xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 710b797c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19 
20 #include "tick-internal.h"
21 
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26 
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32 
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 # ifdef CONFIG_HOTPLUG_CPU
40 static void tick_broadcast_oneshot_offline(unsigned int cpu);
41 # endif
42 #else
43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
44 static inline void tick_broadcast_clear_oneshot(int cpu) { }
45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
46 # ifdef CONFIG_HOTPLUG_CPU
47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
48 # endif
49 #endif
50 
51 /*
52  * Debugging: see timer_list.c
53  */
54 struct tick_device *tick_get_broadcast_device(void)
55 {
56 	return &tick_broadcast_device;
57 }
58 
59 struct cpumask *tick_get_broadcast_mask(void)
60 {
61 	return tick_broadcast_mask;
62 }
63 
64 /*
65  * Start the device in periodic mode
66  */
67 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
68 {
69 	if (bc)
70 		tick_setup_periodic(bc, 1);
71 }
72 
73 /*
74  * Check, if the device can be utilized as broadcast device:
75  */
76 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
77 					struct clock_event_device *newdev)
78 {
79 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
80 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
81 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
82 		return false;
83 
84 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
85 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
86 		return false;
87 
88 	return !curdev || newdev->rating > curdev->rating;
89 }
90 
91 /*
92  * Conditionally install/replace broadcast device
93  */
94 void tick_install_broadcast_device(struct clock_event_device *dev)
95 {
96 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
97 
98 	if (!tick_check_broadcast_device(cur, dev))
99 		return;
100 
101 	if (!try_module_get(dev->owner))
102 		return;
103 
104 	clockevents_exchange_device(cur, dev);
105 	if (cur)
106 		cur->event_handler = clockevents_handle_noop;
107 	tick_broadcast_device.evtdev = dev;
108 	if (!cpumask_empty(tick_broadcast_mask))
109 		tick_broadcast_start_periodic(dev);
110 
111 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
112 		return;
113 
114 	/*
115 	 * If the system already runs in oneshot mode, switch the newly
116 	 * registered broadcast device to oneshot mode explicitly.
117 	 */
118 	if (tick_broadcast_oneshot_active()) {
119 		tick_broadcast_switch_to_oneshot();
120 		return;
121 	}
122 
123 	/*
124 	 * Inform all cpus about this. We might be in a situation
125 	 * where we did not switch to oneshot mode because the per cpu
126 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
127 	 * of a oneshot capable broadcast device. Without that
128 	 * notification the systems stays stuck in periodic mode
129 	 * forever.
130 	 */
131 	tick_clock_notify();
132 }
133 
134 /*
135  * Check, if the device is the broadcast device
136  */
137 int tick_is_broadcast_device(struct clock_event_device *dev)
138 {
139 	return (dev && tick_broadcast_device.evtdev == dev);
140 }
141 
142 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
143 {
144 	int ret = -ENODEV;
145 
146 	if (tick_is_broadcast_device(dev)) {
147 		raw_spin_lock(&tick_broadcast_lock);
148 		ret = __clockevents_update_freq(dev, freq);
149 		raw_spin_unlock(&tick_broadcast_lock);
150 	}
151 	return ret;
152 }
153 
154 
155 static void err_broadcast(const struct cpumask *mask)
156 {
157 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
158 }
159 
160 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
161 {
162 	if (!dev->broadcast)
163 		dev->broadcast = tick_broadcast;
164 	if (!dev->broadcast) {
165 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
166 			     dev->name);
167 		dev->broadcast = err_broadcast;
168 	}
169 }
170 
171 /*
172  * Check, if the device is dysfunctional and a placeholder, which
173  * needs to be handled by the broadcast device.
174  */
175 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
176 {
177 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
178 	unsigned long flags;
179 	int ret = 0;
180 
181 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
182 
183 	/*
184 	 * Devices might be registered with both periodic and oneshot
185 	 * mode disabled. This signals, that the device needs to be
186 	 * operated from the broadcast device and is a placeholder for
187 	 * the cpu local device.
