1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask; 33 static cpumask_var_t tick_broadcast_on; 34 static cpumask_var_t tmpmask; 35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 36 static int tick_broadcast_forced; 37 38 #ifdef CONFIG_TICK_ONESHOT 39 static void tick_broadcast_clear_oneshot(int cpu); 40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 41 #else 42 static inline void tick_broadcast_clear_oneshot(int cpu) { } 43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 44 #endif 45 46 /* 47 * Debugging: see timer_list.c 48 */ 49 struct tick_device *tick_get_broadcast_device(void) 50 { 51 return &tick_broadcast_device; 52 } 53 54 struct cpumask *tick_get_broadcast_mask(void) 55 { 56 return tick_broadcast_mask; 57 } 58 59 /* 60 * Start the device in periodic mode 61 */ 62 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 63 { 64 if (bc) 65 tick_setup_periodic(bc, 1); 66 } 67 68 /* 69 * Check, if the device can be utilized as broadcast device: 70 */ 71 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 72 struct clock_event_device *newdev) 73 { 74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 76 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 77 return false; 78 79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 81 return false; 82 83 return !curdev || newdev->rating > curdev->rating; 84 } 85 86 /* 87 * Conditionally install/replace broadcast device 88 */ 89 void tick_install_broadcast_device(struct clock_event_device *dev) 90 { 91 struct clock_event_device *cur = tick_broadcast_device.evtdev; 92 93 if (!tick_check_broadcast_device(cur, dev)) 94 return; 95 96 if (!try_module_get(dev->owner)) 97 return; 98 99 clockevents_exchange_device(cur, dev); 100 if (cur) 101 cur->event_handler = clockevents_handle_noop; 102 tick_broadcast_device.evtdev = dev; 103 if (!cpumask_empty(tick_broadcast_mask)) 104 tick_broadcast_start_periodic(dev); 105 /* 106 * Inform all cpus about this. We might be in a situation 107 * where we did not switch to oneshot mode because the per cpu 108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 109 * of a oneshot capable broadcast device. Without that 110 * notification the systems stays stuck in periodic mode 111 * forever. 112 */ 113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 114 tick_clock_notify(); 115 } 116 117 /* 118 * Check, if the device is the broadcast device 119 */ 120 int tick_is_broadcast_device(struct clock_event_device *dev) 121 { 122 return (dev && tick_broadcast_device.evtdev == dev); 123 } 124 125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 126 { 127 int ret = -ENODEV; 128 129 if (tick_is_broadcast_device(dev)) { 130 raw_spin_lock(&tick_broadcast_lock); 131 ret = __clockevents_update_freq(dev, freq); 132 raw_spin_unlock(&tick_broadcast_lock); 133 } 134 return ret; 135 } 136 137 138 static void err_broadcast(const struct cpumask *mask) 139 { 140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 141 } 142 143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 144 { 145 if (!dev->broadcast) 146 dev->broadcast = tick_broadcast; 147 if (!dev->broadcast) { 148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 149 dev->name); 150 dev->broadcast = err_broadcast; 151 } 152 } 153 154 /* 155 * Check, if the device is disfunctional and a place holder, which 156 * needs to be handled by the broadcast device. 157 */ 158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 159 { 160 struct clock_event_device *bc = tick_broadcast_device.evtdev; 161 unsigned long flags; 162 int ret = 0; 163 164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 165 166 /* 167 * Devices might be registered with both periodic and oneshot 168 * mode disabled. This signals, that the device needs to be 169 * operated from the broadcast device and is a placeholder for 170 * the cpu local device. 171 */ 172 if (!tick_device_is_functional(dev)) { 173 dev->event_handler = tick_handle_periodic; 174 tick_device_setup_broadcast_func(dev); 175 cpumask_set_cpu(cpu, tick_broadcast_mask); 176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 177 tick_broadcast_start_periodic(bc); 178 else 179 tick_broadcast_setup_oneshot(bc); 180 ret = 1; 181 } else { 182 /* 183 * Clear the broadcast bit for this cpu if the 184 * device is not power state affected. 185 */ 186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 187 cpumask_clear_cpu(cpu, tick_broadcast_mask); 188 else 189 tick_device_setup_broadcast_func(dev); 190 191 /* 192 * Clear the broadcast bit if the CPU is not in 193 * periodic broadcast on state. 