xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 64c70b1c)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 /*
35  * Debugging: see timer_list.c
36  */
37 struct tick_device *tick_get_broadcast_device(void)
38 {
39 	return &tick_broadcast_device;
40 }
41 
42 cpumask_t *tick_get_broadcast_mask(void)
43 {
44 	return &tick_broadcast_mask;
45 }
46 
47 /*
48  * Start the device in periodic mode
49  */
50 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
51 {
52 	if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN)
53 		tick_setup_periodic(bc, 1);
54 }
55 
56 /*
57  * Check, if the device can be utilized as broadcast device:
58  */
59 int tick_check_broadcast_device(struct clock_event_device *dev)
60 {
61 	if (tick_broadcast_device.evtdev ||
62 	    (dev->features & CLOCK_EVT_FEAT_C3STOP))
63 		return 0;
64 
65 	clockevents_exchange_device(NULL, dev);
66 	tick_broadcast_device.evtdev = dev;
67 	if (!cpus_empty(tick_broadcast_mask))
68 		tick_broadcast_start_periodic(dev);
69 	return 1;
70 }
71 
72 /*
73  * Check, if the device is the broadcast device
74  */
75 int tick_is_broadcast_device(struct clock_event_device *dev)
76 {
77 	return (dev && tick_broadcast_device.evtdev == dev);
78 }
79 
80 /*
81  * Check, if the device is disfunctional and a place holder, which
82  * needs to be handled by the broadcast device.
83  */
84 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
85 {
86 	unsigned long flags;
87 	int ret = 0;
88 
89 	spin_lock_irqsave(&tick_broadcast_lock, flags);
90 
91 	/*
92 	 * Devices might be registered with both periodic and oneshot
93 	 * mode disabled. This signals, that the device needs to be
94 	 * operated from the broadcast device and is a placeholder for
95 	 * the cpu local device.
96 	 */
97 	if (!tick_device_is_functional(dev)) {
98 		dev->event_handler = tick_handle_periodic;
99 		cpu_set(cpu, tick_broadcast_mask);
100 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
101 		ret = 1;
102 	}
103 
104 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
105 	return ret;
106 }
107 
108 /*
109  * Broadcast the event to the cpus, which are set in the mask
110  */
111 int tick_do_broadcast(cpumask_t mask)
112 {
113 	int ret = 0, cpu = smp_processor_id();
114 	struct tick_device *td;
115 
116 	/*
117 	 * Check, if the current cpu is in the mask
118 	 */
119 	if (cpu_isset(cpu, mask)) {
120 		cpu_clear(cpu, mask);
121 		td = &per_cpu(tick_cpu_device, cpu);
122 		td->evtdev->event_handler(td->evtdev);
123 		ret = 1;
124 	}
125 
126 	if (!cpus_empty(mask)) {
127 		/*
128 		 * It might be necessary to actually check whether the devices
129 		 * have different broadcast functions. For now, just use the
130 		 * one of the first device. This works as long as we have this
131 		 * misfeature only on x86 (lapic)
132 		 */
133 		cpu = first_cpu(mask);
134 		td = &per_cpu(tick_cpu_device, cpu);
135 		td->evtdev->broadcast(mask);
136 		ret = 1;
137 	}
138 	return ret;
139 }
140 
141 /*
142  * Periodic broadcast:
143  * - invoke the broadcast handlers
144  */
145 static void tick_do_periodic_broadcast(void)
146 {
147 	cpumask_t mask;
148 
149 	spin_lock(&tick_broadcast_lock);
150 
151 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
152 	tick_do_broadcast(mask);
153 
154 	spin_unlock(&tick_broadcast_lock);
155 }
156 
157 /*
158  * Event handler for periodic broadcast ticks
159  */
160 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
161 {
162 	dev->next_event.tv64 = KTIME_MAX;
163 
164 	tick_do_periodic_broadcast();
165 
166 	/*
167 	 * The device is in periodic mode. No reprogramming necessary:
168 	 */
169 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
170 		return;
171 
172 	/*
173 	 * Setup the next period for devices, which do not have
174 	 * periodic mode:
175 	 */
176 	for (;;) {
177 		ktime_t next = ktime_add(dev->next_event, tick_period);
178 
179 		if (!clockevents_program_event(dev, next, ktime_get()))
180 			return;
181 		tick_do_periodic_broadcast();
182 	}
183 }
184 
185 /*
186  * Powerstate information: The system enters/leaves a state, where
187  * affected devices might stop
188  */
189 static void tick_do_broadcast_on_off(void *why)
190 {
191 	struct clock_event_device *bc, *dev;
192 	struct tick_device *td;
193 	unsigned long flags, *reason = why;
194 	int cpu;
195 
196 	spin_lock_irqsave(&tick_broadcast_lock, flags);
197 
198 	cpu = smp_processor_id();
199 	td = &per_cpu(tick_cpu_device, cpu);
200 	dev = td->evtdev;
201 	bc = tick_broadcast_device.evtdev;
202 
203 	/*
204 	 * Is the device in broadcast mode forever or is it not
205 	 * affected by the powerstate ?
