1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains functions which emulate a local clock-event 4 * device via a broadcast event source. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/profile.h> 16 #include <linux/sched.h> 17 #include <linux/smp.h> 18 #include <linux/module.h> 19 20 #include "tick-internal.h" 21 22 /* 23 * Broadcast support for broken x86 hardware, where the local apic 24 * timer stops in C3 state. 25 */ 26 27 static struct tick_device tick_broadcast_device; 28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 30 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 31 static int tick_broadcast_forced; 32 33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 34 35 #ifdef CONFIG_TICK_ONESHOT 36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); 37 static void tick_broadcast_clear_oneshot(int cpu); 38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 39 #else 40 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } 41 static inline void tick_broadcast_clear_oneshot(int cpu) { } 42 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 43 #endif 44 45 /* 46 * Debugging: see timer_list.c 47 */ 48 struct tick_device *tick_get_broadcast_device(void) 49 { 50 return &tick_broadcast_device; 51 } 52 53 struct cpumask *tick_get_broadcast_mask(void) 54 { 55 return tick_broadcast_mask; 56 } 57 58 /* 59 * Start the device in periodic mode 60 */ 61 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 62 { 63 if (bc) 64 tick_setup_periodic(bc, 1); 65 } 66 67 /* 68 * Check, if the device can be utilized as broadcast device: 69 */ 70 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 71 struct clock_event_device *newdev) 72 { 73 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 74 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 75 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 76 return false; 77 78 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 79 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 80 return false; 81 82 return !curdev || newdev->rating > curdev->rating; 83 } 84 85 /* 86 * Conditionally install/replace broadcast device 87 */ 88 void tick_install_broadcast_device(struct clock_event_device *dev) 89 { 90 struct clock_event_device *cur = tick_broadcast_device.evtdev; 91 92 if (!tick_check_broadcast_device(cur, dev)) 93 return; 94 95 if (!try_module_get(dev->owner)) 96 return; 97 98 clockevents_exchange_device(cur, dev); 99 if (cur) 100 cur->event_handler = clockevents_handle_noop; 101 tick_broadcast_device.evtdev = dev; 102 if (!cpumask_empty(tick_broadcast_mask)) 103 tick_broadcast_start_periodic(dev); 104 /* 105 * Inform all cpus about this. We might be in a situation 106 * where we did not switch to oneshot mode because the per cpu 107 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 108 * of a oneshot capable broadcast device. Without that 109 * notification the systems stays stuck in periodic mode 110 * forever. 111 */ 112 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 113 tick_clock_notify(); 114 } 115 116 /* 117 * Check, if the device is the broadcast device 118 */ 119 int tick_is_broadcast_device(struct clock_event_device *dev) 120 { 121 return (dev && tick_broadcast_device.evtdev == dev); 122 } 123 124 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 125 { 126 int ret = -ENODEV; 127 128 if (tick_is_broadcast_device(dev)) { 129 raw_spin_lock(&tick_broadcast_lock); 130 ret = __clockevents_update_freq(dev, freq); 131 raw_spin_unlock(&tick_broadcast_lock); 132 } 133 return ret; 134 } 135 136 137 static void err_broadcast(const struct cpumask *mask) 138 { 139 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 140 } 141 142 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 143 { 144 if (!dev->broadcast) 145 dev->broadcast = tick_broadcast; 146 if (!dev->broadcast) { 147 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 148 dev->name); 149 dev->broadcast = err_broadcast; 150 } 151 } 152 153 /* 154 * Check, if the device is disfunctional and a place holder, which 155 * needs to be handled by the broadcast device. 