194 */ 195 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 196 cpumask_clear_cpu(cpu, tick_broadcast_mask); 197 198 switch (tick_broadcast_device.mode) { 199 case TICKDEV_MODE_ONESHOT: 200 /* 201 * If the system is in oneshot mode we can 202 * unconditionally clear the oneshot mask bit, 203 * because the CPU is running and therefore 204 * not in an idle state which causes the power 205 * state affected device to stop. Let the 206 * caller initialize the device. 207 */ 208 tick_broadcast_clear_oneshot(cpu); 209 ret = 0; 210 break; 211 212 case TICKDEV_MODE_PERIODIC: 213 /* 214 * If the system is in periodic mode, check 215 * whether the broadcast device can be 216 * switched off now. 217 */ 218 if (cpumask_empty(tick_broadcast_mask) && bc) 219 clockevents_shutdown(bc); 220 /* 221 * If we kept the cpu in the broadcast mask, 222 * tell the caller to leave the per cpu device 223 * in shutdown state. The periodic interrupt 224 * is delivered by the broadcast device, if 225 * the broadcast device exists and is not 226 * hrtimer based. 227 */ 228 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 229 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 230 break; 231 default: 232 break; 233 } 234 } 235 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 236 return ret; 237 } 238 239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 240 int tick_receive_broadcast(void) 241 { 242 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 243 struct clock_event_device *evt = td->evtdev; 244 245 if (!evt) 246 return -ENODEV; 247 248 if (!evt->event_handler) 249 return -EINVAL; 250 251 evt->event_handler(evt); 252 return 0; 253 } 254 #endif 255 256 /* 257 * Broadcast the event to the cpus, which are set in the mask (mangled). 258 */ 259 static bool tick_do_broadcast(struct cpumask *mask) 260 { 261 int cpu = smp_processor_id(); 262 struct tick_device *td; 263 bool local = false; 264 265 /* 266 * Check, if the current cpu is in the mask 267 */ 268 if (cpumask_test_cpu(cpu, mask)) { 269 struct clock_event_device *bc = tick_broadcast_device.evtdev; 270 271 cpumask_clear_cpu(cpu, mask); 272 /* 273 * We only run the local handler, if the broadcast 274 * device is not hrtimer based. Otherwise we run into 275 * a hrtimer recursion. 276 * 277 * local timer_interrupt() 278 * local_handler() 279 * expire_hrtimers() 280 * bc_handler() 281 * local_handler() 282 * expire_hrtimers() 283 */ 284 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 285 } 286 287 if (!cpumask_empty(mask)) { 288 /* 289 * It might be necessary to actually check whether the devices 290 * have different broadcast functions. For now, just use the 291 * one of the first device. This works as long as we have this 292 * misfeature only on x86 (lapic) 293 */ 294 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 295 td->evtdev->broadcast(mask); 296 } 297 return local; 298 } 299 300 /* 301 * Periodic broadcast: 302 * - invoke the broadcast handlers 303 */ 304 static bool tick_do_periodic_broadcast(void) 305 { 306 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 307 return tick_do_broadcast(tmpmask); 308 } 309 310 /* 311 * Event handler for periodic broadcast ticks 312 */ 313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 314 { 315 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 316 bool bc_local; 317 318 raw_spin_lock(&tick_broadcast_lock); 319 320 /* Handle spurious interrupts gracefully */ 321 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 322 raw_spin_unlock(&tick_broadcast_lock); 323 return; 324 } 325 326 bc_local = tick_do_periodic_broadcast(); 327 328 if (clockevent_state_oneshot(dev)) { 329 ktime_t next = ktime_add(dev->next_event, tick_period); 330 331 clockevents_program_event(dev, next, true); 332 } 333 raw_spin_unlock(&tick_broadcast_lock); 334 335 /* 336 * We run the handler of the local cpu after dropping 337 * tick_broadcast_lock because the handler might deadlock when 338 * trying to switch to oneshot mode. 339 */ 340 if (bc_local) 341 td->evtdev->event_handler(td->evtdev); 342 } 343 344 /** 345 * tick_broadcast_control - Enable/disable or force broadcast mode 346 * @mode: The selected broadcast mode 347 * 348 * Called when the system enters a state where affected tick devices 349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 350 * 351 * Called with interrupts disabled, so clockevents_lock is not 352 * required here because the local clock event device cannot go away 353 * under us. 354 */ 355 void tick_broadcast_control(enum tick_broadcast_mode mode) 356 { 357 struct clock_event_device *bc, *dev; 358 struct tick_device *td; 359 int cpu, bc_stopped; 360 361 td = this_cpu_ptr(&tick_cpu_device); 362 dev = td->evtdev; 363 364 /* 365 * Is the device not affected by the powerstate ? 