206 	 */
207 	if (!dev || !tick_device_is_functional(dev) ||
208 	    !(dev->features & CLOCK_EVT_FEAT_C3STOP))
209 		goto out;
210 
211 	if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
212 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
213 			cpu_set(cpu, tick_broadcast_mask);
214 			if (td->mode == TICKDEV_MODE_PERIODIC)
215 				clockevents_set_mode(dev,
216 						     CLOCK_EVT_MODE_SHUTDOWN);
217 		}
218 	} else {
219 		if (cpu_isset(cpu, tick_broadcast_mask)) {
220 			cpu_clear(cpu, tick_broadcast_mask);
221 			if (td->mode == TICKDEV_MODE_PERIODIC)
222 				tick_setup_periodic(dev, 0);
223 		}
224 	}
225 
226 	if (cpus_empty(tick_broadcast_mask))
227 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
228 	else {
229 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
230 			tick_broadcast_start_periodic(bc);
231 		else
232 			tick_broadcast_setup_oneshot(bc);
233 	}
234 out:
235 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 }
237 
238 /*
239  * Powerstate information: The system enters/leaves a state, where
240  * affected devices might stop.
241  */
242 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
243 {
244 	int cpu = get_cpu();
245 
246 	if (!cpu_isset(*oncpu, cpu_online_map)) {
247 		printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
248 		       "offline CPU #%d\n", *oncpu);
249 	} else {
250 
251 		if (cpu == *oncpu)
252 			tick_do_broadcast_on_off(&reason);
253 		else
254 			smp_call_function_single(*oncpu,
255 						 tick_do_broadcast_on_off,
256 						 &reason, 1, 1);
257 	}
258 	put_cpu();
259 }
260 
261 /*
262  * Set the periodic handler depending on broadcast on/off
263  */
264 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
265 {
266 	if (!broadcast)
267 		dev->event_handler = tick_handle_periodic;
268 	else
269 		dev->event_handler = tick_handle_periodic_broadcast;
270 }
271 
272 /*
273  * Remove a CPU from broadcasting
274  */
275 void tick_shutdown_broadcast(unsigned int *cpup)
276 {
277 	struct clock_event_device *bc;
278 	unsigned long flags;
279 	unsigned int cpu = *cpup;
280 
281 	spin_lock_irqsave(&tick_broadcast_lock, flags);
282 
283 	bc = tick_broadcast_device.evtdev;
284 	cpu_clear(cpu, tick_broadcast_mask);
285 
286 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
287 		if (bc && cpus_empty(tick_broadcast_mask))
288 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
289 	}
290 
291 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
292 }
293 
294 void tick_suspend_broadcast(void)
295 {
296 	struct clock_event_device *bc;
297 	unsigned long flags;
298 
299 	spin_lock_irqsave(&tick_broadcast_lock, flags);
300 
301 	bc = tick_broadcast_device.evtdev;
302 	if (bc && tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
303 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
304 
305 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
306 }
307 
308 int tick_resume_broadcast(void)
309 {
310 	struct clock_event_device *bc;
311 	unsigned long flags;
312 	int broadcast = 0;
313 
314 	spin_lock_irqsave(&tick_broadcast_lock, flags);
315 
316 	bc = tick_broadcast_device.evtdev;
317 
318 	if (bc) {
319 		switch (tick_broadcast_device.mode) {
320 		case TICKDEV_MODE_PERIODIC:
321 			if(!cpus_empty(tick_broadcast_mask))
322 				tick_broadcast_start_periodic(bc);
323 			broadcast = cpu_isset(smp_processor_id(),
324 					      tick_broadcast_mask);
325 			break;
326 		case TICKDEV_MODE_ONESHOT:
327 			broadcast = tick_resume_broadcast_oneshot(bc);
328 			break;
329 		}
330 	}
331 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
332 
333 	return broadcast;
334 }
335 
336 
337 #ifdef CONFIG_TICK_ONESHOT
338 
339 static cpumask_t tick_broadcast_oneshot_mask;
340 
341 /*
342  * Debugging: see timer_list.c
343  */
344 cpumask_t *tick_get_broadcast_oneshot_mask(void)
345 {
346 	return &tick_broadcast_oneshot_mask;
347 }
348 
349 static int tick_broadcast_set_event(ktime_t expires, int force)
350 {
351 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
352 	ktime_t now = ktime_get();
353 	int res;
354 
355 	for(;;) {
356 		res = clockevents_program_event(bc, expires, now);
357 		if (!res || !force)
358 			return res;
359 		now = ktime_get();
360 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
361 	}
362 }
363 
364 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
365 {
366 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
367 
368 	if(!cpus_empty(tick_broadcast_oneshot_mask))
369 		tick_broadcast_set_event(ktime_get(), 1);
370 
371 	return cpu_isset(smp_processor_id(), tick_broadcast_oneshot_mask);
372 }
373 
374 /*
375  * Reprogram the broadcast device:
376  *
377  * Called with tick_broadcast_lock held and interrupts disabled.