188 	 */
189 	if (!tick_device_is_functional(dev)) {
190 		dev->event_handler = tick_handle_periodic;
191 		tick_device_setup_broadcast_func(dev);
192 		cpumask_set_cpu(cpu, tick_broadcast_mask);
193 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
194 			tick_broadcast_start_periodic(bc);
195 		else
196 			tick_broadcast_setup_oneshot(bc);
197 		ret = 1;
198 	} else {
199 		/*
200 		 * Clear the broadcast bit for this cpu if the
201 		 * device is not power state affected.
202 		 */
203 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
204 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
205 		else
206 			tick_device_setup_broadcast_func(dev);
207 
208 		/*
209 		 * Clear the broadcast bit if the CPU is not in
210 		 * periodic broadcast on state.
211 		 */
212 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
213 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
214 
215 		switch (tick_broadcast_device.mode) {
216 		case TICKDEV_MODE_ONESHOT:
217 			/*
218 			 * If the system is in oneshot mode we can
219 			 * unconditionally clear the oneshot mask bit,
220 			 * because the CPU is running and therefore
221 			 * not in an idle state which causes the power
222 			 * state affected device to stop. Let the
223 			 * caller initialize the device.
224 			 */
225 			tick_broadcast_clear_oneshot(cpu);
226 			ret = 0;
227 			break;
228 
229 		case TICKDEV_MODE_PERIODIC:
230 			/*
231 			 * If the system is in periodic mode, check
232 			 * whether the broadcast device can be
233 			 * switched off now.
234 			 */
235 			if (cpumask_empty(tick_broadcast_mask) && bc)
236 				clockevents_shutdown(bc);
237 			/*
238 			 * If we kept the cpu in the broadcast mask,
239 			 * tell the caller to leave the per cpu device
240 			 * in shutdown state. The periodic interrupt
241 			 * is delivered by the broadcast device, if
242 			 * the broadcast device exists and is not
243 			 * hrtimer based.
244 			 */
245 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
246 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
247 			break;
248 		default:
249 			break;
250 		}
251 	}
252 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
253 	return ret;
254 }
255 
256 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
257 int tick_receive_broadcast(void)
258 {
259 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
260 	struct clock_event_device *evt = td->evtdev;
261 
262 	if (!evt)
263 		return -ENODEV;
264 
265 	if (!evt->event_handler)
266 		return -EINVAL;
267 
268 	evt->event_handler(evt);
269 	return 0;
270 }
271 #endif
272 
273 /*
274  * Broadcast the event to the cpus, which are set in the mask (mangled).
275  */
276 static bool tick_do_broadcast(struct cpumask *mask)
277 {
278 	int cpu = smp_processor_id();
279 	struct tick_device *td;
280 	bool local = false;
281 
282 	/*
283 	 * Check, if the current cpu is in the mask
284 	 */
285 	if (cpumask_test_cpu(cpu, mask)) {
286 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
287 
288 		cpumask_clear_cpu(cpu, mask);
289 		/*
290 		 * We only run the local handler, if the broadcast
291 		 * device is not hrtimer based. Otherwise we run into
292 		 * a hrtimer recursion.
293 		 *
294 		 * local timer_interrupt()
295 		 *   local_handler()
296 		 *     expire_hrtimers()
297 		 *       bc_handler()
298 		 *         local_handler()
299 		 *	     expire_hrtimers()
300 		 */
301 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
302 	}
303 
304 	if (!cpumask_empty(mask)) {
305 		/*
306 		 * It might be necessary to actually check whether the devices
307 		 * have different broadcast functions. For now, just use the
308 		 * one of the first device. This works as long as we have this
309 		 * misfeature only on x86 (lapic)
310 		 */
311 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
312 		td->evtdev->broadcast(mask);
313 	}
314 	return local;
315 }
316 
317 /*
318  * Periodic broadcast:
319  * - invoke the broadcast handlers
320  */
321 static bool tick_do_periodic_broadcast(void)
322 {
323 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
324 	return tick_do_broadcast(tmpmask);
325 }
326 
327 /*
328  * Event handler for periodic broadcast ticks
329  */
330 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
331 {
332 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
333 	bool bc_local;
334 
335 	raw_spin_lock(&tick_broadcast_lock);
336 
337 	/* Handle spurious interrupts gracefully */
338 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
339 		raw_spin_unlock(&tick_broadcast_lock);
340 		return;
341 	}
342 
343 	bc_local = tick_do_periodic_broadcast();
344 
345 	if (clockevent_state_oneshot(dev)) {
346 		ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
347 
348 		clockevents_program_event(dev, next, true);
349 	}
350 	raw_spin_unlock(&tick_broadcast_lock);
351 
352 	/*
353 	 * We run the handler of the local cpu after dropping
354 	 * tick_broadcast_lock because the handler might deadlock when
355 	 * trying to switch to oneshot mode.
