xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 /* FIXME: Use cpumask_var_t. */
32 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
33 static DECLARE_BITMAP(tmpmask, NR_CPUS);
34 static DEFINE_SPINLOCK(tick_broadcast_lock);
35 static int tick_broadcast_force;
36 
37 #ifdef CONFIG_TICK_ONESHOT
38 static void tick_broadcast_clear_oneshot(int cpu);
39 #else
40 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 #endif
42 
43 /*
44  * Debugging: see timer_list.c
45  */
46 struct tick_device *tick_get_broadcast_device(void)
47 {
48 	return &tick_broadcast_device;
49 }
50 
51 struct cpumask *tick_get_broadcast_mask(void)
52 {
53 	return to_cpumask(tick_broadcast_mask);
54 }
55 
56 /*
57  * Start the device in periodic mode
58  */
59 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
60 {
61 	if (bc)
62 		tick_setup_periodic(bc, 1);
63 }
64 
65 /*
66  * Check, if the device can be utilized as broadcast device:
67  */
68 int tick_check_broadcast_device(struct clock_event_device *dev)
69 {
70 	if ((tick_broadcast_device.evtdev &&
71 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
72 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 		return 0;
74 
75 	clockevents_exchange_device(NULL, dev);
76 	tick_broadcast_device.evtdev = dev;
77 	if (!cpumask_empty(tick_get_broadcast_mask()))
78 		tick_broadcast_start_periodic(dev);
79 	return 1;
80 }
81 
82 /*
83  * Check, if the device is the broadcast device
84  */
85 int tick_is_broadcast_device(struct clock_event_device *dev)
86 {
87 	return (dev && tick_broadcast_device.evtdev == dev);
88 }
89 
90 /*
91  * Check, if the device is disfunctional and a place holder, which
92  * needs to be handled by the broadcast device.
93  */
94 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
95 {
96 	unsigned long flags;
97 	int ret = 0;
98 
99 	spin_lock_irqsave(&tick_broadcast_lock, flags);
100 
101 	/*
102 	 * Devices might be registered with both periodic and oneshot
103 	 * mode disabled. This signals, that the device needs to be
104 	 * operated from the broadcast device and is a placeholder for
105 	 * the cpu local device.
106 	 */
107 	if (!tick_device_is_functional(dev)) {
108 		dev->event_handler = tick_handle_periodic;
109 		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
110 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
111 		ret = 1;
112 	} else {
113 		/*
114 		 * When the new device is not affected by the stop
115 		 * feature and the cpu is marked in the broadcast mask
116 		 * then clear the broadcast bit.
117 		 */
118 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
119 			int cpu = smp_processor_id();
120 
121 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
122 			tick_broadcast_clear_oneshot(cpu);
123 		}
124 	}
125 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
126 	return ret;
127 }
128 
129 /*
130  * Broadcast the event to the cpus, which are set in the mask (mangled).
131  */
132 static void tick_do_broadcast(struct cpumask *mask)
133 {
134 	int cpu = smp_processor_id();
135 	struct tick_device *td;
136 
137 	/*
138 	 * Check, if the current cpu is in the mask
139 	 */
140 	if (cpumask_test_cpu(cpu, mask)) {
141 		cpumask_clear_cpu(cpu, mask);
142 		td = &per_cpu(tick_cpu_device, cpu);
143 		td->evtdev->event_handler(td->evtdev);
144 	}
145 
146 	if (!cpumask_empty(mask)) {
147 		/*
148 		 * It might be necessary to actually check whether the devices
149 		 * have different broadcast functions. For now, just use the
150 		 * one of the first device. This works as long as we have this
151 		 * misfeature only on x86 (lapic)
152 		 */
153 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
154 		td->evtdev->broadcast(mask);
155 	}
156 }
157 
158 /*
159  * Periodic broadcast:
160  * - invoke the broadcast handlers
161  */
162 static void tick_do_periodic_broadcast(void)
163 {
164 	spin_lock(&tick_broadcast_lock);
165 
166 	cpumask_and(to_cpumask(tmpmask),
167 		    cpu_online_mask, tick_get_broadcast_mask());
168 	tick_do_broadcast(to_cpumask(tmpmask));
169 
170 	spin_unlock(&tick_broadcast_lock);
171 }
172 
173 /*
174  * Event handler for periodic broadcast ticks
175  */
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177 {
178 	ktime_t next;
179 
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode. We read dev->next_event first and add to it
191 	 * when the event alrady expired. clockevents_program_event()
192 	 * sets dev->next_event only when the event is really
193 	 * programmed to the device.