378  */
379 static int tick_broadcast_reprogram(void)
380 {
381 	ktime_t expires = { .tv64 = KTIME_MAX };
382 	struct tick_device *td;
383 	int cpu;
384 
385 	/*
386 	 * Find the event which expires next:
387 	 */
388 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
389 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
390 		td = &per_cpu(tick_cpu_device, cpu);
391 		if (td->evtdev->next_event.tv64 < expires.tv64)
392 			expires = td->evtdev->next_event;
393 	}
394 
395 	if (expires.tv64 == KTIME_MAX)
396 		return 0;
397 
398 	return tick_broadcast_set_event(expires, 0);
399 }
400 
401 /*
402  * Handle oneshot mode broadcasting
403  */
404 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
405 {
406 	struct tick_device *td;
407 	cpumask_t mask;
408 	ktime_t now;
409 	int cpu;
410 
411 	spin_lock(&tick_broadcast_lock);
412 again:
413 	dev->next_event.tv64 = KTIME_MAX;
414 	mask = CPU_MASK_NONE;
415 	now = ktime_get();
416 	/* Find all expired events */
417 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
418 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
419 		td = &per_cpu(tick_cpu_device, cpu);
420 		if (td->evtdev->next_event.tv64 <= now.tv64)
421 			cpu_set(cpu, mask);
422 	}
423 
424 	/*
425 	 * Wakeup the cpus which have an expired event. The broadcast
426 	 * device is reprogrammed in the return from idle code.
427 	 */
428 	if (!tick_do_broadcast(mask)) {
429 		/*
430 		 * The global event did not expire any CPU local
431 		 * events. This happens in dyntick mode, as the
432 		 * maximum PIT delta is quite small.
433 		 */
434 		if (tick_broadcast_reprogram())
435 			goto again;
436 	}
437 	spin_unlock(&tick_broadcast_lock);
438 }
439 
440 /*
441  * Powerstate information: The system enters/leaves a state, where
442  * affected devices might stop
443  */
444 void tick_broadcast_oneshot_control(unsigned long reason)
445 {
446 	struct clock_event_device *bc, *dev;
447 	struct tick_device *td;
448 	unsigned long flags;
449 	int cpu;
450 
451 	spin_lock_irqsave(&tick_broadcast_lock, flags);
452 
453 	/*
454 	 * Periodic mode does not care about the enter/exit of power
455 	 * states
456 	 */
457 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
458 		goto out;
459 
460 	bc = tick_broadcast_device.evtdev;
461 	cpu = smp_processor_id();
462 	td = &per_cpu(tick_cpu_device, cpu);
463 	dev = td->evtdev;
464 
465 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
466 		goto out;
467 
468 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
469 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
470 			cpu_set(cpu, tick_broadcast_oneshot_mask);
471 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
472 			if (dev->next_event.tv64 < bc->next_event.tv64)
473 				tick_broadcast_set_event(dev->next_event, 1);
474 		}
475 	} else {
476 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
477 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
478 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
479 			if (dev->next_event.tv64 != KTIME_MAX)
480 				tick_program_event(dev->next_event, 1);
481 		}
482 	}
483 
484 out:
485 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
486 }
487 
488 /**
489  * tick_broadcast_setup_highres - setup the broadcast device for highres
490  */
491 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
492 {
493 	if (bc->mode != CLOCK_EVT_MODE_ONESHOT) {
494 		bc->event_handler = tick_handle_oneshot_broadcast;
495 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
496 		bc->next_event.tv64 = KTIME_MAX;
497 	}
498 }
499 
500 /*
501  * Select oneshot operating mode for the broadcast device
502  */
503 void tick_broadcast_switch_to_oneshot(void)
504 {
505 	struct clock_event_device *bc;
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&tick_broadcast_lock, flags);
509 
510 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
511 	bc = tick_broadcast_device.evtdev;
512 	if (bc)
513 		tick_broadcast_setup_oneshot(bc);
514 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
515 }
516 
517 
518 /*
519  * Remove a dead CPU from broadcasting
520  */
521 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
522 {
523 	struct clock_event_device *bc;
524 	unsigned long flags;
525 	unsigned int cpu = *cpup;
526 
527 	spin_lock_irqsave(&tick_broadcast_lock, flags);
528 
529 	bc = tick_broadcast_device.evtdev;
530 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
531 
532 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) {
533 		if (bc && cpus_empty(tick_broadcast_oneshot_mask))
534 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
535 	}
536 
537 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
538 }
539 
540 #endif
541