xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision ba61bb17)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36 
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38 
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41 static void tick_broadcast_clear_oneshot(int cpu);
42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43 #else
44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45 static inline void tick_broadcast_clear_oneshot(int cpu) { }
46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47 #endif
48 
49 /*
50  * Debugging: see timer_list.c
51  */
52 struct tick_device *tick_get_broadcast_device(void)
53 {
54 	return &tick_broadcast_device;
55 }
56 
57 struct cpumask *tick_get_broadcast_mask(void)
58 {
59 	return tick_broadcast_mask;
60 }
61 
62 /*
63  * Start the device in periodic mode
64  */
65 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66 {
67 	if (bc)
68 		tick_setup_periodic(bc, 1);
69 }
70 
71 /*
72  * Check, if the device can be utilized as broadcast device:
73  */
74 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 					struct clock_event_device *newdev)
76 {
77 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 		return false;
81 
82 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 		return false;
85 
86 	return !curdev || newdev->rating > curdev->rating;
87 }
88 
89 /*
90  * Conditionally install/replace broadcast device
91  */
92 void tick_install_broadcast_device(struct clock_event_device *dev)
93 {
94 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
95 
96 	if (!tick_check_broadcast_device(cur, dev))
97 		return;
98 
99 	if (!try_module_get(dev->owner))
100 		return;
101 
102 	clockevents_exchange_device(cur, dev);
103 	if (cur)
104 		cur->event_handler = clockevents_handle_noop;
105 	tick_broadcast_device.evtdev = dev;
106 	if (!cpumask_empty(tick_broadcast_mask))
107 		tick_broadcast_start_periodic(dev);
108 	/*
109 	 * Inform all cpus about this. We might be in a situation
110 	 * where we did not switch to oneshot mode because the per cpu
111 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 	 * of a oneshot capable broadcast device. Without that
113 	 * notification the systems stays stuck in periodic mode
114 	 * forever.
115 	 */
116 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 		tick_clock_notify();
118 }
119 
120 /*
121  * Check, if the device is the broadcast device
122  */
123 int tick_is_broadcast_device(struct clock_event_device *dev)
124 {
125 	return (dev && tick_broadcast_device.evtdev == dev);
126 }
127 
128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129 {
130 	int ret = -ENODEV;
131 
132 	if (tick_is_broadcast_device(dev)) {
133 		raw_spin_lock(&tick_broadcast_lock);
134 		ret = __clockevents_update_freq(dev, freq);
135 		raw_spin_unlock(&tick_broadcast_lock);
136 	}
137 	return ret;
138 }
139 
140 
141 static void err_broadcast(const struct cpumask *mask)
142 {
143 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144 }
145 
146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147 {
148 	if (!dev->broadcast)
149 		dev->broadcast = tick_broadcast;
150 	if (!dev->broadcast) {
151 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 			     dev->name);
153 		dev->broadcast = err_broadcast;
154 	}
155 }
156 
157 /*
158  * Check, if the device is disfunctional and a place holder, which
159  * needs to be handled by the broadcast device.
160  */
161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162 {
163 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
164 	unsigned long flags;
165 	int ret = 0;
166 
167 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
168 
169 	/*
170 	 * Devices might be registered with both periodic and oneshot
171 	 * mode disabled. This signals, that the device needs to be
172 	 * operated from the broadcast device and is a placeholder for
173 	 * the cpu local device.
174 	 */
175 	if (!tick_device_is_functional(dev)) {
176 		dev->event_handler = tick_handle_periodic;
177 		tick_device_setup_broadcast_func(dev);
178 		cpumask_set_cpu(cpu, tick_broadcast_mask);
179 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 			tick_broadcast_start_periodic(bc);
181 		else
182 			tick_broadcast_setup_oneshot(bc);
183 		ret = 1;
184 	} else {
185 		/*
186 		 * Clear the broadcast bit for this cpu if the
187 		 * device is not power state affected.