194 	 */
195 	for (next = dev->next_event; ;) {
196 		next = ktime_add(next, tick_period);
197 
198 		if (!clockevents_program_event(dev, next, ktime_get()))
199 			return;
200 		tick_do_periodic_broadcast();
201 	}
202 }
203 
204 /*
205  * Powerstate information: The system enters/leaves a state, where
206  * affected devices might stop
207  */
208 static void tick_do_broadcast_on_off(void *why)
209 {
210 	struct clock_event_device *bc, *dev;
211 	struct tick_device *td;
212 	unsigned long flags, *reason = why;
213 	int cpu, bc_stopped;
214 
215 	spin_lock_irqsave(&tick_broadcast_lock, flags);
216 
217 	cpu = smp_processor_id();
218 	td = &per_cpu(tick_cpu_device, cpu);
219 	dev = td->evtdev;
220 	bc = tick_broadcast_device.evtdev;
221 
222 	/*
223 	 * Is the device not affected by the powerstate ?
224 	 */
225 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 		goto out;
227 
228 	if (!tick_device_is_functional(dev))
229 		goto out;
230 
231 	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
232 
233 	switch (*reason) {
234 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
237 			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
238 			if (tick_broadcast_device.mode ==
239 			    TICKDEV_MODE_PERIODIC)
240 				clockevents_shutdown(dev);
241 		}
242 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 			tick_broadcast_force = 1;
244 		break;
245 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 		if (!tick_broadcast_force &&
247 		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
248 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
249 			if (tick_broadcast_device.mode ==
250 			    TICKDEV_MODE_PERIODIC)
251 				tick_setup_periodic(dev, 0);
252 		}
253 		break;
254 	}
255 
256 	if (cpumask_empty(tick_get_broadcast_mask())) {
257 		if (!bc_stopped)
258 			clockevents_shutdown(bc);
259 	} else if (bc_stopped) {
260 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261 			tick_broadcast_start_periodic(bc);
262 		else
263 			tick_broadcast_setup_oneshot(bc);
264 	}
265 out:
266 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
267 }
268 
269 /*
270  * Powerstate information: The system enters/leaves a state, where
271  * affected devices might stop.