156 */ 157 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 158 { 159 struct clock_event_device *bc = tick_broadcast_device.evtdev; 160 unsigned long flags; 161 int ret = 0; 162 163 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 164 165 /* 166 * Devices might be registered with both periodic and oneshot 167 * mode disabled. This signals, that the device needs to be 168 * operated from the broadcast device and is a placeholder for 169 * the cpu local device. 170 */ 171 if (!tick_device_is_functional(dev)) { 172 dev->event_handler = tick_handle_periodic; 173 tick_device_setup_broadcast_func(dev); 174 cpumask_set_cpu(cpu, tick_broadcast_mask); 175 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 176 tick_broadcast_start_periodic(bc); 177 else 178 tick_broadcast_setup_oneshot(bc); 179 ret = 1; 180 } else { 181 /* 182 * Clear the broadcast bit for this cpu if the 183 * device is not power state affected. 184 */ 185 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 186 cpumask_clear_cpu(cpu, tick_broadcast_mask); 187 else 188 tick_device_setup_broadcast_func(dev); 189 190 /* 191 * Clear the broadcast bit if the CPU is not in 192 * periodic broadcast on state. 193 */ 194 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 195 cpumask_clear_cpu(cpu, tick_broadcast_mask); 196 197 switch (tick_broadcast_device.mode) { 198 case TICKDEV_MODE_ONESHOT: 199 /* 200 * If the system is in oneshot mode we can 201 * unconditionally clear the oneshot mask bit, 202 * because the CPU is running and therefore 203 * not in an idle state which causes the power 204 * state affected device to stop. Let the 205 * caller initialize the device. 206 */ 207 tick_broadcast_clear_oneshot(cpu); 208 ret = 0; 209 break; 210 211 case TICKDEV_MODE_PERIODIC: 212 /* 213 * If the system is in periodic mode, check 214 * whether the broadcast device can be 215 * switched off now. 216 */ 217 if (cpumask_empty(tick_broadcast_mask) && bc) 218 clockevents_shutdown(bc); 219 /* 220 * If we kept the cpu in the broadcast mask, 221 * tell the caller to leave the per cpu device 222 * in shutdown state. The periodic interrupt 223 * is delivered by the broadcast device, if 224 * the broadcast device exists and is not 225 * hrtimer based. 226 */ 227 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 228 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 229 break; 230 default: 231 break; 232 } 233 } 234 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 235 return ret; 236 } 237 238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 239 int tick_receive_broadcast(void) 240 { 241 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 242 struct clock_event_device *evt = td->evtdev; 243 244 if (!evt) 245 return -ENODEV; 246 247 if (!evt->event_handler) 248 return -EINVAL; 249 250 evt->event_handler(evt); 251 return 0; 252 } 253 #endif 254 255 /* 256 * Broadcast the event to the cpus, which are set in the mask (mangled). 257 */ 258 static bool tick_do_broadcast(struct cpumask *mask) 259 { 260 int cpu = smp_processor_id(); 261 struct tick_device *td; 262 bool local = false; 263 264 /* 265 * Check, if the current cpu is in the mask 266 */ 267 if (cpumask_test_cpu(cpu, mask)) { 268 struct clock_event_device *bc = tick_broadcast_device.evtdev; 269 270 cpumask_clear_cpu(cpu, mask); 271 /* 272 * We only run the local handler, if the broadcast 273 * device is not hrtimer based. Otherwise we run into 274 * a hrtimer recursion. 275 * 276 * local timer_interrupt() 277 * local_handler() 278 * expire_hrtimers() 279 * bc_handler() 280 * local_handler() 281 * expire_hrtimers() 282 */ 283 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 284 } 285 286 if (!cpumask_empty(mask)) { 287 /* 288 * It might be necessary to actually check whether the devices 289 * have different broadcast functions. For now, just use the 290 * one of the first device. This works as long as we have this 291 * misfeature only on x86 (lapic) 292 */ 293 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 294 td->evtdev->broadcast(mask); 295 } 296 return local; 297 } 298 299 /* 300 * Periodic