188 		 */
189 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
191 		else
192 			tick_device_setup_broadcast_func(dev);
193 
194 		/*
195 		 * Clear the broadcast bit if the CPU is not in
196 		 * periodic broadcast on state.
197 		 */
198 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
200 
201 		switch (tick_broadcast_device.mode) {
202 		case TICKDEV_MODE_ONESHOT:
203 			/*
204 			 * If the system is in oneshot mode we can
205 			 * unconditionally clear the oneshot mask bit,
206 			 * because the CPU is running and therefore
207 			 * not in an idle state which causes the power
208 			 * state affected device to stop. Let the
209 			 * caller initialize the device.
210 			 */
211 			tick_broadcast_clear_oneshot(cpu);
212 			ret = 0;
213 			break;
214 
215 		case TICKDEV_MODE_PERIODIC:
216 			/*
217 			 * If the system is in periodic mode, check
218 			 * whether the broadcast device can be
219 			 * switched off now.
220 			 */
221 			if (cpumask_empty(tick_broadcast_mask) && bc)
222 				clockevents_shutdown(bc);
223 			/*
224 			 * If we kept the cpu in the broadcast mask,
225 			 * tell the caller to leave the per cpu device
226 			 * in shutdown state. The periodic interrupt
227 			 * is delivered by the broadcast device, if
228 			 * the broadcast device exists and is not
229 			 * hrtimer based.
230 			 */
231 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233 			break;
234 		default:
235 			break;
236 		}
237 	}
238 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 	return ret;
240 }
241 
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 int tick_receive_broadcast(void)
244 {
245 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 	struct clock_event_device *evt = td->evtdev;
247 
248 	if (!evt)
249 		return -ENODEV;
250 
251 	if (!evt->event_handler)
252 		return -EINVAL;
253 
254 	evt->event_handler(evt);
255 	return 0;
256 }
257 #endif
258 
259 /*
260  * Broadcast the event to the cpus, which are set in the mask (mangled).
261  */
262 static bool tick_do_broadcast(struct cpumask *mask)
263 {
264 	int cpu = smp_processor_id();
265 	struct tick_device *td;
266 	bool local = false;
267 
268 	/*
269 	 * Check, if the current cpu is in the mask
270 	 */
271 	if (cpumask_test_cpu(cpu, mask)) {
272 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
273 
274 		cpumask_clear_cpu(cpu, mask);
275 		/*
276 		 * We only run the local handler, if the broadcast
277 		 * device is not hrtimer based. Otherwise we run into
278 		 * a hrtimer recursion.
279 		 *
280 		 * local timer_interrupt()
281 		 *   local_handler()
282 		 *     expire_hrtimers()
283 		 *       bc_handler()
284 		 *         local_handler()
285 		 *	     expire_hrtimers()
286 		 */
287 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
288 	}
289 
290 	if (!cpumask_empty(mask)) {
291 		/*
292 		 * It might be necessary to actually check whether the devices
293 		 * have different broadcast functions. For now, just use the
294 		 * one of the first device. This works as long as we have this
295 		 * misfeature only on x86 (lapic)
296 		 */
297 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 		td->evtdev->broadcast(mask);
299 	}
300 	return local;
301 }
302 
303 /*
304  * Periodic broadcast:
305  * - invoke the broadcast handlers
306  */
307 static bool tick_do_periodic_broadcast(void)
308 {
309 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310 	return tick_do_broadcast(tmpmask);
311 }
312 
313 /*
314  * Event handler for periodic broadcast ticks
315  */
316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317 {
318 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 	bool bc_local;
320 
321 	raw_spin_lock(&tick_broadcast_lock);
322 
323 	/* Handle spurious interrupts gracefully */
324 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 		raw_spin_unlock(&tick_broadcast_lock);
326 		return;
327 	}
328 
329 	bc_local = tick_do_periodic_broadcast();
330 
331 	if (clockevent_state_oneshot(dev)) {
332 		ktime_t next = ktime_add(dev->next_event, tick_period);
333 
334 		clockevents_program_event(dev, next, true);
335 	}
336 	raw_spin_unlock(&tick_broadcast_lock);
337 
338 	/*
339 	 * We run the handler of the local cpu after dropping
340 	 * tick_broadcast_lock because the handler might deadlock when
341 	 * trying to switch to oneshot mode.