366 */ 367 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 368 return; 369 370 if (!tick_device_is_functional(dev)) 371 return; 372 373 raw_spin_lock(&tick_broadcast_lock); 374 cpu = smp_processor_id(); 375 bc = tick_broadcast_device.evtdev; 376 bc_stopped = cpumask_empty(tick_broadcast_mask); 377 378 switch (mode) { 379 case TICK_BROADCAST_FORCE: 380 tick_broadcast_forced = 1; 381 case TICK_BROADCAST_ON: 382 cpumask_set_cpu(cpu, tick_broadcast_on); 383 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 384 /* 385 * Only shutdown the cpu local device, if: 386 * 387 * - the broadcast device exists 388 * - the broadcast device is not a hrtimer based one 389 * - the broadcast device is in periodic mode to 390 * avoid a hickup during switch to oneshot mode 391 */ 392 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 393 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 394 clockevents_shutdown(dev); 395 } 396 break; 397 398 case TICK_BROADCAST_OFF: 399 if (tick_broadcast_forced) 400 break; 401 cpumask_clear_cpu(cpu, tick_broadcast_on); 402 if (!tick_device_is_functional(dev)) 403 break; 404 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 405 if (tick_broadcast_device.mode == 406 TICKDEV_MODE_PERIODIC) 407 tick_setup_periodic(dev, 0); 408 } 409 break; 410 } 411 412 if (bc) { 413 if (cpumask_empty(tick_broadcast_mask)) { 414 if (!bc_stopped) 415 clockevents_shutdown(bc); 416 } else if (bc_stopped) { 417 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 418 tick_broadcast_start_periodic(bc); 419 else 420 tick_broadcast_setup_oneshot(bc); 421 } 422 } 423 raw_spin_unlock(&tick_broadcast_lock); 424 } 425 EXPORT_SYMBOL_GPL(tick_broadcast_control); 426 427 /* 428 * Set the periodic handler depending on broadcast on/off 429 */ 430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 431 { 432 if (!broadcast) 433 dev->event_handler = tick_handle_periodic; 434 else 435 dev->event_handler = tick_handle_periodic_broadcast; 436 } 437 438 #ifdef CONFIG_HOTPLUG_CPU 439 /* 440 * Remove a CPU from broadcasting 441 */ 442 void tick_shutdown_broadcast(unsigned int cpu) 443 { 444 struct clock_event_device *bc; 445 unsigned long flags; 446 447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 448 449 bc = tick_broadcast_device.evtdev; 450 cpumask_clear_cpu(cpu, tick_broadcast_mask); 451 cpumask_clear_cpu(cpu, tick_broadcast_on); 452 453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 454 if (bc && cpumask_empty(tick_broadcast_mask)) 455 clockevents_shutdown(bc); 456 } 457 458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 459 } 460 #endif 461 462 void tick_suspend_broadcast(void) 463 { 464 struct clock_event_device *bc; 465 unsigned long flags; 466 467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 468 469 bc = tick_broadcast_device.evtdev; 470 if (bc) 471 clockevents_shutdown(bc); 472 473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 474 } 475 476 /* 477 * This is called from tick_resume_local() on a resuming CPU. That's 478 * called from the core resume function, tick_unfreeze() and the magic XEN 479 * resume hackery. 480 * 481 * In none of these cases the broadcast device mode can change and the 482 * bit of the resuming CPU in the broadcast mask is safe as well. 483 */ 484 bool tick_resume_check_broadcast(void) 485 { 486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 487 return false; 488 else 489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 490 } 491 492 void tick_resume_broadcast(void) 493 { 494 struct clock_event_device *bc; 495 unsigned long flags; 496 497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 498 499 bc = tick_broadcast_device.evtdev; 500 501 if (bc) { 502 clockevents_tick_resume(bc); 503 504 switch (tick_broadcast_device.mode) { 505 case TICKDEV_MODE_PERIODIC: 506 if (!cpumask_empty(tick_broadcast_mask)) 507 tick_broadcast_start_periodic(bc); 508 break; 509 case TICKDEV_MODE_ONESHOT: 510 if (!cpumask_empty(tick_broadcast_mask)) 511 tick_resume_broadcast_oneshot(bc); 512 break; 513 } 514 } 515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 516 } 517 518 #ifdef CONFIG_TICK_ONESHOT 519 520 static cpumask_var_t tick_broadcast_oneshot_mask; 521 static cpumask_var_t tick_broadcast_pending_mask; 522 static cpumask_var_t tick_broadcast_force_mask; 523 524 /* 525 * Exposed for debugging: see timer_list.c 526 */ 527 struct cpumask *tick_get_broadcast_oneshot_mask(void) 528 { 529 return tick_broadcast_oneshot_mask; 530 } 531 532 /* 533 * Called before going idle with interrupts