74  * Check, if the device can be utilized as broadcast device:
75  */
76 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
77 					struct clock_event_device *newdev)
78 {
79 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
80 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
81 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
82 		return false;
83 
84 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
85 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
86 		return false;
87 
88 	return !curdev || newdev->rating > curdev->rating;
89 }
90 
91 /*
92  * Conditionally install/replace broadcast device
93  */
94 void tick_install_broadcast_device(struct clock_event_device *dev)
95 {
96 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
97 
98 	if (!tick_check_broadcast_device(cur, dev))
99 		return;
100 
101 	if (!try_module_get(dev->owner))
102 		return;
103 
104 	clockevents_exchange_device(cur, dev);
105 	if (cur)
106 		cur->event_handler = clockevents_handle_noop;
107 	tick_broadcast_device.evtdev = dev;
108 	if (!cpumask_empty(tick_broadcast_mask))
109 		tick_broadcast_start_periodic(dev);
110 	/*
111 	 * Inform all cpus about this. We might be in a situation
112 	 * where we did not switch to oneshot mode because the per cpu
113 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
114 	 * of a oneshot capable broadcast device. Without that
115 	 * notification the systems stays stuck in periodic mode
116 	 * forever.
117 	 */
118 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
119 		tick_clock_notify();
120 }
121 
122 /*
123  * Check, if the device is the broadcast device
124  */
125 int tick_is_broadcast_device(struct clock_event_device *dev)
126 {
127 	return (dev && tick_broadcast_device.evtdev == dev);
128 }
129 
130 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
131 {
132 	int ret = -ENODEV;
133 
134 	if (tick_is_broadcast_device(dev)) {
135 		raw_spin_lock(&tick_broadcast_lock);
136 		ret = __clockevents_update_freq(dev, freq);
137 		raw_spin_unlock(&tick_broadcast_lock);
138 	}
139 	return ret;
140 }
141 
142 
143 static void err_broadcast(const struct cpumask *mask)
144 {
145 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
146 }
147 
148 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
149 {
150 	if (!dev->broadcast)
151 		dev->broadcast = tick_broadcast;
152 	if (!dev->broadcast) {
153 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
154 			     dev->name);
155 		dev->broadcast = err_broadcast;
156 	}
157 }
158 
159 /*
160  * Check, if the device is disfunctional and a place holder, which
161  * needs to be handled by the broadcast device.
162  */
163 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
164 {
165 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
166 	unsigned long flags;
167 	int ret = 0;
168 
169 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
170 
171 	/*
172 	 * Devices might be registered with both periodic and oneshot
173 	 * mode disabled. This signals, that the device needs to be
174 	 * operated from the broadcast device and is a placeholder for
175 	 * the cpu local device.
176 	 */
177 	if (!tick_device_is_functional(dev)) {
178 		dev->event_handler = tick_handle_periodic;
179 		tick_device_setup_broadcast_func(dev);
180 		cpumask_set_cpu(cpu, tick_broadcast_mask);
181 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
182 			tick_broadcast_start_periodic(bc);
183 		else
184 			tick_broadcast_setup_oneshot(bc);
185 		ret = 1;
186 	} else {
187 		/*
188 		 * Clear the broadcast bit for this cpu if the
189 		 * device is not power state affected.
190 		 */
191 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
192 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
193 		else
194 			tick_device_setup_broadcast_func(dev);
195 
196 		/*
197 		 * Clear the broadcast bit if the CPU is not in
198 		 * periodic broadcast on state.
199 		 */
200 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
201 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
202 
203 		switch (tick_broadcast_device.mode) {
204 		case TICKDEV_MODE_ONESHOT:
205 			/*
206 			 * If the system is in oneshot mode we can
207 			 * unconditionally clear the oneshot mask bit,
208 			 * because the CPU is running and therefore
209 			 * not in an idle state which causes the power
210 			 * state affected device to stop. Let the
211 			 * caller initialize the device.