342 	 */
343 	if (bc_local)
344 		td->evtdev->event_handler(td->evtdev);
345 }
346 
347 /**
348  * tick_broadcast_control - Enable/disable or force broadcast mode
349  * @mode:	The selected broadcast mode
350  *
351  * Called when the system enters a state where affected tick devices
352  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
353  */
354 void tick_broadcast_control(enum tick_broadcast_mode mode)
355 {
356 	struct clock_event_device *bc, *dev;
357 	struct tick_device *td;
358 	int cpu, bc_stopped;
359 	unsigned long flags;
360 
361 	/* Protects also the local clockevent device. */
362 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363 	td = this_cpu_ptr(&tick_cpu_device);
364 	dev = td->evtdev;
365 
366 	/*
367 	 * Is the device not affected by the powerstate ?
368 	 */
369 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370 		goto out;
371 
372 	if (!tick_device_is_functional(dev))
373 		goto out;
374 
375 	cpu = smp_processor_id();
376 	bc = tick_broadcast_device.evtdev;
377 	bc_stopped = cpumask_empty(tick_broadcast_mask);
378 
379 	switch (mode) {
380 	case TICK_BROADCAST_FORCE:
381 		tick_broadcast_forced = 1;
382 	case TICK_BROADCAST_ON:
383 		cpumask_set_cpu(cpu, tick_broadcast_on);
384 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385 			/*
386 			 * Only shutdown the cpu local device, if:
387 			 *
388 			 * - the broadcast device exists
389 			 * - the broadcast device is not a hrtimer based one
390 			 * - the broadcast device is in periodic mode to
391 			 *   avoid a hickup during switch to oneshot mode
392 			 */
393 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395 				clockevents_shutdown(dev);
396 		}
397 		break;
398 
399 	case TICK_BROADCAST_OFF:
400 		if (tick_broadcast_forced)
401 			break;
402 		cpumask_clear_cpu(cpu, tick_broadcast_on);
403 		if (!tick_device_is_functional(dev))
404 			break;
405 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
406 			if (tick_broadcast_device.mode ==
407 			    TICKDEV_MODE_PERIODIC)
408 				tick_setup_periodic(dev, 0);
409 		}
410 		break;
411 	}
412 
413 	if (bc) {
414 		if (cpumask_empty(tick_broadcast_mask)) {
415 			if (!bc_stopped)
416 				clockevents_shutdown(bc);
417 		} else if (bc_stopped) {
418 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419 				tick_broadcast_start_periodic(bc);
420 			else
421 				tick_broadcast_setup_oneshot(bc);
422 		}
423 	}
424 out:
425 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
426 }
427 EXPORT_SYMBOL_GPL(tick_broadcast_control);
428 
429 /*
430  * Set the periodic handler depending on broadcast on/off
431  */
432 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
433 {
434 	if (!broadcast)
435 		dev->event_handler = tick_handle_periodic;
436 	else
437 		dev->event_handler = tick_handle_periodic_broadcast;
438 }
439 
440 #ifdef CONFIG_HOTPLUG_CPU
441 /*
442  * Remove a CPU from broadcasting
443  */
444 void tick_shutdown_broadcast(unsigned int cpu)
445 {
446 	struct clock_event_device *bc;
447 	unsigned long flags;
448 
449 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450 
451 	bc = tick_broadcast_device.evtdev;
452 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
453 	cpumask_clear_cpu(cpu, tick_broadcast_on);
454 
455 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
456 		if (bc && cpumask_empty(tick_broadcast_mask))
457 			clockevents_shutdown(bc);
458 	}
459 
460 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
461 }
462 #endif
463 
464 void tick_suspend_broadcast(void)
465 {
466 	struct clock_event_device *bc;
467 	unsigned long flags;
468 
469 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
470 
471 	bc = tick_broadcast_device.evtdev;
472 	if (bc)
473 		clockevents_shutdown(bc);
474 
475 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
476 }
477 
478 /*
479  * This is called from tick_resume_local() on a resuming CPU. That's
480  * called from the core resume function, tick_unfreeze() and the magic XEN
481  * resume hackery.