disabled. Checks whether a 534 * broadcast event from the other core is about to happen. We detected 535 * that in tick_broadcast_oneshot_control(). The callsite can use this 536 * to avoid a deep idle transition as we are about to get the 537 * broadcast IPI right away. 538 */ 539 int tick_check_broadcast_expired(void) 540 { 541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 542 } 543 544 /* 545 * Set broadcast interrupt affinity 546 */ 547 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 548 const struct cpumask *cpumask) 549 { 550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 551 return; 552 553 if (cpumask_equal(bc->cpumask, cpumask)) 554 return; 555 556 bc->cpumask = cpumask; 557 irq_set_affinity(bc->irq, bc->cpumask); 558 } 559 560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 561 ktime_t expires) 562 { 563 if (!clockevent_state_oneshot(bc)) 564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 565 566 clockevents_program_event(bc, expires, 1); 567 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 568 } 569 570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 571 { 572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 573 } 574 575 /* 576 * Called from irq_enter() when idle was interrupted to reenable the 577 * per cpu device. 578 */ 579 void tick_check_oneshot_broadcast_this_cpu(void) 580 { 581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 583 584 /* 585 * We might be in the middle of switching over from 586 * periodic to oneshot. If the CPU has not yet 587 * switched over, leave the device alone. 588 */ 589 if (td->mode == TICKDEV_MODE_ONESHOT) { 590 clockevents_switch_state(td->evtdev, 591 CLOCK_EVT_STATE_ONESHOT); 592 } 593 } 594 } 595 596 /* 597 * Handle oneshot mode broadcasting 598 */ 599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 600 { 601 struct tick_device *td; 602 ktime_t now, next_event; 603 int cpu, next_cpu = 0; 604 bool bc_local; 605 606 raw_spin_lock(&tick_broadcast_lock); 607 dev->next_event.tv64 = KTIME_MAX; 608 next_event.tv64 = KTIME_MAX; 609 cpumask_clear(tmpmask); 610 now = ktime_get(); 611 /* Find all expired events */ 612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 613 td = &per_cpu(tick_cpu_device, cpu); 614 if (td->evtdev->next_event.tv64 <= now.tv64) { 615 cpumask_set_cpu(cpu, tmpmask); 616 /* 617 * Mark the remote cpu in the pending mask, so 618 * it can avoid reprogramming the cpu local 619 * timer in tick_broadcast_oneshot_control(). 620 */ 621 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 622 } else if (td->evtdev->next_event.tv64 < next_event.tv64) { 623 next_event.tv64 = td->evtdev->next_event.tv64; 624 next_cpu = cpu; 625 } 626 } 627 628 /* 629 * Remove the current cpu from the pending mask. The event is 630 * delivered immediately in tick_do_broadcast() ! 631 */ 632 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 633 634 /* Take care of enforced broadcast requests */ 635 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 636 cpumask_clear(tick_broadcast_force_mask); 637 638 /* 639 * Sanity check. Catch the case where we try to broadcast to 640 * offline cpus. 641 */ 642 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 643 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 644 645 /* 646 * Wakeup the cpus which have an expired event. 647 */ 648 bc_local = tick_do_broadcast(tmpmask); 649 650 /* 651 * Two reasons for reprogram: 652 * 653 * - The global event did not expire any CPU local 654 * events. This happens in dyntick mode, as the maximum PIT 655 * delta is quite small. 656 * 657 * - There are pending events on sleeping CPUs which were not 658 * in the event mask 659 */ 660 if (next_event.tv64 != KTIME_MAX) 661 tick_broadcast_set_event(dev, next_cpu, next_event); 662 663 raw_spin_unlock(&tick_broadcast_lock); 664 665 if (bc_local) { 666 td = this_cpu_ptr(&tick_cpu_device); 667 td->evtdev->event_handler(td->evtdev); 668 } 669 } 670 671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 672 { 673 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 674 return 0; 675 if (bc->next_event.tv64 == KTIME_MAX) 676 return 0; 677 return bc->bound_on == cpu ? -EBUSY : 0; 678 } 679 680 static void broadcast_shutdown_local(struct clock_event_device *bc, 681 struct clock_event_device *dev) 682 { 683 /* 684 * For hrtimer based broadcasting we cannot shutdown the cpu 685 * local device if our own event is the first one to expire or 686 * if we own the broadcast timer. 