272  */
273 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
274 {
275 	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
276 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 		       "offline CPU #%d\n", *oncpu);
278 	else
279 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
280 					 &reason, 1);
281 }
282 
283 /*
284  * Set the periodic handler depending on broadcast on/off
285  */
286 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
287 {
288 	if (!broadcast)
289 		dev->event_handler = tick_handle_periodic;
290 	else
291 		dev->event_handler = tick_handle_periodic_broadcast;
292 }
293 
294 /*
295  * Remove a CPU from broadcasting
296  */
297 void tick_shutdown_broadcast(unsigned int *cpup)
298 {
299 	struct clock_event_device *bc;
300 	unsigned long flags;
301 	unsigned int cpu = *cpup;
302 
303 	spin_lock_irqsave(&tick_broadcast_lock, flags);
304 
305 	bc = tick_broadcast_device.evtdev;
306 	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
307 
308 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
309 		if (bc && cpumask_empty(tick_get_broadcast_mask()))
310 			clockevents_shutdown(bc);
311 	}
312 
313 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
314 }
315 
316 void tick_suspend_broadcast(void)
317 {
318 	struct clock_event_device *bc;
319 	unsigned long flags;
320 
321 	spin_lock_irqsave(&tick_broadcast_lock, flags);
322 
323 	bc = tick_broadcast_device.evtdev;
324 	if (bc)
325 		clockevents_shutdown(bc);
326 
327 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
328 }
329 
330 int tick_resume_broadcast(void)
331 {
332 	struct clock_event_device *bc;
333 	unsigned long flags;
334 	int broadcast = 0;
335 
336 	spin_lock_irqsave(&tick_broadcast_lock, flags);
337 
338 	bc = tick_broadcast_device.evtdev;
339 
340 	if (bc) {
341 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
342 
343 		switch (tick_broadcast_device.mode) {
344 		case TICKDEV_MODE_PERIODIC:
345 			if (!cpumask_empty(tick_get_broadcast_mask()))
346 				tick_broadcast_start_periodic(bc);
347 			broadcast = cpumask_test_cpu(smp_processor_id(),
348 						     tick_get_broadcast_mask());
349 			break;
350 		case TICKDEV_MODE_ONESHOT:
351 			broadcast = tick_resume_broadcast_oneshot(bc);
352 			break;
353 		}
354 	}
355 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
356 
357 	return broadcast;
358 }
359 
360 
361 #ifdef CONFIG_TICK_ONESHOT
362 
363 /* FIXME: use cpumask_var_t. */
364 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
365 
366 /*
367  * Exposed for debugging: see timer_list.c
368  */
369 struct cpumask *tick_get_broadcast_oneshot_mask(void)
370 {
371 	return to_cpumask(tick_broadcast_oneshot_mask);
372 }
373 
374 static int tick_broadcast_set_event(ktime_t expires, int force)
375 {
376 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
377 
378 	return tick_dev_program_event(bc, expires, force);
379 }
380 
381 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
382 {
383 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
384 	return 0;
385 }
386 
387 /*
388  * Called from irq_enter() when idle was interrupted to reenable the
389  * per cpu device.
390  */
391 void tick_check_oneshot_broadcast(int cpu)
392 {
393 	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
394 		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
395 
396 		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
397 	}
398 }
399 
400 /*
401  * Handle oneshot mode broadcasting
402  */
403 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
404 {
405 	struct tick_device *td;
406 	ktime_t now, next_event;
407 	int cpu;
408 
409 	spin_lock(&tick_broadcast_lock);
410 again:
411 	dev->next_event.tv64 = KTIME_MAX;
412 	next_event.tv64 = KTIME_MAX;
413 	cpumask_clear(to_cpumask(tmpmask));
414 	now = ktime_get();
415 	/* Find all expired events */
416 	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
417 		td = &per_cpu(tick_cpu_device, cpu);
418 		if (td->evtdev->next_event.tv64 <= now.tv64)
419 			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
420 		else if (td->evtdev->next_event.tv64 < next_event.tv64)
421 			next_event.tv64 = td->evtdev->next_event.tv64;
422 	}
423 
424 	/*
425 	 * Wakeup the cpus which have an expired event.
426 	 */
427 	tick_do_broadcast(to_cpumask(tmpmask));
428 
429 	/*
430 	 * Two reasons for reprogram:
431 	 *
432 	 * - The global event did not expire any CPU local
433 	 * events. This happens in dyntick mode, as the maximum PIT
434 	 * delta is quite small.