482  *
483  * In none of these cases the broadcast device mode can change and the
484  * bit of the resuming CPU in the broadcast mask is safe as well.
485  */
486 bool tick_resume_check_broadcast(void)
487 {
488 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
489 		return false;
490 	else
491 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492 }
493 
494 void tick_resume_broadcast(void)
495 {
496 	struct clock_event_device *bc;
497 	unsigned long flags;
498 
499 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
500 
501 	bc = tick_broadcast_device.evtdev;
502 
503 	if (bc) {
504 		clockevents_tick_resume(bc);
505 
506 		switch (tick_broadcast_device.mode) {
507 		case TICKDEV_MODE_PERIODIC:
508 			if (!cpumask_empty(tick_broadcast_mask))
509 				tick_broadcast_start_periodic(bc);
510 			break;
511 		case TICKDEV_MODE_ONESHOT:
512 			if (!cpumask_empty(tick_broadcast_mask))
513 				tick_resume_broadcast_oneshot(bc);
514 			break;
515 		}
516 	}
517 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
518 }
519 
520 #ifdef CONFIG_TICK_ONESHOT
521 
522 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
523 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
524 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
525 
526 /*
527  * Exposed for debugging: see timer_list.c
528  */
529 struct cpumask *tick_get_broadcast_oneshot_mask(void)
530 {
531 	return tick_broadcast_oneshot_mask;
532 }
533 
534 /*
535  * Called before going idle with interrupts disabled. Checks whether a
536  * broadcast event from the other core is about to happen. We detected
537  * that in tick_broadcast_oneshot_control(). The callsite can use this
538  * to avoid a deep idle transition as we are about to get the
539  * broadcast IPI right away.
540  */
541 int tick_check_broadcast_expired(void)
542 {
543 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
544 }
545 
546 /*
547  * Set broadcast interrupt affinity
548  */
549 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
550 					const struct cpumask *cpumask)
551 {
552 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
553 		return;
554 
555 	if (cpumask_equal(bc->cpumask, cpumask))
556 		return;
557 
558 	bc->cpumask = cpumask;
559 	irq_set_affinity(bc->irq, bc->cpumask);
560 }
561 
562 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
563 				     ktime_t expires)
564 {
565 	if (!clockevent_state_oneshot(bc))
566 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
567 
568 	clockevents_program_event(bc, expires, 1);
569 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
570 }
571 
572 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
573 {
574 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
575 }
576 
577 /*
578  * Called from irq_enter() when idle was interrupted to reenable the
579  * per cpu device.
580  */
581 void tick_check_oneshot_broadcast_this_cpu(void)
582 {
583 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
584 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
585 
586 		/*
587 		 * We might be in the middle of switching over from
588 		 * periodic to oneshot. If the CPU has not yet
589 		 * switched over, leave the device alone.
590 		 */
591 		if (td->mode == TICKDEV_MODE_ONESHOT) {
592 			clockevents_switch_state(td->evtdev,
593 					      CLOCK_EVT_STATE_ONESHOT);
594 		}
595 	}
596 }
597 
598 /*
599  * Handle oneshot mode broadcasting
600  */
601 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
602 {
603 	struct tick_device *td;
604 	ktime_t now, next_event;
605 	int cpu, next_cpu = 0;
606 	bool bc_local;
607 
608 	raw_spin_lock(&tick_broadcast_lock);
609 	dev->next_event = KTIME_MAX;
610 	next_event = KTIME_MAX;
611 	cpumask_clear(tmpmask);
612 	now = ktime_get();
613 	/* Find all expired events */
614 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
615 		/*
616 		 * Required for !SMP because for_each_cpu() reports
617 		 * unconditionally CPU0 as set on UP kernels.