broadcast: 301 * - invoke the broadcast handlers 302 */ 303 static bool tick_do_periodic_broadcast(void) 304 { 305 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 306 return tick_do_broadcast(tmpmask); 307 } 308 309 /* 310 * Event handler for periodic broadcast ticks 311 */ 312 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 313 { 314 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 315 bool bc_local; 316 317 raw_spin_lock(&tick_broadcast_lock); 318 319 /* Handle spurious interrupts gracefully */ 320 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 321 raw_spin_unlock(&tick_broadcast_lock); 322 return; 323 } 324 325 bc_local = tick_do_periodic_broadcast(); 326 327 if (clockevent_state_oneshot(dev)) { 328 ktime_t next = ktime_add(dev->next_event, tick_period); 329 330 clockevents_program_event(dev, next, true); 331 } 332 raw_spin_unlock(&tick_broadcast_lock); 333 334 /* 335 * We run the handler of the local cpu after dropping 336 * tick_broadcast_lock because the handler might deadlock when 337 * trying to switch to oneshot mode. 338 */ 339 if (bc_local) 340 td->evtdev->event_handler(td->evtdev); 341 } 342 343 /** 344 * tick_broadcast_control - Enable/disable or force broadcast mode 345 * @mode: The selected broadcast mode 346 * 347 * Called when the system enters a state where affected tick devices 348 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 349 */ 350 void tick_broadcast_control(enum tick_broadcast_mode mode) 351 { 352 struct clock_event_device *bc, *dev; 353 struct tick_device *td; 354 int cpu, bc_stopped; 355 unsigned long flags; 356 357 /* Protects also the local clockevent device. */ 358 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 359 td = this_cpu_ptr(&tick_cpu_device); 360 dev = td->evtdev; 361 362 /* 363 * Is the device not affected by the powerstate ? 364 */ 365 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 366 goto out; 367 368 if (!tick_device_is_functional(dev)) 369 goto out; 370 371 cpu = smp_processor_id(); 372 bc = tick_broadcast_device.evtdev; 373 bc_stopped = cpumask_empty(tick_broadcast_mask); 374 375 switch (mode) { 376 case TICK_BROADCAST_FORCE: 377 tick_broadcast_forced = 1; 378 case TICK_BROADCAST_ON: 379 cpumask_set_cpu(cpu, tick_broadcast_on); 380 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 381 /* 382 * Only shutdown the cpu local device, if: 383 * 384 * - the broadcast device exists 385 * - the broadcast device is not a hrtimer based one 386 * - the broadcast device is in periodic mode to 387 * avoid a hickup during switch to oneshot mode 388 */ 389 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 390 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 391 clockevents_shutdown(dev); 392 } 393 break; 394 395 case TICK_BROADCAST_OFF: 396 if (tick_broadcast_forced) 397 break; 398 cpumask_clear_cpu(cpu, tick_broadcast_on); 399 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 400 if (tick_broadcast_device.mode == 401 TICKDEV_MODE_PERIODIC) 402 tick_setup_periodic(dev, 0); 403 } 404 break; 405 } 406 407 if (bc) { 408 if (cpumask_empty(tick_broadcast_mask)) { 409 if (!bc_stopped) 410 clockevents_shutdown(bc); 411 } else if (bc_stopped) { 412 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 413 tick_broadcast_start_periodic(bc); 414 else 415 tick_broadcast_setup_oneshot(bc); 416 } 417 } 418 out: 419 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 420 } 421 EXPORT_SYMBOL_GPL(tick_broadcast_control); 422 423 /* 424 * Set the periodic handler depending on broadcast on/off 425 */ 426 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 427 { 428 if (!broadcast) 429 dev->event_handler = tick_handle_periodic; 430 else 431 dev->event_handler = tick_handle_periodic_broadcast; 432 } 433 434 #ifdef CONFIG_HOTPLUG_CPU 435 /* 436 * Remove a CPU from broadcasting 437 */ 438 void tick_shutdown_broadcast(unsigned int cpu) 439 { 440 struct clock_event_device *bc; 441 unsigned long flags; 442 443 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 444 445 bc = tick_broadcast_device.evtdev; 446 cpumask_clear_cpu(cpu, tick_broadcast_mask); 