1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 22 #include "tick-internal.h" 23 24 /* 25 * Broadcast support for broken x86 hardware, where the local apic 26 * timer stops in C3 state. 27 */ 28 29 static struct tick_device tick_broadcast_device; 30 /* FIXME: Use cpumask_var_t. */ 31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS); 32 static DECLARE_BITMAP(tmpmask, NR_CPUS); 33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 34 static int tick_broadcast_force; 35 36 #ifdef CONFIG_TICK_ONESHOT 37 static void tick_broadcast_clear_oneshot(int cpu); 38 #else 39 static inline void tick_broadcast_clear_oneshot(int cpu) { } 40 #endif 41 42 /* 43 * Debugging: see timer_list.c 44 */ 45 struct tick_device *tick_get_broadcast_device(void) 46 { 47 return &tick_broadcast_device; 48 } 49 50 struct cpumask *tick_get_broadcast_mask(void) 51 { 52 return to_cpumask(tick_broadcast_mask); 53 } 54 55 /* 56 * Start the device in periodic mode 57 */ 58 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 59 { 60 if (bc) 61 tick_setup_periodic(bc, 1); 62 } 63 64 /* 65 * Check, if the device can be utilized as broadcast device: 66 */ 67 int tick_check_broadcast_device(struct clock_event_device *dev) 68 { 69 if ((tick_broadcast_device.evtdev && 70 tick_broadcast_device.evtdev->rating >= dev->rating) || 71 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 72 return 0; 73 74 clockevents_exchange_device(tick_broadcast_device.evtdev, dev); 75 tick_broadcast_device.evtdev = dev; 76 if (!cpumask_empty(tick_get_broadcast_mask())) 77 tick_broadcast_start_periodic(dev); 78 return 1; 79 } 80 81 /* 82 * Check, if the device is the broadcast device 83 */ 84 int tick_is_broadcast_device(struct clock_event_device *dev) 85 { 86 return (dev && tick_broadcast_device.evtdev == dev); 87 } 88 89 /* 90 * Check, if the device is disfunctional and a place holder, which 91 * needs to be handled by the broadcast device. 92 */ 93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 94 { 95 unsigned long flags; 96 int ret = 0; 97 98 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 99 100 /* 101 * Devices might be registered with both periodic and oneshot 102 * mode disabled. This signals, that the device needs to be 103 * operated from the broadcast device and is a placeholder for 104 * the cpu local device. 105 */ 106 if (!tick_device_is_functional(dev)) { 107 dev->event_handler = tick_handle_periodic; 108 cpumask_set_cpu(cpu, tick_get_broadcast_mask()); 109 tick_broadcast_start_periodic(tick_broadcast_device.evtdev); 110 ret = 1; 111 } else { 112 /* 113 * When the new device is not affected by the stop 114 * feature and the cpu is marked in the broadcast mask 115 * then clear the broadcast bit. 116 */ 117 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { 118 int cpu = smp_processor_id(); 119 120 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 121 tick_broadcast_clear_oneshot(cpu); 122 } 123 } 124 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 125 return ret; 126 } 127 128 /* 129 * Broadcast the event to the cpus, which are set in the mask (mangled). 130 */ 131 static void tick_do_broadcast(struct cpumask *mask) 132 { 133 int cpu = smp_processor_id(); 134 struct tick_device *td; 135 136 /* 137 * Check, if the current cpu is in the mask 138 */ 139 if (cpumask_test_cpu(cpu, mask)) { 140 cpumask_clear_cpu(cpu, mask); 141 td = &per_cpu(tick_cpu_device, cpu); 142 td->evtdev->event_handler(td->evtdev); 143 } 144 145 if (!cpumask_empty(mask)) { 146 /* 147 * It might be necessary to actually check whether the devices 148 * have different broadcast functions. For now, just use the 149 * one of the first device. This works as long as we have this 150 * misfeature only on x86 (lapic) 151 */ 152 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 153 td->evtdev->broadcast(mask); 154 } 155 } 156 157 /* 158 * Periodic broadcast: 159 * - invoke the broadcast handlers 160 */ 161 static void tick_do_periodic_broadcast(void) 162 { 163 raw_spin_lock(&tick_broadcast_lock); 164 165 cpumask_and(to_cpumask(tmpmask), 166 cpu_online_mask, tick_get_broadcast_mask()); 167 tick_do_broadcast(to_cpumask(tmpmask)); 168 169 raw_spin_unlock(&tick_broadcast_lock); 170 } 171 172 /* 173 * Event handler for periodic broadcast ticks 174 */ 175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 176 { 177 ktime_t next; 178 179 tick_do_periodic_broadcast(); 180 181 /* 182 * The device is in periodic mode. No reprogramming necessary: 183 */ 184 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 185 return; 186 187 /* 188 * Setup the next period for devices, which do not have 189 * periodic mode. We read dev->next_event first and add to it 190 * when the event already expired. clockevents_program_event() 191 * sets dev->next_event only when the event is really 192 * programmed to the device. 