212 			 */
213 			tick_broadcast_clear_oneshot(cpu);
214 			ret = 0;
215 			break;
216 
217 		case TICKDEV_MODE_PERIODIC:
218 			/*
219 			 * If the system is in periodic mode, check
220 			 * whether the broadcast device can be
221 			 * switched off now.
222 			 */
223 			if (cpumask_empty(tick_broadcast_mask) && bc)
224 				clockevents_shutdown(bc);
225 			/*
226 			 * If we kept the cpu in the broadcast mask,
227 			 * tell the caller to leave the per cpu device
228 			 * in shutdown state. The periodic interrupt
229 			 * is delivered by the broadcast device, if
230 			 * the broadcast device exists and is not
231 			 * hrtimer based.
232 			 */
233 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
234 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
235 			break;
236 		default:
237 			break;
238 		}
239 	}
240 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
241 	return ret;
242 }
243 
244 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
245 int tick_receive_broadcast(void)
246 {
247 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
248 	struct clock_event_device *evt = td->evtdev;
249 
250 	if (!evt)
251 		return -ENODEV;
252 
253 	if (!evt->event_handler)
254 		return -EINVAL;
255 
256 	evt->event_handler(evt);
257 	return 0;
258 }
259 #endif
260 
261 /*
262  * Broadcast the event to the cpus, which are set in the mask (mangled).
263  */
264 static bool tick_do_broadcast(struct cpumask *mask)
265 {
266 	int cpu = smp_processor_id();
267 	struct tick_device *td;
268 	bool local = false;
269 
270 	/*
271 	 * Check, if the current cpu is in the mask
272 	 */
273 	if (cpumask_test_cpu(cpu, mask)) {
274 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
275 
276 		cpumask_clear_cpu(cpu, mask);
277 		/*
278 		 * We only run the local handler, if the broadcast
279 		 * device is not hrtimer based. Otherwise we run into
280 		 * a hrtimer recursion.
281 		 *
282 		 * local timer_interrupt()
283 		 *   local_handler()
284 		 *     expire_hrtimers()
285 		 *       bc_handler()
286 		 *         local_handler()
287 		 *	     expire_hrtimers()
288 		 */
289 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
290 	}
291 
292 	if (!cpumask_empty(mask)) {
293 		/*
294 		 * It might be necessary to actually check whether the devices
295 		 * have different broadcast functions. For now, just use the
296 		 * one of the first device. This works as long as we have this
297 		 * misfeature only on x86 (lapic)
298 		 */
299 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
300 		td->evtdev->broadcast(mask);
301 	}
302 	return local;
303 }
304 
305 /*
306  * Periodic broadcast:
307  * - invoke the broadcast handlers
308  */
309 static bool tick_do_periodic_broadcast(void)
310 {
311 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
312 	return tick_do_broadcast(tmpmask);
313 }
314 
315 /*
316  * Event handler for periodic broadcast ticks
317  */
318 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
319 {
320 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
321 	bool bc_local;
322 
323 	raw_spin_lock(&tick_broadcast_lock);
324 
325 	/* Handle spurious interrupts gracefully */
326 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
327 		raw_spin_unlock(&tick_broadcast_lock);
328 		return;
329 	}
330 
331 	bc_local = tick_do_periodic_broadcast();
332 
333 	if (clockevent_state_oneshot(dev)) {
334 		ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
335 
336 		clockevents_program_event(dev, next, true);
337 	}
338 	raw_spin_unlock(&tick_broadcast_lock);
339 
340 	/*
341 	 * We run the handler of the local cpu after dropping
342 	 * tick_broadcast_lock because the handler might deadlock when
343 	 * trying to switch to oneshot mode.
344 	 */
345 	if (bc_local)
346 		td->evtdev->event_handler(td->evtdev);
347 }
348 
349 /**
350  * tick_broadcast_control - Enable/disable or force broadcast mode
351  * @mode:	The selected broadcast mode
352  *
353  * Called when the system enters a state where affected tick devices
354  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
355  */
356 void tick_broadcast_control(enum tick_broadcast_mode mode)
357 {
358 	struct clock_event_device *bc, *dev;
359 	struct tick_device *td;
360 	int cpu, bc_stopped;
361 	unsigned long flags;
362 
363 	/* Protects also the local clockevent device. */
364 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
365 	td = this_cpu_ptr(&tick_cpu_device);
366 	dev = td->evtdev;
367 
368 	/*
369 	 * Is the device not affected by the powerstate ?