687 */ 688 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 689 if (broadcast_needs_cpu(bc, smp_processor_id())) 690 return; 691 if (dev->next_event.tv64 < bc->next_event.tv64) 692 return; 693 } 694 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 695 } 696 697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 698 { 699 struct clock_event_device *bc, *dev; 700 int cpu, ret = 0; 701 ktime_t now; 702 703 /* 704 * If there is no broadcast device, tell the caller not to go 705 * into deep idle. 706 */ 707 if (!tick_broadcast_device.evtdev) 708 return -EBUSY; 709 710 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 711 712 raw_spin_lock(&tick_broadcast_lock); 713 bc = tick_broadcast_device.evtdev; 714 cpu = smp_processor_id(); 715 716 if (state == TICK_BROADCAST_ENTER) { 717 /* 718 * If the current CPU owns the hrtimer broadcast 719 * mechanism, it cannot go deep idle and we do not add 720 * the CPU to the broadcast mask. We don't have to go 721 * through the EXIT path as the local timer is not 722 * shutdown. 723 */ 724 ret = broadcast_needs_cpu(bc, cpu); 725 if (ret) 726 goto out; 727 728 /* 729 * If the broadcast device is in periodic mode, we 730 * return. 731 */ 732 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 733 /* If it is a hrtimer based broadcast, return busy */ 734 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 735 ret = -EBUSY; 736 goto out; 737 } 738 739 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 740 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 741 742 /* Conditionally shut down the local timer. */ 743 broadcast_shutdown_local(bc, dev); 744 745 /* 746 * We only reprogram the broadcast timer if we 747 * did not mark ourself in the force mask and 748 * if the cpu local event is earlier than the 749 * broadcast event. If the current CPU is in 750 * the force mask, then we are going to be 751 * woken by the IPI right away; we return 752 * busy, so the CPU does not try to go deep 753 * idle. 754 */ 755 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 756 ret = -EBUSY; 757 } else if (dev->next_event.tv64 < bc->next_event.tv64) { 758 tick_broadcast_set_event(bc, cpu, dev->next_event); 759 /* 760 * In case of hrtimer broadcasts the 761 * programming might have moved the 762 * timer to this cpu. If yes, remove 763 * us from the broadcast mask and 764 * return busy. 765 */ 766 ret = broadcast_needs_cpu(bc, cpu); 767 if (ret) { 768 cpumask_clear_cpu(cpu, 769 tick_broadcast_oneshot_mask); 770 } 771 } 772 } 773 } else { 774 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 775 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 776 /* 777 * The cpu which was handling the broadcast 778 * timer marked this cpu in the broadcast 779 * pending mask and fired the broadcast 780 * IPI. So we are going to handle the expired 781 * event anyway via the broadcast IPI 782 * handler. No need to reprogram the timer 783 * with an already expired event. 784 */ 785 if (cpumask_test_and_clear_cpu(cpu, 786 tick_broadcast_pending_mask)) 787 goto out; 788 789 /* 790 * Bail out if there is no next event. 791 */ 792 if (dev->next_event.tv64 == KTIME_MAX) 793 goto out; 794 /* 795 * If the pending bit is not set, then we are 796 * either the CPU handling the broadcast 797 * interrupt or we got woken by something else. 798 * 799 * We are not longer in the broadcast mask, so 800 * if the cpu local expiry time is already 801 * reached, we would reprogram the cpu local 802 * timer with an already expired event. 803 * 804 * This can lead to a ping-pong when we return 805 * to idle and therefor rearm the broadcast 806 * timer before the cpu local timer was able 807 * to fire. This happens because the forced 808 * reprogramming makes sure that the event 809 * will happen in the future and depending on 810 * the min_delta setting this might be far 811 * enough out that the ping-pong starts. 812 * 813 * If the cpu local next_event has expired 814 * then we know that the broadcast timer 815 * next_event has expired as well and 816 * broadcast is about to be handled. So we 817 * avoid reprogramming and enforce that the 818 * broadcast handler, which did not run yet, 819 * will invoke the cpu local handler. 820 * 821 * We cannot call the handler directly from 822 * here, because we might be in a NOHZ phase 823 * and we did not go through the irq_enter() 824 * nohz fixups. 825 */ 826 now = ktime_get(); 827 if (dev->next_event.tv64 <= now.tv64) { 828 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 829 goto out; 830 } 831 /* 832 * We got woken by something else. Reprogram 833 * the cpu local timer device. 