193 */ 194 for (next = dev->next_event; ;) { 195 next = ktime_add(next, tick_period); 196 197 if (!clockevents_program_event(dev, next, false)) 198 return; 199 tick_do_periodic_broadcast(); 200 } 201 } 202 203 /* 204 * Powerstate information: The system enters/leaves a state, where 205 * affected devices might stop 206 */ 207 static void tick_do_broadcast_on_off(unsigned long *reason) 208 { 209 struct clock_event_device *bc, *dev; 210 struct tick_device *td; 211 unsigned long flags; 212 int cpu, bc_stopped; 213 214 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 215 216 cpu = smp_processor_id(); 217 td = &per_cpu(tick_cpu_device, cpu); 218 dev = td->evtdev; 219 bc = tick_broadcast_device.evtdev; 220 221 /* 222 * Is the device not affected by the powerstate ? 223 */ 224 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 225 goto out; 226 227 if (!tick_device_is_functional(dev)) 228 goto out; 229 230 bc_stopped = cpumask_empty(tick_get_broadcast_mask()); 231 232 switch (*reason) { 233 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 234 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 235 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { 236 cpumask_set_cpu(cpu, tick_get_broadcast_mask()); 237 if (tick_broadcast_device.mode == 238 TICKDEV_MODE_PERIODIC) 239 clockevents_shutdown(dev); 240 } 241 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 242 tick_broadcast_force = 1; 243 break; 244 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 245 if (!tick_broadcast_force && 246 cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { 247 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 248 if (tick_broadcast_device.mode == 249 TICKDEV_MODE_PERIODIC) 250 tick_setup_periodic(dev, 0); 251 } 252 break; 253 } 254 255 if (cpumask_empty(tick_get_broadcast_mask())) { 256 if (!bc_stopped) 257 clockevents_shutdown(bc); 258 } else if (bc_stopped) { 259 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 260 tick_broadcast_start_periodic(bc); 261 else 262 tick_broadcast_setup_oneshot(bc); 263 } 264 out: 265 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 266 } 267 268 /* 269 * Powerstate information: The system enters/leaves a state, where 270 * affected devices might stop. 271 */ 272 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 273 { 274 if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) 275 printk(KERN_ERR "tick-broadcast: ignoring broadcast for " 276 "offline CPU #%d\n", *oncpu); 277 else 278 tick_do_broadcast_on_off(&reason); 279 } 280 281 /* 282 * Set the periodic handler depending on broadcast on/off 283 */ 284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 285 { 286 if (!broadcast) 287 dev->event_handler = tick_handle_periodic; 288 else 289 dev->event_handler = tick_handle_periodic_broadcast; 290 } 291 292 /* 293 * Remove a CPU from broadcasting 294 */ 295 void tick_shutdown_broadcast(unsigned int *cpup) 296 { 297 struct clock_event_device *bc; 298 unsigned long flags; 299 unsigned int cpu = *cpup; 300 301 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 302 303 bc = tick_broadcast_device.evtdev; 304 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 305 306 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 307 if (bc && cpumask_empty(tick_get_broadcast_mask())) 308 clockevents_shutdown(bc); 309 } 310 311 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 312 } 313 314 void tick_suspend_broadcast(void) 315 { 316 struct clock_event_device *bc; 317 unsigned long flags; 318 319 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 320 321 bc = tick_broadcast_device.evtdev; 322 if (bc) 323 clockevents_shutdown(bc); 324 325 