618 		 */
619 		if (!IS_ENABLED(CONFIG_SMP) &&
620 		    cpumask_empty(tick_broadcast_oneshot_mask))
621 			break;
622 
623 		td = &per_cpu(tick_cpu_device, cpu);
624 		if (td->evtdev->next_event <= now) {
625 			cpumask_set_cpu(cpu, tmpmask);
626 			/*
627 			 * Mark the remote cpu in the pending mask, so
628 			 * it can avoid reprogramming the cpu local
629 			 * timer in tick_broadcast_oneshot_control().
630 			 */
631 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
632 		} else if (td->evtdev->next_event < next_event) {
633 			next_event = td->evtdev->next_event;
634 			next_cpu = cpu;
635 		}
636 	}
637 
638 	/*
639 	 * Remove the current cpu from the pending mask. The event is
640 	 * delivered immediately in tick_do_broadcast() !
641 	 */
642 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
643 
644 	/* Take care of enforced broadcast requests */
645 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
646 	cpumask_clear(tick_broadcast_force_mask);
647 
648 	/*
649 	 * Sanity check. Catch the case where we try to broadcast to
650 	 * offline cpus.
651 	 */
652 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
653 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
654 
655 	/*
656 	 * Wakeup the cpus which have an expired event.
657 	 */
658 	bc_local = tick_do_broadcast(tmpmask);
659 
660 	/*
661 	 * Two reasons for reprogram:
662 	 *
663 	 * - The global event did not expire any CPU local
664 	 * events. This happens in dyntick mode, as the maximum PIT
665 	 * delta is quite small.
666 	 *
667 	 * - There are pending events on sleeping CPUs which were not
668 	 * in the event mask
669 	 */
670 	if (next_event != KTIME_MAX)
671 		tick_broadcast_set_event(dev, next_cpu, next_event);
672 
673 	raw_spin_unlock(&tick_broadcast_lock);
674 
675 	if (bc_local) {
676 		td = this_cpu_ptr(&tick_cpu_device);
677 		td->evtdev->event_handler(td->evtdev);
678 	}
679 }
680 
681 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
682 {
683 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
684 		return 0;
685 	if (bc->next_event == KTIME_MAX)
686 		return 0;
687 	return bc->bound_on == cpu ? -EBUSY : 0;
688 }
689 
690 static void broadcast_shutdown_local(struct clock_event_device *bc,
691 				     struct clock_event_device *dev)
692 {
693 	/*
694 	 * For hrtimer based broadcasting we cannot shutdown the cpu
695 	 * local device if our own event is the first one to expire or
696 	 * if we own the broadcast timer.
697 	 */
698 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
699 		if (broadcast_needs_cpu(bc, smp_processor_id()))
700 			return;
701 		if (dev->next_event < bc->next_event)
702 			return;
703 	}
704 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
705 }
706 
707 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
708 {
709 	struct clock_event_device *bc, *dev;
710 	int cpu, ret = 0;
711 	ktime_t now;
712 
713 	/*
714 	 * If there is no broadcast device, tell the caller not to go
715 	 * into deep idle.
716 	 */
717 	if (!tick_broadcast_device.evtdev)
718 		return -EBUSY;
719 
720 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
721 
722 	raw_spin_lock(&tick_broadcast_lock);
723 	bc = tick_broadcast_device.evtdev;
724 	cpu = smp_processor_id();
725 
726 	if (state == TICK_BROADCAST_ENTER) {
727 		/*
728 		 * If the current CPU owns the hrtimer broadcast
729 		 * mechanism, it cannot go deep idle and we do not add
730 		 * the CPU to the broadcast mask. We don't have to go
731 		 * through the EXIT path as the local timer is not
732 		 * shutdown.
733 		 */
734 		ret = broadcast_needs_cpu(bc, cpu);
735 		if (ret)
736 			goto out;
737 
738 		/*
739 		 * If the broadcast device is in periodic mode, we
740 		 * return.