370 	 */
371 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
372 		goto out;
373 
374 	if (!tick_device_is_functional(dev))
375 		goto out;
376 
377 	cpu = smp_processor_id();
378 	bc = tick_broadcast_device.evtdev;
379 	bc_stopped = cpumask_empty(tick_broadcast_mask);
380 
381 	switch (mode) {
382 	case TICK_BROADCAST_FORCE:
383 		tick_broadcast_forced = 1;
384 		fallthrough;
385 	case TICK_BROADCAST_ON:
386 		cpumask_set_cpu(cpu, tick_broadcast_on);
387 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
388 			/*
389 			 * Only shutdown the cpu local device, if:
390 			 *
391 			 * - the broadcast device exists
392 			 * - the broadcast device is not a hrtimer based one
393 			 * - the broadcast device is in periodic mode to
394 			 *   avoid a hickup during switch to oneshot mode
395 			 */
396 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
397 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
398 				clockevents_shutdown(dev);
399 		}
400 		break;
401 
402 	case TICK_BROADCAST_OFF:
403 		if (tick_broadcast_forced)
404 			break;
405 		cpumask_clear_cpu(cpu, tick_broadcast_on);
406 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
407 			if (tick_broadcast_device.mode ==
408 			    TICKDEV_MODE_PERIODIC)
409 				tick_setup_periodic(dev, 0);
410 		}
411 		break;
412 	}
413 
414 	if (bc) {
415 		if (cpumask_empty(tick_broadcast_mask)) {
416 			if (!bc_stopped)
417 				clockevents_shutdown(bc);
418 		} else if (bc_stopped) {
419 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
420 				tick_broadcast_start_periodic(bc);
421 			else
422 				tick_broadcast_setup_oneshot(bc);
423 		}
424 	}
425 out:
426 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 EXPORT_SYMBOL_GPL(tick_broadcast_control);
429 
430 /*
431  * Set the periodic handler depending on broadcast on/off
432  */
433 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
434 {
435 	if (!broadcast)
436 		dev->event_handler = tick_handle_periodic;
437 	else
438 		dev->event_handler = tick_handle_periodic_broadcast;
439 }
440 
441 #ifdef CONFIG_HOTPLUG_CPU
442 static void tick_shutdown_broadcast(void)
443 {
444 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
445 
446 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
447 		if (bc && cpumask_empty(tick_broadcast_mask))
448 			clockevents_shutdown(bc);
449 	}
450 }
451 
452 /*
453  * Remove a CPU from broadcasting
454  */
455 void tick_broadcast_offline(unsigned int cpu)
456 {
457 	raw_spin_lock(&tick_broadcast_lock);
458 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
459 	cpumask_clear_cpu(cpu, tick_broadcast_on);
460 	tick_broadcast_oneshot_offline(cpu);
461 	tick_shutdown_broadcast();
462 	raw_spin_unlock(&tick_broadcast_lock);
463 }
464 
465 #endif
466 
467 void tick_suspend_broadcast(void)
468 {
469 	struct clock_event_device *bc;
470 	unsigned long flags;
471 
472 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
473 
474 	bc = tick_broadcast_device.evtdev;
475 	if (bc)
476 		clockevents_shutdown(bc);
477 
478 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
479 }
480 
481 /*
482  * This is called from tick_resume_local() on a resuming CPU. That's
483  * called from the core resume function, tick_unfreeze() and the magic XEN
484  * resume hackery.
485  *
486  * In none of these cases the broadcast device mode can change and the
487  * bit of the resuming CPU in the broadcast mask is safe as well.