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 326 } 327 328 int tick_resume_broadcast(void) 329 { 330 struct clock_event_device *bc; 331 unsigned long flags; 332 int broadcast = 0; 333 334 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 335 336 bc = tick_broadcast_device.evtdev; 337 338 if (bc) { 339 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 340 341 switch (tick_broadcast_device.mode) { 342 case TICKDEV_MODE_PERIODIC: 343 if (!cpumask_empty(tick_get_broadcast_mask())) 344 tick_broadcast_start_periodic(bc); 345 broadcast = cpumask_test_cpu(smp_processor_id(), 346 tick_get_broadcast_mask()); 347 break; 348 case TICKDEV_MODE_ONESHOT: 349 if (!cpumask_empty(tick_get_broadcast_mask())) 350 broadcast = tick_resume_broadcast_oneshot(bc); 351 break; 352 } 353 } 354 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 355 356 return broadcast; 357 } 358 359 360 #ifdef CONFIG_TICK_ONESHOT 361 362 /* FIXME: use cpumask_var_t. */ 363 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS); 364 365 /* 366 * Exposed for debugging: see timer_list.c 367 */ 368 struct cpumask *tick_get_broadcast_oneshot_mask(void) 369 { 370 return to_cpumask(tick_broadcast_oneshot_mask); 371 } 372 373 static int tick_broadcast_set_event(ktime_t expires, int force) 374 { 375 struct clock_event_device *bc = tick_broadcast_device.evtdev; 376 377 if (bc->mode != CLOCK_EVT_MODE_ONESHOT) 378 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 379 380 return clockevents_program_event(bc, expires, force); 381 } 382 383 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 384 { 385 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 386 return 0; 387 } 388 389 /* 390 * Called from irq_enter() when idle was interrupted to reenable the 391 * per cpu device. 392 */ 393 void tick_check_oneshot_broadcast(int cpu) 394 { 395 if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) { 396 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 397 398 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); 399 } 400 } 401 402 /* 403 * Handle oneshot mode broadcasting 404 */ 405 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 406 { 407 struct tick_device *td; 408 ktime_t now, next_event; 409 int cpu; 410 411 raw_spin_lock(&tick_broadcast_lock); 412 again: 413 dev->next_event.tv64 = KTIME_MAX; 414 next_event.tv64 = KTIME_MAX; 415 cpumask_clear(to_cpumask(tmpmask)); 416 now = ktime_get(); 417 /* Find all expired events */ 418 for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) { 419 td = &per_cpu(tick_cpu_device, cpu); 420 if (td->evtdev->next_event.tv64 <= now.tv64) 421 cpumask_set_cpu(cpu, to_cpumask(tmpmask)); 422 else if (td->evtdev->next_event.tv64 < next_event.tv64) 423 next_event.tv64 = td->evtdev->next_event.tv64; 424 } 425 426 /* 427 * Wakeup the cpus which have an expired event. 428 */ 429 tick_do_broadcast(to_cpumask(tmpmask)); 430 431 /* 432 * Two reasons for reprogram: 433 * 434 * - The global event did not expire any CPU local 435 * events. This happens in dyntick mode, as the maximum PIT 436 * delta is quite small. 437 * 438 * - There are pending events on sleeping CPUs which were not 439 * in the event mask 440 */ 441 if (next_event.tv64 != KTIME_MAX) { 442 /* 443 * Rearm the broadcast device. If event expired, 444 * repeat the above 445 */ 446 if (tick_broadcast_set_event(next_event, 0)) 447 goto again; 448 } 449 raw_spin_unlock(&tick_broadcast_lock); 450 } 451 452 /* 453 * Powerstate information: The system enters/leaves a state, where 454 * affected devices might stop 455 */ 456 void tick_broadcast_oneshot_control(unsigned long reason) 457 { 458 struct clock_event_device *bc, *dev; 459 struct tick_device *td; 460 unsigned long flags; 461 int cpu; 462 463 /* 464 * Periodic mode does not care about the enter/exit of power 465 * states 466 */ 467 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 468 return; 469 470 /* 471 * We are called with preemtion disabled from the depth of the 472 * idle code, so we can't be moved away. 473 */ 474 cpu = smp_processor_id(); 475 td = &per_cpu(tick_cpu_device, cpu); 476 dev = td->evtdev; 477 478 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 479 return; 480 481 bc = tick_broadcast_device.evtdev; 482 483 