435 	 *
436 	 * - There are pending events on sleeping CPUs which were not
437 	 * in the event mask
438 	 */
439 	if (next_event.tv64 != KTIME_MAX) {
440 		/*
441 		 * Rearm the broadcast device. If event expired,
442 		 * repeat the above
443 		 */
444 		if (tick_broadcast_set_event(next_event, 0))
445 			goto again;
446 	}
447 	spin_unlock(&tick_broadcast_lock);
448 }
449 
450 /*
451  * Powerstate information: The system enters/leaves a state, where
452  * affected devices might stop
453  */
454 void tick_broadcast_oneshot_control(unsigned long reason)
455 {
456 	struct clock_event_device *bc, *dev;
457 	struct tick_device *td;
458 	unsigned long flags;
459 	int cpu;
460 
461 	spin_lock_irqsave(&tick_broadcast_lock, flags);
462 
463 	/*
464 	 * Periodic mode does not care about the enter/exit of power
465 	 * states
466 	 */
467 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468 		goto out;
469 
470 	bc = tick_broadcast_device.evtdev;
471 	cpu = smp_processor_id();
472 	td = &per_cpu(tick_cpu_device, cpu);
473 	dev = td->evtdev;
474 
475 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
476 		goto out;
477 
478 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
479 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
480 			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
481 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
482 			if (dev->next_event.tv64 < bc->next_event.tv64)
483 				tick_broadcast_set_event(dev->next_event, 1);
484 		}
485 	} else {
486 		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
487 			cpumask_clear_cpu(cpu,
488 					  tick_get_broadcast_oneshot_mask());
489 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
490 			if (dev->next_event.tv64 != KTIME_MAX)
491 				tick_program_event(dev->next_event, 1);
492 		}
493 	}
494 
495 out:
496 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
497 }
498 
499 /*
500  * Reset the one shot broadcast for a cpu
501  *
502  * Called with tick_broadcast_lock held
503  */
504 static void tick_broadcast_clear_oneshot(int cpu)
505 {
506 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
507 }
508 
509 static void tick_broadcast_init_next_event(struct cpumask *mask,
510 					   ktime_t expires)
511 {
512 	struct tick_device *td;
513 	int cpu;
514 
515 	for_each_cpu(cpu, mask) {
516 		td = &per_cpu(tick_cpu_device, cpu);
517 		if (td->evtdev)
518 			td->evtdev->next_event = expires;
519 	}
520 }
521 
522 /**
523  * tick_broadcast_setup_oneshot - setup the broadcast device
524  */
525 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
526 {
527 	/* Set it up only once ! */
528 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
529 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
530 		int cpu = smp_processor_id();
531 
532 		bc->event_handler = tick_handle_oneshot_broadcast;
533 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
534 
535 		/* Take the do_timer update */
536 		tick_do_timer_cpu = cpu;
537 
538 		/*
539 		 * We must be careful here. There might be other CPUs
540 		 * waiting for periodic broadcast. We need to set the
541 		 * oneshot_mask bits for those and program the
542 		 * broadcast device to fire.
543 		 */
544 		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
545 		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
546 		cpumask_or(tick_get_broadcast_oneshot_mask(),
547 			   tick_get_broadcast_oneshot_mask(),
548 			   to_cpumask(tmpmask));
549 
550 		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
551 			tick_broadcast_init_next_event(to_cpumask(tmpmask),
552 						       tick_next_period);
553 			tick_broadcast_set_event(tick_next_period, 1);
554 		} else
555 			bc->next_event.tv64 = KTIME_MAX;
556 	}
557 }
558 
559 /*
560  * Select oneshot operating mode for the broadcast device
561  */
562 void tick_broadcast_switch_to_oneshot(void)
563 {
564 	struct clock_event_device *bc;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&tick_broadcast_lock, flags);
568 
569 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
570 	bc = tick_broadcast_device.evtdev;
571 	if (bc)
572 		tick_broadcast_setup_oneshot(bc);
573 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
574 }
575 
576 
577 /*
578  * Remove a dead CPU from broadcasting
579  */
580 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
581 {
582 	unsigned long flags;
583 	unsigned int cpu = *cpup;
584 
585 	spin_lock_irqsave(&tick_broadcast_lock, flags);
586 
587 	/*
588 	 * Clear the broadcast mask flag for the dead cpu, but do not
589 	 * stop the broadcast device!
590 	 */
591 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
592 
593 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
594 }
595 
596 /*
597  * Check, whether the broadcast device is in one shot mode
598  */
599 int tick_broadcast_oneshot_active(void)
600 {
601 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
602 }
603 
604 #endif
605