447 cpumask_clear_cpu(cpu, tick_broadcast_on); 448 449 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 450 if (bc && cpumask_empty(tick_broadcast_mask)) 451 clockevents_shutdown(bc); 452 } 453 454 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 455 } 456 #endif 457 458 void tick_suspend_broadcast(void) 459 { 460 struct clock_event_device *bc; 461 unsigned long flags; 462 463 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 464 465 bc = tick_broadcast_device.evtdev; 466 if (bc) 467 clockevents_shutdown(bc); 468 469 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 470 } 471 472 /* 473 * This is called from tick_resume_local() on a resuming CPU. That's 474 * called from the core resume function, tick_unfreeze() and the magic XEN 475 * resume hackery. 476 * 477 * In none of these cases the broadcast device mode can change and the 478 * bit of the resuming CPU in the broadcast mask is safe as well. 479 */ 480 bool tick_resume_check_broadcast(void) 481 { 482 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 483 return false; 484 else 485 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 486 } 487 488 void tick_resume_broadcast(void) 489 { 490 struct clock_event_device *bc; 491 unsigned long flags; 492 493 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 494 495 bc = tick_broadcast_device.evtdev; 496 497 if (bc) { 498 clockevents_tick_resume(bc); 499 500 switch (tick_broadcast_device.mode) { 501 case TICKDEV_MODE_PERIODIC: 502 if (!cpumask_empty(tick_broadcast_mask)) 503 tick_broadcast_start_periodic(bc); 504 break; 505 case TICKDEV_MODE_ONESHOT: 506 if (!cpumask_empty(tick_broadcast_mask)) 507 tick_resume_broadcast_oneshot(bc); 508 break; 509 } 510 } 511 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 512 } 513 514 #ifdef CONFIG_TICK_ONESHOT 515 516 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 517 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 518 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 519 520 /* 521 * Exposed for debugging: see timer_list.c 522 */ 523 struct cpumask *tick_get_broadcast_oneshot_mask(void) 524 { 525 return tick_broadcast_oneshot_mask; 526 } 527 528 /* 529 * Called before going idle with interrupts disabled. Checks whether a 530 * broadcast event from the other core is about to happen. We detected 531 * that in tick_broadcast_oneshot_control(). The callsite can use this 532 * to avoid a deep idle transition as we are about to get the 533 * broadcast IPI right away. 534 */ 535 int tick_check_broadcast_expired(void) 536 { 537 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 538 } 539 540 /* 541 * Set broadcast interrupt affinity 542 */ 543 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 544 const struct cpumask *cpumask) 545 { 546 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 547 return; 548 549 if (cpumask_equal(bc->cpumask, cpumask)) 550 return; 551 552 bc->cpumask = cpumask; 553 irq_set_affinity(bc->irq, bc->cpumask); 554 } 555 556 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 557 ktime_t expires) 558 { 559 if (!clockevent_state_oneshot(bc)) 560 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 561 562 clockevents_program_event(bc, expires, 1); 563 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 564 } 565 566 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 567 { 568 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 569 } 570 571 /* 572 * Called from irq_enter() when idle was interrupted to reenable the 573 * per cpu device. 574 */ 575 void tick_check_oneshot_broadcast_this_cpu(void) 576 { 577 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 578 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 579 580 /* 581 * We might be in the middle of switching over from 582 * periodic to oneshot. If the CPU has not yet 583 * switched over, leave the device alone. 