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 484 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 485 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { 486 cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask()); 487 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 488 if (dev->next_event.tv64 < bc->next_event.tv64) 489 tick_broadcast_set_event(dev->next_event, 1); 490 } 491 } else { 492 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { 493 cpumask_clear_cpu(cpu, 494 tick_get_broadcast_oneshot_mask()); 495 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 496 if (dev->next_event.tv64 != KTIME_MAX) 497 tick_program_event(dev->next_event, 1); 498 } 499 } 500 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 501 } 502 503 /* 504 * Reset the one shot broadcast for a cpu 505 * 506 * Called with tick_broadcast_lock held 507 */ 508 static void tick_broadcast_clear_oneshot(int cpu) 509 { 510 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); 511 } 512 513 static void tick_broadcast_init_next_event(struct cpumask *mask, 514 ktime_t expires) 515 { 516 struct tick_device *td; 517 int cpu; 518 519 for_each_cpu(cpu, mask) { 520 td = &per_cpu(tick_cpu_device, cpu); 521 if (td->evtdev) 522 td->evtdev->next_event = expires; 523 } 524 } 525 526 /** 527 * tick_broadcast_setup_oneshot - setup the broadcast device 528 */ 529 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 530 { 531 int cpu = smp_processor_id(); 532 533 /* Set it up only once ! */ 534 if (bc->event_handler != tick_handle_oneshot_broadcast) { 535 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; 536 537 bc->event_handler = tick_handle_oneshot_broadcast; 538 539 /* Take the do_timer update */ 540 tick_do_timer_cpu = cpu; 541 542 /* 543 * We must be careful here. There might be other CPUs 544 * waiting for periodic broadcast. We need to set the 545 * oneshot_mask bits for those and program the 546 * broadcast device to fire. 547 */ 548 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask()); 549 cpumask_clear_cpu(cpu, to_cpumask(tmpmask)); 550 cpumask_or(tick_get_broadcast_oneshot_mask(), 551 tick_get_broadcast_oneshot_mask(), 552 to_cpumask(tmpmask)); 553 554 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) { 555 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 556 tick_broadcast_init_next_event(to_cpumask(tmpmask), 557 tick_next_period); 558 tick_broadcast_set_event(tick_next_period, 1); 559 } else 560 bc->next_event.tv64 = KTIME_MAX; 561 } else { 562 /* 563 * The first cpu which switches to oneshot mode sets 564 * the bit for all other cpus which are in the general 565 * (periodic) broadcast mask. So the bit is set and 566 * would prevent the first broadcast enter after this 567 * to program the bc device. 568 */ 569 tick_broadcast_clear_oneshot(cpu); 570 } 571 } 572 573 /* 574 * Select oneshot operating mode for the broadcast device 575 */ 576 void tick_broadcast_switch_to_oneshot(void) 577 { 578 struct clock_event_device *bc; 579 unsigned long flags; 580 581 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 582 583 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 584 bc = tick_broadcast_device.evtdev; 585 if (bc) 586 tick_broadcast_setup_oneshot(bc); 587 588 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 589 } 590 591 592 /* 593 * Remove a dead CPU from broadcasting 594 */ 595 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 596 { 597 unsigned long flags; 598 unsigned int cpu = *cpup; 599 600 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 601 602 /* 603 * Clear the broadcast mask flag for the dead cpu, but do not 604 * stop the broadcast device! 605 */ 606 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); 607 608 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 609 } 610 611 /* 612 * Check, whether the broadcast device is in one shot mode 613 */ 614 int tick_broadcast_oneshot_active(void) 615 { 616 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 617 } 618 619 /* 620 * Check whether the broadcast device supports oneshot. 621 */ 622 bool tick_broadcast_oneshot_available(void) 623 { 624 struct clock_event_device *bc = tick_broadcast_device.evtdev; 625 626 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 627 } 628 629 #endif 630