356 	 */
357 	if (bc_local)
358 		td->evtdev->event_handler(td->evtdev);
359 }
360 
361 /**
362  * tick_broadcast_control - Enable/disable or force broadcast mode
363  * @mode:	The selected broadcast mode
364  *
365  * Called when the system enters a state where affected tick devices
366  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
367  */
368 void tick_broadcast_control(enum tick_broadcast_mode mode)
369 {
370 	struct clock_event_device *bc, *dev;
371 	struct tick_device *td;
372 	int cpu, bc_stopped;
373 	unsigned long flags;
374 
375 	/* Protects also the local clockevent device. */
376 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
377 	td = this_cpu_ptr(&tick_cpu_device);
378 	dev = td->evtdev;
379 
380 	/*
381 	 * Is the device not affected by the powerstate ?
382 	 */
383 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
384 		goto out;
385 
386 	if (!tick_device_is_functional(dev))
387 		goto out;
388 
389 	cpu = smp_processor_id();
390 	bc = tick_broadcast_device.evtdev;
391 	bc_stopped = cpumask_empty(tick_broadcast_mask);
392 
393 	switch (mode) {
394 	case TICK_BROADCAST_FORCE:
395 		tick_broadcast_forced = 1;
396 		fallthrough;
397 	case TICK_BROADCAST_ON:
398 		cpumask_set_cpu(cpu, tick_broadcast_on);
399 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
400 			/*
401 			 * Only shutdown the cpu local device, if:
402 			 *
403 			 * - the broadcast device exists
404 			 * - the broadcast device is not a hrtimer based one
405 			 * - the broadcast device is in periodic mode to
406 			 *   avoid a hiccup during switch to oneshot mode
407 			 */
408 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
409 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
410 				clockevents_shutdown(dev);
411 		}
412 		break;
413 
414 	case TICK_BROADCAST_OFF:
415 		if (tick_broadcast_forced)
416 			break;
417 		cpumask_clear_cpu(cpu, tick_broadcast_on);
418 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
419 			if (tick_broadcast_device.mode ==
420 			    TICKDEV_MODE_PERIODIC)
421 				tick_setup_periodic(dev, 0);
422 		}
423 		break;
424 	}
425 
426 	if (bc) {
427 		if (cpumask_empty(tick_broadcast_mask)) {
428 			if (!bc_stopped)
429 				clockevents_shutdown(bc);
430 		} else if (bc_stopped) {
431 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
432 				tick_broadcast_start_periodic(bc);
433 			else
434 				tick_broadcast_setup_oneshot(bc);
435 		}
436 	}
437 out:
438 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
439 }
440 EXPORT_SYMBOL_GPL(tick_broadcast_control);
441 
442 /*
443  * Set the periodic handler depending on broadcast on/off
444  */
445 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
446 {
447 	if (!broadcast)
448 		dev->event_handler = tick_handle_periodic;
449 	else
450 		dev->event_handler = tick_handle_periodic_broadcast;
451 }
452 
453 #ifdef CONFIG_HOTPLUG_CPU
454 static void tick_shutdown_broadcast(void)
455 {
456 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
457 
458 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
459 		if (bc && cpumask_empty(tick_broadcast_mask))
460 			clockevents_shutdown(bc);
461 	}
462 }
463 
464 /*
465  * Remove a CPU from broadcasting
466  */
467 void tick_broadcast_offline(unsigned int cpu)
468 {
469 	raw_spin_lock(&tick_broadcast_lock);
470 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
471 	cpumask_clear_cpu(cpu, tick_broadcast_on);
472 	tick_broadcast_oneshot_offline(cpu);
473 	tick_shutdown_broadcast();
474 	raw_spin_unlock(&tick_broadcast_lock);
475 }
476 
477 #endif
478 
479 void tick_suspend_broadcast(void)
480 {
481 	struct clock_event_device *bc;
482 	unsigned long flags;
483 
484 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
485 
486 	bc = tick_broadcast_device.evtdev;
487 	if (bc)
488 		clockevents_shutdown(bc);
489 
490 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
491 }
492 
493 /*
494  * This is called from tick_resume_local() on a resuming CPU. That's
495  * called from the core resume function, tick_unfreeze() and the magic XEN
496  * resume hackery.