584 */ 585 if (td->mode == TICKDEV_MODE_ONESHOT) { 586 clockevents_switch_state(td->evtdev, 587 CLOCK_EVT_STATE_ONESHOT); 588 } 589 } 590 } 591 592 /* 593 * Handle oneshot mode broadcasting 594 */ 595 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 596 { 597 struct tick_device *td; 598 ktime_t now, next_event; 599 int cpu, next_cpu = 0; 600 bool bc_local; 601 602 raw_spin_lock(&tick_broadcast_lock); 603 dev->next_event = KTIME_MAX; 604 next_event = KTIME_MAX; 605 cpumask_clear(tmpmask); 606 now = ktime_get(); 607 /* Find all expired events */ 608 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 609 /* 610 * Required for !SMP because for_each_cpu() reports 611 * unconditionally CPU0 as set on UP kernels. 612 */ 613 if (!IS_ENABLED(CONFIG_SMP) && 614 cpumask_empty(tick_broadcast_oneshot_mask)) 615 break; 616 617 td = &per_cpu(tick_cpu_device, cpu); 618 if (td->evtdev->next_event <= now) { 619 cpumask_set_cpu(cpu, tmpmask); 620 /* 621 * Mark the remote cpu in the pending mask, so 622 * it can avoid reprogramming the cpu local 623 * timer in tick_broadcast_oneshot_control(). 624 */ 625 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 626 } else if (td->evtdev->next_event < next_event) { 627 next_event = td->evtdev->next_event; 628 next_cpu = cpu; 629 } 630 } 631 632 /* 633 * Remove the current cpu from the pending mask. The event is 634 * delivered immediately in tick_do_broadcast() ! 635 */ 636 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 637 638 /* Take care of enforced broadcast requests */ 639 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 640 cpumask_clear(tick_broadcast_force_mask); 641 642 /* 643 * Sanity check. Catch the case where we try to broadcast to 644 * offline cpus. 645 */ 646 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 647 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 648 649 /* 650 * Wakeup the cpus which have an expired event. 651 */ 652 bc_local = tick_do_broadcast(tmpmask); 653 654 /* 655 * Two reasons for reprogram: 656 * 657 * - The global event did not expire any CPU local 658 * events. This happens in dyntick mode, as the maximum PIT 659 * delta is quite small. 660 * 661 * - There are pending events on sleeping CPUs which were not 662 * in the event mask 663 */ 664 if (next_event != KTIME_MAX) 665 tick_broadcast_set_event(dev, next_cpu, next_event); 666 667 raw_spin_unlock(&tick_broadcast_lock); 668 669 if (bc_local) { 670 td = this_cpu_ptr(&tick_cpu_device); 671 td->evtdev->event_handler(td->evtdev); 672 } 673 } 674 675 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 676 { 677 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 678 return 0; 679 if (bc->next_event == KTIME_MAX) 680 return 0; 681 return bc->bound_on == cpu ? -EBUSY : 0; 682 } 683 684 static void broadcast_shutdown_local(struct clock_event_device *bc, 685 struct clock_event_device *dev) 686 { 687 /* 688 * For hrtimer based broadcasting we cannot shutdown the cpu 689 * local device if our own event is the first one to expire or 690 * if we own the broadcast timer. 691 */ 692 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 693 if (broadcast_needs_cpu(bc, smp_processor_id())) 694 return; 695 if (dev->next_event < bc->next_event) 696 return; 697 } 698 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 699 } 700 701 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 702 { 703 struct clock_event_device *bc, *dev; 704 int cpu, ret = 0; 705 ktime_t now; 706 707 /* 708 * If there is no broadcast device, tell the caller not to go 709 * into deep idle. 710 */ 711 if (!tick_broadcast_device.evtdev) 712 return -EBUSY; 713 714 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 715 716 raw_spin_lock(&tick_broadcast_lock); 717 bc = tick_broadcast_device.evtdev; 718 cpu = smp_processor_id(); 719 720 if (state == TICK_BROADCAST_ENTER) { 721 /* 722 * If the current CPU owns the hrtimer broadcast 723 * mechanism, it cannot go deep idle and we do not add 724 * the CPU to the broadcast mask. We don't have to go 725 * through the EXIT path as the local timer is not 726 * shutdown. 727 */ 728 ret = broadcast_needs_cpu(bc, cpu); 729 if (ret) 730 goto out; 731 732 /* 733 * If the broadcast device is in periodic mode, we 734 * return. 