1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 22 #include "tick-internal.h" 23 24 /* 25 * Broadcast support for broken x86 hardware, where the local apic 26 * timer stops in C3 state. 27 */ 28 29 static struct tick_device tick_broadcast_device; 30 /* FIXME: Use cpumask_var_t. */ 31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS); 32 static DECLARE_BITMAP(tmpmask, NR_CPUS); 33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 34 static int tick_broadcast_force; 35 36 #ifdef CONFIG_TICK_ONESHOT 37 static void tick_broadcast_clear_oneshot(int cpu); 38 #else 39 static inline void tick_broadcast_clear_oneshot(int cpu) { } 40 #endif 41 42 /* 43 * Debugging: see timer_list.c 44 */ 45 struct tick_device *tick_get_broadcast_device(void) 46 { 47 return &tick_broadcast_device; 48 } 49 50 struct cpumask *tick_get_broadcast_mask(void) 51 { 52 return to_cpumask(tick_broadcast_mask); 53 } 54 55 /* 56 * Start the device in periodic mode 57 */ 58 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 59 { 60 if (bc) 61 tick_setup_periodic(bc, 1); 62 } 63 64 /* 65 * Check, if the device can be utilized as broadcast device: 66 */ 67 int tick_check_broadcast_device(struct clock_event_device *dev) 68 { 69 if ((tick_broadcast_device.evtdev && 70 tick_broadcast_device.evtdev->rating >= dev->rating) || 71 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 72 return 0; 73 74 clockevents_exchange_device(NULL, dev); 75 tick_broadcast_device.evtdev = dev; 76 if (!cpumask_empty(tick_get_broadcast_mask())) 77 tick_broadcast_start_periodic(dev); 78 return 1; 79 } 80 81 /* 82 * Check, if the device is the broadcast device 83 */ 84 int tick_is_broadcast_device(struct clock_event_device *dev) 85 { 86 return (dev && tick_broadcast_device.evtdev == dev); 87 } 88 89 /* 90 * Check, if the device is disfunctional and a place holder, which 91 * needs to be handled by the broadcast device. 92 */ 93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 94 { 95 unsigned long flags; 96 int ret = 0; 97 98 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 99 100 /* 101 * Devices might be registered with both periodic and oneshot 102 * mode disabled. This signals, that the device needs to be 103 * operated from the broadcast device and is a placeholder for 104 * the cpu local device. 105 */ 106 if (!tick_device_is_functional(dev)) { 107 dev->event_handler = tick_handle_periodic; 108 cpumask_set_cpu(cpu, tick_get_broadcast_mask()); 109 tick_broadcast_start_periodic(tick_broadcast_device.evtdev); 110 ret = 1; 111 } else { 112 /* 113 * When the new device is not affected by the stop 114 * feature and the cpu is marked in the broadcast mask 115 * then clear the broadcast bit. 116 */ 117 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { 118 int cpu = smp_processor_id(); 119 120 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 121 tick_broadcast_clear_oneshot(cpu); 122 } 123 } 124 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 125 return ret; 126 } 127 128 /* 129 * Broadcast the event to the cpus, which are set in the mask (mangled). 130 */ 131 static void tick_do_broadcast(struct cpumask *mask) 132 { 133 int cpu = smp_processor_id(); 134 struct tick_device *td; 135 136 /* 137 * Check, if the current cpu is in the mask 138 */ 139 if (cpumask_test_cpu(cpu, mask)) { 140 cpumask_clear_cpu(cpu, mask); 141 td = &per_cpu(tick_cpu_device, cpu); 142 td->evtdev->event_handler(td->evtdev); 143 } 144 145 if (!cpumask_empty(mask)) { 146 /* 147 * It might be necessary to actually check whether the devices 148 * have different broadcast functions. For now, just use the 149 * one of the first device. This works as long as we have this 150 * misfeature only on x86 (lapic) 151 */ 152 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 153 td->evtdev->broadcast(mask); 154 } 155 } 156 157 /* 158 * Periodic broadcast: 159 * - invoke the broadcast