497  *
498  * In none of these cases the broadcast device mode can change and the
499  * bit of the resuming CPU in the broadcast mask is safe as well.
500  */
501 bool tick_resume_check_broadcast(void)
502 {
503 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
504 		return false;
505 	else
506 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
507 }
508 
509 void tick_resume_broadcast(void)
510 {
511 	struct clock_event_device *bc;
512 	unsigned long flags;
513 
514 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
515 
516 	bc = tick_broadcast_device.evtdev;
517 
518 	if (bc) {
519 		clockevents_tick_resume(bc);
520 
521 		switch (tick_broadcast_device.mode) {
522 		case TICKDEV_MODE_PERIODIC:
523 			if (!cpumask_empty(tick_broadcast_mask))
524 				tick_broadcast_start_periodic(bc);
525 			break;
526 		case TICKDEV_MODE_ONESHOT:
527 			if (!cpumask_empty(tick_broadcast_mask))
528 				tick_resume_broadcast_oneshot(bc);
529 			break;
530 		}
531 	}
532 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
533 }
534 
535 #ifdef CONFIG_TICK_ONESHOT
536 
537 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
538 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
539 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
540 
541 /*
542  * Exposed for debugging: see timer_list.c
543  */
544 struct cpumask *tick_get_broadcast_oneshot_mask(void)
545 {
546 	return tick_broadcast_oneshot_mask;
547 }
548 
549 /*
550  * Called before going idle with interrupts disabled. Checks whether a
551  * broadcast event from the other core is about to happen. We detected
552  * that in tick_broadcast_oneshot_control(). The callsite can use this
553  * to avoid a deep idle transition as we are about to get the
554  * broadcast IPI right away.
555  */
556 int tick_check_broadcast_expired(void)
557 {
558 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
559 }
560 
561 /*
562  * Set broadcast interrupt affinity
563  */
564 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
565 					const struct cpumask *cpumask)
566 {
567 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
568 		return;
569 
570 	if (cpumask_equal(bc->cpumask, cpumask))
571 		return;
572 
573 	bc->cpumask = cpumask;
574 	irq_set_affinity(bc->irq, bc->cpumask);
575 }
576 
577 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
578 				     ktime_t expires)
579 {
580 	if (!clockevent_state_oneshot(bc))
581 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
582 
583 	clockevents_program_event(bc, expires, 1);
584 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
585 }
586 
587 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
588 {
589 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
590 }
591 
592 /*
593  * Called from irq_enter() when idle was interrupted to reenable the
594  * per cpu device.
595  */
596 void tick_check_oneshot_broadcast_this_cpu(void)
597 {
598 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
599 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
600 
601 		/*
602 		 * We might be in the middle of switching over from
603 		 * periodic to oneshot. If the CPU has not yet
604 		 * switched over, leave the device alone.
605 		 */
606 		if (td->mode == TICKDEV_MODE_ONESHOT) {
607 			clockevents_switch_state(td->evtdev,
608 					      CLOCK_EVT_STATE_ONESHOT);
609 		}
610 	}
611 }
612 
613 /*
614  * Handle oneshot mode broadcasting
615  */
616 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
617 {
618 	struct tick_device *td;
619 	ktime_t now, next_event;
620 	int cpu, next_cpu = 0;
621 	bool bc_local;
622 
623 	raw_spin_lock(&tick_broadcast_lock);
624 	dev->next_event = KTIME_MAX;
625 	next_event = KTIME_MAX;
626 	cpumask_clear(tmpmask);
627 	now = ktime_get();
628 	/* Find all expired events */
629 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
630 		/*
631 		 * Required for !SMP because for_each_cpu() reports
632 		 * unconditionally CPU0 as set on UP kernels.