735 */ 736 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 737 /* If it is a hrtimer based broadcast, return busy */ 738 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 739 ret = -EBUSY; 740 goto out; 741 } 742 743 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 744 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 745 746 /* Conditionally shut down the local timer. */ 747 broadcast_shutdown_local(bc, dev); 748 749 /* 750 * We only reprogram the broadcast timer if we 751 * did not mark ourself in the force mask and 752 * if the cpu local event is earlier than the 753 * broadcast event. If the current CPU is in 754 * the force mask, then we are going to be 755 * woken by the IPI right away; we return 756 * busy, so the CPU does not try to go deep 757 * idle. 758 */ 759 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 760 ret = -EBUSY; 761 } else if (dev->next_event < bc->next_event) { 762 tick_broadcast_set_event(bc, cpu, dev->next_event); 763 /* 764 * In case of hrtimer broadcasts the 765 * programming might have moved the 766 * timer to this cpu. If yes, remove 767 * us from the broadcast mask and 768 * return busy. 769 */ 770 ret = broadcast_needs_cpu(bc, cpu); 771 if (ret) { 772 cpumask_clear_cpu(cpu, 773 tick_broadcast_oneshot_mask); 774 } 775 } 776 } 777 } else { 778 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 779 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 780 /* 781 * The cpu which was handling the broadcast 782 * timer marked this cpu in the broadcast 783 * pending mask and fired the broadcast 784 * IPI. So we are going to handle the expired 785 * event anyway via the broadcast IPI 786 * handler. No need to reprogram the timer 787 * with an already expired event. 788 */ 789 if (cpumask_test_and_clear_cpu(cpu, 790 tick_broadcast_pending_mask)) 791 goto out; 792 793 /* 794 * Bail out if there is no next event. 795 */ 796 if (dev->next_event == KTIME_MAX) 797 goto out; 798 /* 799 * If the pending bit is not set, then we are 800 * either the CPU handling the broadcast 801 * interrupt or we got woken by something else. 802 * 803 * We are not longer in the broadcast mask, so 804 * if the cpu local expiry time is already 805 * reached, we would reprogram the cpu local 806 * timer with an already expired event. 807 * 808 * This can lead to a ping-pong when we return 809 * to idle and therefor rearm the broadcast 810 * timer before the cpu local timer was able 811 * to fire. This happens because the forced 812 * reprogramming makes sure that the event 813 * will happen in the future and depending on 814 * the min_delta setting this might be far 815 * enough out that the ping-pong starts. 816 * 817 * If the cpu local next_event has expired 818 * then we know that the broadcast timer 819 * next_event has expired as well and 820 * broadcast is about to be handled. So we 821 * avoid reprogramming and enforce that the 822 * broadcast handler, which did not run yet, 823 * will invoke the cpu local handler. 824 * 825 * We cannot call the handler directly from 826 * here, because we might be in a NOHZ phase 827 * and we did not go through the irq_enter() 828 * nohz fixups. 829 */ 830 now = ktime_get(); 831 if (dev->next_event <= now) { 832 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 833 goto out; 834 } 835 /* 836 * We got woken by something else. Reprogram 837 * the cpu local timer device. 838 */ 839 tick_program_event(dev->next_event, 1); 840 } 841 } 842 out: 843 raw_spin_unlock(&tick_broadcast_lock); 844 return ret; 845 } 846 847 /* 848 * Reset the one shot broadcast for a cpu 849 * 850 * Called with tick_broadcast_lock held 851 */ 852 static void tick_broadcast_clear_oneshot(int cpu) 853 { 854 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 855 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 856 } 857 858 static void tick_broadcast_init_next_event(struct cpumask *mask, 859 ktime_t expires) 860 { 861 struct tick_device *td; 862 int cpu; 863 864 for_each_cpu(cpu, mask) { 865 td = &per_cpu(tick_cpu_device, cpu); 866 if (td->evtdev) 867 td->evtdev->next_event = expires; 868 } 869 } 870 871 /** 872 * tick_broadcast_setup_oneshot - setup the