488  */
489 bool tick_resume_check_broadcast(void)
490 {
491 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
492 		return false;
493 	else
494 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
495 }
496 
497 void tick_resume_broadcast(void)
498 {
499 	struct clock_event_device *bc;
500 	unsigned long flags;
501 
502 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
503 
504 	bc = tick_broadcast_device.evtdev;
505 
506 	if (bc) {
507 		clockevents_tick_resume(bc);
508 
509 		switch (tick_broadcast_device.mode) {
510 		case TICKDEV_MODE_PERIODIC:
511 			if (!cpumask_empty(tick_broadcast_mask))
512 				tick_broadcast_start_periodic(bc);
513 			break;
514 		case TICKDEV_MODE_ONESHOT:
515 			if (!cpumask_empty(tick_broadcast_mask))
516 				tick_resume_broadcast_oneshot(bc);
517 			break;
518 		}
519 	}
520 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
521 }
522 
523 #ifdef CONFIG_TICK_ONESHOT
524 
525 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
526 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
527 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
528 
529 /*
530  * Exposed for debugging: see timer_list.c
531  */
532 struct cpumask *tick_get_broadcast_oneshot_mask(void)
533 {
534 	return tick_broadcast_oneshot_mask;
535 }
536 
537 /*
538  * Called before going idle with interrupts disabled. Checks whether a
539  * broadcast event from the other core is about to happen. We detected
540  * that in tick_broadcast_oneshot_control(). The callsite can use this
541  * to avoid a deep idle transition as we are about to get the
542  * broadcast IPI right away.
543  */
544 int tick_check_broadcast_expired(void)
545 {
546 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
547 }
548 
549 /*
550  * Set broadcast interrupt affinity
551  */
552 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
553 					const struct cpumask *cpumask)
554 {
555 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
556 		return;
557 
558 	if (cpumask_equal(bc->cpumask, cpumask))
559 		return;
560 
561 	bc->cpumask = cpumask;
562 	irq_set_affinity(bc->irq, bc->cpumask);
563 }
564 
565 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
566 				     ktime_t expires)
567 {
568 	if (!clockevent_state_oneshot(bc))
569 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
570 
571 	clockevents_program_event(bc, expires, 1);
572 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
573 }
574 
575 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
576 {
577 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
578 }
579 
580 /*
581  * Called from irq_enter() when idle was interrupted to reenable the
582  * per cpu device.
583  */
584 void tick_check_oneshot_broadcast_this_cpu(void)
585 {
586 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
587 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
588 
589 		/*
590 		 * We might be in the middle of switching over from
591 		 * periodic to oneshot. If the CPU has not yet
592 		 * switched over, leave the device alone.
593 		 */
594 		if (td->mode == TICKDEV_MODE_ONESHOT) {
595 			clockevents_switch_state(td->evtdev,
596 					      CLOCK_EVT_STATE_ONESHOT);
597 		}
598 	}
599 }
600 
601 /*
602  * Handle oneshot mode broadcasting
603  */
604 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
605 {
606 	struct tick_device *td;
607 	ktime_t now, next_event;
608 	int cpu, next_cpu = 0;
609 	bool bc_local;
610 
611 	raw_spin_lock(&tick_broadcast_lock);
612 	dev->next_event = KTIME_MAX;
613 	next_event = KTIME_MAX;
614 	cpumask_clear(tmpmask);
615 	now = ktime_get();
616 	/* Find all expired events */
617 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
618 		/*
619 		 * Required for !SMP because for_each_cpu() reports
620 		 * unconditionally CPU0 as set on UP kernels.
621 		 */
622 		if (!IS_ENABLED(CONFIG_SMP) &&
623 		    cpumask_empty(tick_broadcast_oneshot_mask))
624 			break;
625 
626 		td = &per_cpu(tick_cpu_device, cpu);
627 		if (td->evtdev->next_event <= now) {
628 			cpumask_set_cpu(cpu, tmpmask);
629 			/*
630 			 * Mark the remote cpu in the pending mask, so
631 			 * it can avoid reprogramming the cpu local
632 			 * timer in tick_broadcast_oneshot_control().