741 		 */
742 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
743 			/* If it is a hrtimer based broadcast, return busy */
744 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
745 				ret = -EBUSY;
746 			goto out;
747 		}
748 
749 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
750 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
751 
752 			/* Conditionally shut down the local timer. */
753 			broadcast_shutdown_local(bc, dev);
754 
755 			/*
756 			 * We only reprogram the broadcast timer if we
757 			 * did not mark ourself in the force mask and
758 			 * if the cpu local event is earlier than the
759 			 * broadcast event. If the current CPU is in
760 			 * the force mask, then we are going to be
761 			 * woken by the IPI right away; we return
762 			 * busy, so the CPU does not try to go deep
763 			 * idle.
764 			 */
765 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
766 				ret = -EBUSY;
767 			} else if (dev->next_event < bc->next_event) {
768 				tick_broadcast_set_event(bc, cpu, dev->next_event);
769 				/*
770 				 * In case of hrtimer broadcasts the
771 				 * programming might have moved the
772 				 * timer to this cpu. If yes, remove
773 				 * us from the broadcast mask and
774 				 * return busy.
775 				 */
776 				ret = broadcast_needs_cpu(bc, cpu);
777 				if (ret) {
778 					cpumask_clear_cpu(cpu,
779 						tick_broadcast_oneshot_mask);
780 				}
781 			}
782 		}
783 	} else {
784 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
785 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
786 			/*
787 			 * The cpu which was handling the broadcast
788 			 * timer marked this cpu in the broadcast
789 			 * pending mask and fired the broadcast
790 			 * IPI. So we are going to handle the expired
791 			 * event anyway via the broadcast IPI
792 			 * handler. No need to reprogram the timer
793 			 * with an already expired event.
794 			 */
795 			if (cpumask_test_and_clear_cpu(cpu,
796 				       tick_broadcast_pending_mask))
797 				goto out;
798 
799 			/*
800 			 * Bail out if there is no next event.
801 			 */
802 			if (dev->next_event == KTIME_MAX)
803 				goto out;
804 			/*
805 			 * If the pending bit is not set, then we are
806 			 * either the CPU handling the broadcast
807 			 * interrupt or we got woken by something else.
808 			 *
809 			 * We are not longer in the broadcast mask, so
810 			 * if the cpu local expiry time is already
811 			 * reached, we would reprogram the cpu local
812 			 * timer with an already expired event.
813 			 *
814 			 * This can lead to a ping-pong when we return
815 			 * to idle and therefor rearm the broadcast
816 			 * timer before the cpu local timer was able
817 			 * to fire. This happens because the forced
818 			 * reprogramming makes sure that the event
819 			 * will happen in the future and depending on
820 			 * the min_delta setting this might be far
821 			 * enough out that the ping-pong starts.
822 			 *
823 			 * If the cpu local next_event has expired
824 			 * then we know that the broadcast timer
825 			 * next_event has expired as well and
826 			 * broadcast is about to be handled. So we
827 			 * avoid reprogramming and enforce that the
828 			 * broadcast handler, which did not run yet,
829 			 * will invoke the cpu local handler.
830 			 *
831 			 * We cannot call the handler directly from
832 			 * here, because we might be in a NOHZ phase
833 			 * and we did not go through the irq_enter()
834 			 * nohz fixups.
835 			 */
836 			now = ktime_get();
837 			if (dev->next_event <= now) {
838 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
839 				goto out;
840 			}
841 			/*
842 			 * We got woken by something else. Reprogram
843 			 * the cpu local timer device.