834 */ 835 tick_program_event(dev->next_event, 1); 836 } 837 } 838 out: 839 raw_spin_unlock(&tick_broadcast_lock); 840 return ret; 841 } 842 843 /* 844 * Reset the one shot broadcast for a cpu 845 * 846 * Called with tick_broadcast_lock held 847 */ 848 static void tick_broadcast_clear_oneshot(int cpu) 849 { 850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 852 } 853 854 static void tick_broadcast_init_next_event(struct cpumask *mask, 855 ktime_t expires) 856 { 857 struct tick_device *td; 858 int cpu; 859 860 for_each_cpu(cpu, mask) { 861 td = &per_cpu(tick_cpu_device, cpu); 862 if (td->evtdev) 863 td->evtdev->next_event = expires; 864 } 865 } 866 867 /** 868 * tick_broadcast_setup_oneshot - setup the broadcast device 869 */ 870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 871 { 872 int cpu = smp_processor_id(); 873 874 /* Set it up only once ! */ 875 if (bc->event_handler != tick_handle_oneshot_broadcast) { 876 int was_periodic = clockevent_state_periodic(bc); 877 878 bc->event_handler = tick_handle_oneshot_broadcast; 879 880 /* 881 * We must be careful here. There might be other CPUs 882 * waiting for periodic broadcast. We need to set the 883 * oneshot_mask bits for those and program the 884 * broadcast device to fire. 885 */ 886 cpumask_copy(tmpmask, tick_broadcast_mask); 887 cpumask_clear_cpu(cpu, tmpmask); 888 cpumask_or(tick_broadcast_oneshot_mask, 889 tick_broadcast_oneshot_mask, tmpmask); 890 891 if (was_periodic && !cpumask_empty(tmpmask)) { 892 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 893 tick_broadcast_init_next_event(tmpmask, 894 tick_next_period); 895 tick_broadcast_set_event(bc, cpu, tick_next_period); 896 } else 897 bc->next_event.tv64 = KTIME_MAX; 898 } else { 899 /* 900 * The first cpu which switches to oneshot mode sets 901 * the bit for all other cpus which are in the general 902 * (periodic) broadcast mask. So the bit is set and 903 * would prevent the first broadcast enter after this 904 * to program the bc device. 905 */ 906 tick_broadcast_clear_oneshot(cpu); 907 } 908 } 909 910 /* 911 * Select oneshot operating mode for the broadcast device 912 */ 913 void tick_broadcast_switch_to_oneshot(void) 914 { 915 struct clock_event_device *bc; 916 unsigned long flags; 917 918 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 919 920 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 921 bc = tick_broadcast_device.evtdev; 922 if (bc) 923 tick_broadcast_setup_oneshot(bc); 924 925 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 926 } 927 928 #ifdef CONFIG_HOTPLUG_CPU 929 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 930 { 931 struct clock_event_device *bc; 932 unsigned long flags; 933 934 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 935 bc = tick_broadcast_device.evtdev; 936 937 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 938 /* This moves the broadcast assignment to this CPU: */ 939 clockevents_program_event(bc, bc->next_event, 1); 940 } 941 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 942 } 943 944 /* 945 * Remove a dead CPU from broadcasting 946 */ 947 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 948 { 949 unsigned long flags; 950 951 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 952 953 /* 954 * Clear the broadcast masks for the dead cpu, but do not stop 955 * the broadcast device! 956 */ 957 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 958 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 959 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 960 961 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 962 } 963 #endif 964 965 /* 966 * Check, whether the broadcast device is in one shot mode 967 */ 968 int tick_broadcast_oneshot_active(void) 969 { 970 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 971 } 972 973 /* 974 * Check whether the broadcast device supports oneshot. 975 */ 976 bool tick_broadcast_oneshot_available(void) 977 { 978 struct clock_event_device *bc = tick_broadcast_device.evtdev; 979 980 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 981 } 982 983 #else 984 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 985 { 986 struct clock_event_device *bc = tick_broadcast_device.evtdev; 987 988 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 989 return -EBUSY; 990 991 return 0; 992 } 993 #endif 994 995 void __init tick_broadcast_init(void) 996 { 997 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 998 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 999 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1000 #ifdef CONFIG_TICK_ONESHOT 1001 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1002 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1003 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1004 #endif 1005 } 1006