633 		 */
634 		if (!IS_ENABLED(CONFIG_SMP) &&
635 		    cpumask_empty(tick_broadcast_oneshot_mask))
636 			break;
637 
638 		td = &per_cpu(tick_cpu_device, cpu);
639 		if (td->evtdev->next_event <= now) {
640 			cpumask_set_cpu(cpu, tmpmask);
641 			/*
642 			 * Mark the remote cpu in the pending mask, so
643 			 * it can avoid reprogramming the cpu local
644 			 * timer in tick_broadcast_oneshot_control().
645 			 */
646 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
647 		} else if (td->evtdev->next_event < next_event) {
648 			next_event = td->evtdev->next_event;
649 			next_cpu = cpu;
650 		}
651 	}
652 
653 	/*
654 	 * Remove the current cpu from the pending mask. The event is
655 	 * delivered immediately in tick_do_broadcast() !
656 	 */
657 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
658 
659 	/* Take care of enforced broadcast requests */
660 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
661 	cpumask_clear(tick_broadcast_force_mask);
662 
663 	/*
664 	 * Sanity check. Catch the case where we try to broadcast to
665 	 * offline cpus.
666 	 */
667 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
668 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
669 
670 	/*
671 	 * Wakeup the cpus which have an expired event.
672 	 */
673 	bc_local = tick_do_broadcast(tmpmask);
674 
675 	/*
676 	 * Two reasons for reprogram:
677 	 *
678 	 * - The global event did not expire any CPU local
679 	 * events. This happens in dyntick mode, as the maximum PIT
680 	 * delta is quite small.
681 	 *
682 	 * - There are pending events on sleeping CPUs which were not
683 	 * in the event mask
684 	 */
685 	if (next_event != KTIME_MAX)
686 		tick_broadcast_set_event(dev, next_cpu, next_event);
687 
688 	raw_spin_unlock(&tick_broadcast_lock);
689 
690 	if (bc_local) {
691 		td = this_cpu_ptr(&tick_cpu_device);
692 		td->evtdev->event_handler(td->evtdev);
693 	}
694 }
695 
696 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
697 {
698 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
699 		return 0;
700 	if (bc->next_event == KTIME_MAX)
701 		return 0;
702 	return bc->bound_on == cpu ? -EBUSY : 0;
703 }
704 
705 static void broadcast_shutdown_local(struct clock_event_device *bc,
706 				     struct clock_event_device *dev)
707 {
708 	/*
709 	 * For hrtimer based broadcasting we cannot shutdown the cpu
710 	 * local device if our own event is the first one to expire or
711 	 * if we own the broadcast timer.
712 	 */
713 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
714 		if (broadcast_needs_cpu(bc, smp_processor_id()))
715 			return;
716 		if (dev->next_event < bc->next_event)
717 			return;
718 	}
719 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
720 }
721 
722 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
723 {
724 	struct clock_event_device *bc, *dev;
725 	int cpu, ret = 0;
726 	ktime_t now;
727 
728 	/*
729 	 * If there is no broadcast device, tell the caller not to go
730 	 * into deep idle.
731 	 */
732 	if (!tick_broadcast_device.evtdev)
733 		return -EBUSY;
734 
735 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
736 
737 	raw_spin_lock(&tick_broadcast_lock);
738 	bc = tick_broadcast_device.evtdev;
739 	cpu = smp_processor_id();
740 
741 	if (state == TICK_BROADCAST_ENTER) {
742 		/*
743 		 * If the current CPU owns the hrtimer broadcast
744 		 * mechanism, it cannot go deep idle and we do not add
745 		 * the CPU to the broadcast mask. We don't have to go
746 		 * through the EXIT path as the local timer is not
747 		 * shutdown.
748 		 */
749 		ret = broadcast_needs_cpu(bc, cpu);
750 		if (ret)
751 			goto out;
752 
753 		/*
754 		 * If the broadcast device is in periodic mode, we
755 		 * return.