633 			 */
634 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
635 		} else if (td->evtdev->next_event < next_event) {
636 			next_event = td->evtdev->next_event;
637 			next_cpu = cpu;
638 		}
639 	}
640 
641 	/*
642 	 * Remove the current cpu from the pending mask. The event is
643 	 * delivered immediately in tick_do_broadcast() !
644 	 */
645 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
646 
647 	/* Take care of enforced broadcast requests */
648 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
649 	cpumask_clear(tick_broadcast_force_mask);
650 
651 	/*
652 	 * Sanity check. Catch the case where we try to broadcast to
653 	 * offline cpus.
654 	 */
655 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
656 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
657 
658 	/*
659 	 * Wakeup the cpus which have an expired event.
660 	 */
661 	bc_local = tick_do_broadcast(tmpmask);
662 
663 	/*
664 	 * Two reasons for reprogram:
665 	 *
666 	 * - The global event did not expire any CPU local
667 	 * events. This happens in dyntick mode, as the maximum PIT
668 	 * delta is quite small.
669 	 *
670 	 * - There are pending events on sleeping CPUs which were not
671 	 * in the event mask
672 	 */
673 	if (next_event != KTIME_MAX)
674 		tick_broadcast_set_event(dev, next_cpu, next_event);
675 
676 	raw_spin_unlock(&tick_broadcast_lock);
677 
678 	if (bc_local) {
679 		td = this_cpu_ptr(&tick_cpu_device);
680 		td->evtdev->event_handler(td->evtdev);
681 	}
682 }
683 
684 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
685 {
686 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
687 		return 0;
688 	if (bc->next_event == KTIME_MAX)
689 		return 0;
690 	return bc->bound_on == cpu ? -EBUSY : 0;
691 }
692 
693 static void broadcast_shutdown_local(struct clock_event_device *bc,
694 				     struct clock_event_device *dev)
695 {
696 	/*
697 	 * For hrtimer based broadcasting we cannot shutdown the cpu
698 	 * local device if our own event is the first one to expire or
699 	 * if we own the broadcast timer.
700 	 */
701 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
702 		if (broadcast_needs_cpu(bc, smp_processor_id()))
703 			return;
704 		if (dev->next_event < bc->next_event)
705 			return;
706 	}
707 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
708 }
709 
710 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
711 {
712 	struct clock_event_device *bc, *dev;
713 	int cpu, ret = 0;
714 	ktime_t now;
715 
716 	/*
717 	 * If there is no broadcast device, tell the caller not to go
718 	 * into deep idle.
719 	 */
720 	if (!tick_broadcast_device.evtdev)
721 		return -EBUSY;
722 
723 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
724 
725 	raw_spin_lock(&tick_broadcast_lock);
726 	bc = tick_broadcast_device.evtdev;
727 	cpu = smp_processor_id();
728 
729 	if (state == TICK_BROADCAST_ENTER) {
730 		/*
731 		 * If the current CPU owns the hrtimer broadcast
732 		 * mechanism, it cannot go deep idle and we do not add
733 		 * the CPU to the broadcast mask. We don't have to go
734 		 * through the EXIT path as the local timer is not
735 		 * shutdown.
736 		 */
737 		ret = broadcast_needs_cpu(bc, cpu);
738 		if (ret)
739 			goto out;
740 
741 		/*
742 		 * If the broadcast device is in periodic mode, we
743 		 * return.
744 		 */
745 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
746 			/* If it is a hrtimer based broadcast, return busy */
747 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
748 				ret = -EBUSY;
749 			goto out;
750 		}
751 
752 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
753 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
754 
755 			/* Conditionally shut down the local timer. */
756 			broadcast_shutdown_local(bc, dev);
757 
758 			/*
759 			 * We only reprogram the broadcast timer if we
760 			 * did not mark ourself in the force mask and
761 			 * if the cpu local event is earlier than the
762 			 * broadcast event. If the current CPU is in
763 			 * the force mask, then we are going to be
764 			 * woken by the IPI right away; we return
765 			 * busy, so the CPU does not try to go deep
766 			 * idle.