844 			 */
845 			tick_program_event(dev->next_event, 1);
846 		}
847 	}
848 out:
849 	raw_spin_unlock(&tick_broadcast_lock);
850 	return ret;
851 }
852 
853 /*
854  * Reset the one shot broadcast for a cpu
855  *
856  * Called with tick_broadcast_lock held
857  */
858 static void tick_broadcast_clear_oneshot(int cpu)
859 {
860 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
861 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
862 }
863 
864 static void tick_broadcast_init_next_event(struct cpumask *mask,
865 					   ktime_t expires)
866 {
867 	struct tick_device *td;
868 	int cpu;
869 
870 	for_each_cpu(cpu, mask) {
871 		td = &per_cpu(tick_cpu_device, cpu);
872 		if (td->evtdev)
873 			td->evtdev->next_event = expires;
874 	}
875 }
876 
877 /**
878  * tick_broadcast_setup_oneshot - setup the broadcast device
879  */
880 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
881 {
882 	int cpu = smp_processor_id();
883 
884 	if (!bc)
885 		return;
886 
887 	/* Set it up only once ! */
888 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
889 		int was_periodic = clockevent_state_periodic(bc);
890 
891 		bc->event_handler = tick_handle_oneshot_broadcast;
892 
893 		/*
894 		 * We must be careful here. There might be other CPUs
895 		 * waiting for periodic broadcast. We need to set the
896 		 * oneshot_mask bits for those and program the
897 		 * broadcast device to fire.
898 		 */
899 		cpumask_copy(tmpmask, tick_broadcast_mask);
900 		cpumask_clear_cpu(cpu, tmpmask);
901 		cpumask_or(tick_broadcast_oneshot_mask,
902 			   tick_broadcast_oneshot_mask, tmpmask);
903 
904 		if (was_periodic && !cpumask_empty(tmpmask)) {
905 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
906 			tick_broadcast_init_next_event(tmpmask,
907 						       tick_next_period);
908 			tick_broadcast_set_event(bc, cpu, tick_next_period);
909 		} else
910 			bc->next_event = KTIME_MAX;
911 	} else {
912 		/*
913 		 * The first cpu which switches to oneshot mode sets
914 		 * the bit for all other cpus which are in the general
915 		 * (periodic) broadcast mask. So the bit is set and
916 		 * would prevent the first broadcast enter after this
917 		 * to program the bc device.
918 		 */
919 		tick_broadcast_clear_oneshot(cpu);
920 	}
921 }
922 
923 /*
924  * Select oneshot operating mode for the broadcast device
925  */
926 void tick_broadcast_switch_to_oneshot(void)
927 {
928 	struct clock_event_device *bc;
929 	unsigned long flags;
930 
931 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
932 
933 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
934 	bc = tick_broadcast_device.evtdev;
935 	if (bc)
936 		tick_broadcast_setup_oneshot(bc);
937 
938 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
939 }
940 
941 #ifdef CONFIG_HOTPLUG_CPU
942 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
943 {
944 	struct clock_event_device *bc;
945 	unsigned long flags;
946 
947 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
948 	bc = tick_broadcast_device.evtdev;
949 
950 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
951 		/* This moves the broadcast assignment to this CPU: */
952 		clockevents_program_event(bc, bc->next_event, 1);
953 	}
954 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
955 }
956 
957 /*
958  * Remove a dead CPU from broadcasting
959  */
960 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
961 {
962 	unsigned long flags;
963 
964 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
965 
966 	/*
967 	 * Clear the broadcast masks for the dead cpu, but do not stop
968 	 * the broadcast device!
969 	 */
970 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
971 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
972 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
973 
974 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
975 }
976 #endif
977 
978 /*
979  * Check, whether the broadcast device is in one shot mode
980  */
981 int tick_broadcast_oneshot_active(void)
982 {
983 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
984 }
985 
986 /*
987  * Check whether the broadcast device supports oneshot.
988  */
989 bool tick_broadcast_oneshot_available(void)
990 {
991 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
992 
993 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
994 }
995 
996 #else
997 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
998 {
999 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1000 
1001 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1002 		return -EBUSY;
1003 
1004 	return 0;
1005 }
1006 #endif
1007 
1008 void __init tick_broadcast_init(void)
1009 {
1010 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1011 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1012 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1013 #ifdef CONFIG_TICK_ONESHOT
1014 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1015 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1016 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1017 #endif
1018 }
1019