756 		 */
757 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
758 			/* If it is a hrtimer based broadcast, return busy */
759 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
760 				ret = -EBUSY;
761 			goto out;
762 		}
763 
764 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
765 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
766 
767 			/* Conditionally shut down the local timer. */
768 			broadcast_shutdown_local(bc, dev);
769 
770 			/*
771 			 * We only reprogram the broadcast timer if we
772 			 * did not mark ourself in the force mask and
773 			 * if the cpu local event is earlier than the
774 			 * broadcast event. If the current CPU is in
775 			 * the force mask, then we are going to be
776 			 * woken by the IPI right away; we return
777 			 * busy, so the CPU does not try to go deep
778 			 * idle.
779 			 */
780 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
781 				ret = -EBUSY;
782 			} else if (dev->next_event < bc->next_event) {
783 				tick_broadcast_set_event(bc, cpu, dev->next_event);
784 				/*
785 				 * In case of hrtimer broadcasts the
786 				 * programming might have moved the
787 				 * timer to this cpu. If yes, remove
788 				 * us from the broadcast mask and
789 				 * return busy.
790 				 */
791 				ret = broadcast_needs_cpu(bc, cpu);
792 				if (ret) {
793 					cpumask_clear_cpu(cpu,
794 						tick_broadcast_oneshot_mask);
795 				}
796 			}
797 		}
798 	} else {
799 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
800 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
801 			/*
802 			 * The cpu which was handling the broadcast
803 			 * timer marked this cpu in the broadcast
804 			 * pending mask and fired the broadcast
805 			 * IPI. So we are going to handle the expired
806 			 * event anyway via the broadcast IPI
807 			 * handler. No need to reprogram the timer
808 			 * with an already expired event.
809 			 */
810 			if (cpumask_test_and_clear_cpu(cpu,
811 				       tick_broadcast_pending_mask))
812 				goto out;
813 
814 			/*
815 			 * Bail out if there is no next event.
816 			 */
817 			if (dev->next_event == KTIME_MAX)
818 				goto out;
819 			/*
820 			 * If the pending bit is not set, then we are
821 			 * either the CPU handling the broadcast
822 			 * interrupt or we got woken by something else.
823 			 *
824 			 * We are no longer in the broadcast mask, so
825 			 * if the cpu local expiry time is already
826 			 * reached, we would reprogram the cpu local
827 			 * timer with an already expired event.
828 			 *
829 			 * This can lead to a ping-pong when we return
830 			 * to idle and therefore rearm the broadcast
831 			 * timer before the cpu local timer was able
832 			 * to fire. This happens because the forced
833 			 * reprogramming makes sure that the event
834 			 * will happen in the future and depending on
835 			 * the min_delta setting this might be far
836 			 * enough out that the ping-pong starts.
837 			 *
838 			 * If the cpu local next_event has expired
839 			 * then we know that the broadcast timer
840 			 * next_event has expired as well and
841 			 * broadcast is about to be handled. So we
842 			 * avoid reprogramming and enforce that the
843 			 * broadcast handler, which did not run yet,
844 			 * will invoke the cpu local handler.
845 			 *
846 			 * We cannot call the handler directly from
847 			 * here, because we might be in a NOHZ phase
848 			 * and we did not go through the irq_enter()
849 			 * nohz fixups.
850 			 */
851 			now = ktime_get();
852 			if (dev->next_event <= now) {
853 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
854 				goto out;
855 			}
856 			/*
857 			 * We got woken by something else. Reprogram
858 			 * the cpu local timer device.
859 			 */
860 			tick_program_event(dev->next_event, 1);
861 		}
862 	}
863 out:
864 	raw_spin_unlock(&tick_broadcast_lock);
865 	return ret;
866 }
867 
868 /*
869  * Reset the one shot broadcast for a cpu
870  *
871  * Called with tick_broadcast_lock held
872  */
873 static void tick_broadcast_clear_oneshot(int cpu)
874 {
875 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
876 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
877 }
878 
879 static void tick_broadcast_init_next_event(struct cpumask *mask,
880 					   ktime_t expires)
881 {
882 	struct tick_device *td;
883 	int cpu;
884 
885 	for_each_cpu(cpu, mask) {
886 		td = &per_cpu(tick_cpu_device, cpu);
887 		if (td->evtdev)
888 			td->evtdev->next_event = expires;
889 	}
890 }
891 
892 static inline ktime_t tick_get_next_period(void)
893 {
894 	ktime_t next;
895 
896 	/*
897 	 * Protect against concurrent updates (store /load tearing on
898 	 * 32bit). It does not matter if the time is already in the
899 	 * past. The broadcast device which is about to be programmed will
900 	 * fire in any case.