broadcast device 873 */ 874 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 875 { 876 int cpu = smp_processor_id(); 877 878 if (!bc) 879 return; 880 881 /* Set it up only once ! */ 882 if (bc->event_handler != tick_handle_oneshot_broadcast) { 883 int was_periodic = clockevent_state_periodic(bc); 884 885 bc->event_handler = tick_handle_oneshot_broadcast; 886 887 /* 888 * We must be careful here. There might be other CPUs 889 * waiting for periodic broadcast. We need to set the 890 * oneshot_mask bits for those and program the 891 * broadcast device to fire. 892 */ 893 cpumask_copy(tmpmask, tick_broadcast_mask); 894 cpumask_clear_cpu(cpu, tmpmask); 895 cpumask_or(tick_broadcast_oneshot_mask, 896 tick_broadcast_oneshot_mask, tmpmask); 897 898 if (was_periodic && !cpumask_empty(tmpmask)) { 899 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 900 tick_broadcast_init_next_event(tmpmask, 901 tick_next_period); 902 tick_broadcast_set_event(bc, cpu, tick_next_period); 903 } else 904 bc->next_event = KTIME_MAX; 905 } else { 906 /* 907 * The first cpu which switches to oneshot mode sets 908 * the bit for all other cpus which are in the general 909 * (periodic) broadcast mask. So the bit is set and 910 * would prevent the first broadcast enter after this 911 * to program the bc device. 912 */ 913 tick_broadcast_clear_oneshot(cpu); 914 } 915 } 916 917 /* 918 * Select oneshot operating mode for the broadcast device 919 */ 920 void tick_broadcast_switch_to_oneshot(void) 921 { 922 struct clock_event_device *bc; 923 unsigned long flags; 924 925 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 926 927 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 928 bc = tick_broadcast_device.evtdev; 929 if (bc) 930 tick_broadcast_setup_oneshot(bc); 931 932 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 933 } 934 935 #ifdef CONFIG_HOTPLUG_CPU 936 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 937 { 938 struct clock_event_device *bc; 939 unsigned long flags; 940 941 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 942 bc = tick_broadcast_device.evtdev; 943 944 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 945 /* This moves the broadcast assignment to this CPU: */ 946 clockevents_program_event(bc, bc->next_event, 1); 947 } 948 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 949 } 950 951 /* 952 * Remove a dead CPU from broadcasting 953 */ 954 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 955 { 956 unsigned long flags; 957 958 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 959 960 /* 961 * Clear the broadcast masks for the dead cpu, but do not stop 962 * the broadcast device! 963 */ 964 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 965 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 966 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 967 968 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 969 } 970 #endif 971 972 /* 973 * Check, whether the broadcast device is in one shot mode 974 */ 975 int tick_broadcast_oneshot_active(void) 976 { 977 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 978 } 979 980 /* 981 * Check whether the broadcast device supports oneshot. 982 */ 983 bool tick_broadcast_oneshot_available(void) 984 { 985 struct clock_event_device *bc = tick_broadcast_device.evtdev; 986 987 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 988 } 989 990 #else 991 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 992 { 993 struct clock_event_device *bc = tick_broadcast_device.evtdev; 994 995 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 996 return -EBUSY; 997 998 return 0; 999 } 1000 #endif 1001 1002 void __init tick_broadcast_init(void) 1003 { 1004 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1005 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1006 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1007 #ifdef CONFIG_TICK_ONESHOT 1008 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1009 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1010 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1011 #endif 1012 } 1013