767 			 */
768 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
769 				ret = -EBUSY;
770 			} else if (dev->next_event < bc->next_event) {
771 				tick_broadcast_set_event(bc, cpu, dev->next_event);
772 				/*
773 				 * In case of hrtimer broadcasts the
774 				 * programming might have moved the
775 				 * timer to this cpu. If yes, remove
776 				 * us from the broadcast mask and
777 				 * return busy.
778 				 */
779 				ret = broadcast_needs_cpu(bc, cpu);
780 				if (ret) {
781 					cpumask_clear_cpu(cpu,
782 						tick_broadcast_oneshot_mask);
783 				}
784 			}
785 		}
786 	} else {
787 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
788 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
789 			/*
790 			 * The cpu which was handling the broadcast
791 			 * timer marked this cpu in the broadcast
792 			 * pending mask and fired the broadcast
793 			 * IPI. So we are going to handle the expired
794 			 * event anyway via the broadcast IPI
795 			 * handler. No need to reprogram the timer
796 			 * with an already expired event.
797 			 */
798 			if (cpumask_test_and_clear_cpu(cpu,
799 				       tick_broadcast_pending_mask))
800 				goto out;
801 
802 			/*
803 			 * Bail out if there is no next event.
804 			 */
805 			if (dev->next_event == KTIME_MAX)
806 				goto out;
807 			/*
808 			 * If the pending bit is not set, then we are
809 			 * either the CPU handling the broadcast
810 			 * interrupt or we got woken by something else.
811 			 *
812 			 * We are no longer in the broadcast mask, so
813 			 * if the cpu local expiry time is already
814 			 * reached, we would reprogram the cpu local
815 			 * timer with an already expired event.
816 			 *
817 			 * This can lead to a ping-pong when we return
818 			 * to idle and therefore rearm the broadcast
819 			 * timer before the cpu local timer was able
820 			 * to fire. This happens because the forced
821 			 * reprogramming makes sure that the event
822 			 * will happen in the future and depending on
823 			 * the min_delta setting this might be far
824 			 * enough out that the ping-pong starts.
825 			 *
826 			 * If the cpu local next_event has expired
827 			 * then we know that the broadcast timer
828 			 * next_event has expired as well and
829 			 * broadcast is about to be handled. So we
830 			 * avoid reprogramming and enforce that the
831 			 * broadcast handler, which did not run yet,
832 			 * will invoke the cpu local handler.
833 			 *
834 			 * We cannot call the handler directly from
835 			 * here, because we might be in a NOHZ phase
836 			 * and we did not go through the irq_enter()
837 			 * nohz fixups.
838 			 */
839 			now = ktime_get();
840 			if (dev->next_event <= now) {
841 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
842 				goto out;
843 			}
844 			/*
845 			 * We got woken by something else. Reprogram
846 			 * the cpu local timer device.
847 			 */
848 			tick_program_event(dev->next_event, 1);
849 		}
850 	}
851 out:
852 	raw_spin_unlock(&tick_broadcast_lock);
853 	return ret;
854 }
855 
856 /*
857  * Reset the one shot broadcast for a cpu
858  *
859  * Called with tick_broadcast_lock held
860  */
861 static void tick_broadcast_clear_oneshot(int cpu)
862 {
863 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
864 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
865 }
866 
867 static void tick_broadcast_init_next_event(struct cpumask *mask,
868 					   ktime_t expires)
869 {
870 	struct tick_device *td;
871 	int cpu;
872 
873 	for_each_cpu(cpu, mask) {
874 		td = &per_cpu(tick_cpu_device, cpu);
875 		if (td->evtdev)
876 			td->evtdev->next_event = expires;
877 	}
878 }
879 
880 static inline ktime_t tick_get_next_period(void)
881 {
882 	ktime_t next;
883 
884 	/*
885 	 * Protect against concurrent updates (store /load tearing on
886 	 * 32bit). It does not matter if the time is already in the
887 	 * past. The broadcast device which is about to be programmed will
888 	 * fire in any case.