901 	 */
902 	raw_spin_lock(&jiffies_lock);
903 	next = tick_next_period;
904 	raw_spin_unlock(&jiffies_lock);
905 	return next;
906 }
907 
908 /**
909  * tick_broadcast_setup_oneshot - setup the broadcast device
910  */
911 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
912 {
913 	int cpu = smp_processor_id();
914 
915 	if (!bc)
916 		return;
917 
918 	/* Set it up only once ! */
919 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
920 		int was_periodic = clockevent_state_periodic(bc);
921 
922 		bc->event_handler = tick_handle_oneshot_broadcast;
923 
924 		/*
925 		 * We must be careful here. There might be other CPUs
926 		 * waiting for periodic broadcast. We need to set the
927 		 * oneshot_mask bits for those and program the
928 		 * broadcast device to fire.
929 		 */
930 		cpumask_copy(tmpmask, tick_broadcast_mask);
931 		cpumask_clear_cpu(cpu, tmpmask);
932 		cpumask_or(tick_broadcast_oneshot_mask,
933 			   tick_broadcast_oneshot_mask, tmpmask);
934 
935 		if (was_periodic && !cpumask_empty(tmpmask)) {
936 			ktime_t nextevt = tick_get_next_period();
937 
938 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
939 			tick_broadcast_init_next_event(tmpmask, nextevt);
940 			tick_broadcast_set_event(bc, cpu, nextevt);
941 		} else
942 			bc->next_event = KTIME_MAX;
943 	} else {
944 		/*
945 		 * The first cpu which switches to oneshot mode sets
946 		 * the bit for all other cpus which are in the general
947 		 * (periodic) broadcast mask. So the bit is set and
948 		 * would prevent the first broadcast enter after this
949 		 * to program the bc device.
950 		 */
951 		tick_broadcast_clear_oneshot(cpu);
952 	}
953 }
954 
955 /*
956  * Select oneshot operating mode for the broadcast device
957  */
958 void tick_broadcast_switch_to_oneshot(void)
959 {
960 	struct clock_event_device *bc;
961 	unsigned long flags;
962 
963 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
964 
965 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
966 	bc = tick_broadcast_device.evtdev;
967 	if (bc)
968 		tick_broadcast_setup_oneshot(bc);
969 
970 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
971 }
972 
973 #ifdef CONFIG_HOTPLUG_CPU
974 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
975 {
976 	struct clock_event_device *bc;
977 	unsigned long flags;
978 
979 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
980 	bc = tick_broadcast_device.evtdev;
981 
982 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
983 		/* This moves the broadcast assignment to this CPU: */
984 		clockevents_program_event(bc, bc->next_event, 1);
985 	}
986 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
987 }
988 
989 /*
990  * Remove a dying CPU from broadcasting
991  */
992 static void tick_broadcast_oneshot_offline(unsigned int cpu)
993 {
994 	/*
995 	 * Clear the broadcast masks for the dead cpu, but do not stop
996 	 * the broadcast device!
997 	 */
998 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
999 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1000 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
1001 }
1002 #endif
1003 
1004 /*
1005  * Check, whether the broadcast device is in one shot mode
1006  */
1007 int tick_broadcast_oneshot_active(void)
1008 {
1009 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1010 }
1011 
1012 /*
1013  * Check whether the broadcast device supports oneshot.
1014  */
1015 bool tick_broadcast_oneshot_available(void)
1016 {
1017 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1018 
1019 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1020 }
1021 
1022 #else
1023 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1024 {
1025 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1026 
1027 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1028 		return -EBUSY;
1029 
1030 	return 0;
1031 }
1032 #endif
1033 
1034 void __init tick_broadcast_init(void)
1035 {
1036 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1037 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1038 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1039 #ifdef CONFIG_TICK_ONESHOT
1040 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1041 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1042 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1043 #endif
1044 }
1045