889 	 */
890 	raw_spin_lock(&jiffies_lock);
891 	next = tick_next_period;
892 	raw_spin_unlock(&jiffies_lock);
893 	return next;
894 }
895 
896 /**
897  * tick_broadcast_setup_oneshot - setup the broadcast device
898  */
899 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
900 {
901 	int cpu = smp_processor_id();
902 
903 	if (!bc)
904 		return;
905 
906 	/* Set it up only once ! */
907 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
908 		int was_periodic = clockevent_state_periodic(bc);
909 
910 		bc->event_handler = tick_handle_oneshot_broadcast;
911 
912 		/*
913 		 * We must be careful here. There might be other CPUs
914 		 * waiting for periodic broadcast. We need to set the
915 		 * oneshot_mask bits for those and program the
916 		 * broadcast device to fire.
917 		 */
918 		cpumask_copy(tmpmask, tick_broadcast_mask);
919 		cpumask_clear_cpu(cpu, tmpmask);
920 		cpumask_or(tick_broadcast_oneshot_mask,
921 			   tick_broadcast_oneshot_mask, tmpmask);
922 
923 		if (was_periodic && !cpumask_empty(tmpmask)) {
924 			ktime_t nextevt = tick_get_next_period();
925 
926 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
927 			tick_broadcast_init_next_event(tmpmask, nextevt);
928 			tick_broadcast_set_event(bc, cpu, nextevt);
929 		} else
930 			bc->next_event = KTIME_MAX;
931 	} else {
932 		/*
933 		 * The first cpu which switches to oneshot mode sets
934 		 * the bit for all other cpus which are in the general
935 		 * (periodic) broadcast mask. So the bit is set and
936 		 * would prevent the first broadcast enter after this
937 		 * to program the bc device.
938 		 */
939 		tick_broadcast_clear_oneshot(cpu);
940 	}
941 }
942 
943 /*
944  * Select oneshot operating mode for the broadcast device
945  */
946 void tick_broadcast_switch_to_oneshot(void)
947 {
948 	struct clock_event_device *bc;
949 	unsigned long flags;
950 
951 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
952 
953 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
954 	bc = tick_broadcast_device.evtdev;
955 	if (bc)
956 		tick_broadcast_setup_oneshot(bc);
957 
958 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
959 }
960 
961 #ifdef CONFIG_HOTPLUG_CPU
962 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
963 {
964 	struct clock_event_device *bc;
965 	unsigned long flags;
966 
967 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
968 	bc = tick_broadcast_device.evtdev;
969 
970 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
971 		/* This moves the broadcast assignment to this CPU: */
972 		clockevents_program_event(bc, bc->next_event, 1);
973 	}
974 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
975 }
976 
977 /*
978  * Remove a dying CPU from broadcasting
979  */
980 static void tick_broadcast_oneshot_offline(unsigned int cpu)
981 {
982 	/*
983 	 * Clear the broadcast masks for the dead cpu, but do not stop
984 	 * the broadcast device!
985 	 */
986 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
987 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
988 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
989 }
990 #endif
991 
992 /*
993  * Check, whether the broadcast device is in one shot mode
994  */
995 int tick_broadcast_oneshot_active(void)
996 {
997 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
998 }
999 
1000 /*
1001  * Check whether the broadcast device supports oneshot.
1002  */
1003 bool tick_broadcast_oneshot_available(void)
1004 {
1005 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1006 
1007 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1008 }
1009 
1010 #else
1011 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1012 {
1013 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1014 
1015 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1016 		return -EBUSY;
1017 
1018 	return 0;
1019 }
1020 #endif
1021 
1022 void __init tick_broadcast_init(void)
1023 {
1024 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1025 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1026 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1027 #ifdef CONFIG_TICK_ONESHOT
1028 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1029 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1030 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1031 #endif
1032 }
1033