handlers 160 */ 161 static void tick_do_periodic_broadcast(void) 162 { 163 raw_spin_lock(&tick_broadcast_lock); 164 165 cpumask_and(to_cpumask(tmpmask), 166 cpu_online_mask, tick_get_broadcast_mask()); 167 tick_do_broadcast(to_cpumask(tmpmask)); 168 169 raw_spin_unlock(&tick_broadcast_lock); 170 } 171 172 /* 173 * Event handler for periodic broadcast ticks 174 */ 175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 176 { 177 ktime_t next; 178 179 tick_do_periodic_broadcast(); 180 181 /* 182 * The device is in periodic mode. No reprogramming necessary: 183 */ 184 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 185 return; 186 187 /* 188 * Setup the next period for devices, which do not have 189 * periodic mode. We read dev->next_event first and add to it 190 * when the event already expired. clockevents_program_event() 191 * sets dev->next_event only when the event is really 192 * programmed to the device. 193 */ 194 for (next = dev->next_event; ;) { 195 next = ktime_add(next, tick_period); 196 197 if (!clockevents_program_event(dev, next, ktime_get())) 198 return; 199 tick_do_periodic_broadcast(); 200 } 201 } 202 203 /* 204 * Powerstate information: The system enters/leaves a state, where 205 * affected devices might stop 206 */ 207 static void tick_do_broadcast_on_off(unsigned long *reason) 208 { 209 struct clock_event_device *bc, *dev; 210 struct tick_device *td; 211 unsigned long flags; 212 int cpu, bc_stopped; 213 214 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 215 216 cpu = smp_processor_id(); 217 td = &per_cpu(tick_cpu_device, cpu); 218 dev = td->evtdev; 219 bc = tick_broadcast_device.evtdev; 220 221 /* 222 * Is the device not affected by the powerstate ? 223 */ 224 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 225 goto out; 226 227 if (!tick_device_is_functional(dev)) 228 goto out; 229 230 bc_stopped = cpumask_empty(tick_get_broadcast_mask()); 231 232 switch (*reason) { 233 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 234 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 235 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { 236 cpumask_set_cpu(cpu, tick_get_broadcast_mask()); 237 if (tick_broadcast_device.mode == 238 TICKDEV_MODE_PERIODIC) 239 clockevents_shutdown(dev); 240 } 241 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 242 tick_broadcast_force = 1; 243 break; 244 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 245 if (!tick_broadcast_force && 246 cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { 247 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 248 if (tick_broadcast_device.mode == 249 TICKDEV_MODE_PERIODIC) 250 tick_setup_periodic(dev, 0); 251 } 252 break; 253 } 254 255 if (cpumask_empty(tick_get_broadcast_mask())) { 256 if (!bc_stopped) 257 clockevents_shutdown(bc); 258 } else if (bc_stopped) { 259 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 260 tick_broadcast_start_periodic(bc); 261 else 262 tick_broadcast_setup_oneshot(bc); 263 } 264 out: 265 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 266 } 267 268 /* 269 * Powerstate information: The system enters/leaves a state, where 270 * affected devices might stop. 271 */ 272 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 273 { 274 if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) 275 printk(KERN_ERR "tick-broadcast: ignoring broadcast for " 276 "offline CPU #%d\n", *oncpu); 277 else 278 tick_do_broadcast_on_off(&reason); 279 } 280 281 /* 282 * Set the periodic handler depending on broadcast on/off 283 */ 284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 285 { 286 if (!broadcast) 287 dev->event_handler = tick_handle_periodic; 288 else 289 dev->event_handler = tick_handle_periodic_broadcast; 290 } 291 292 /* 293 * Remove a CPU from broadcasting 294 */ 295 void tick_shutdown_broadcast(unsigned int *cpup) 296 { 297 struct clock_event_device *bc; 298 unsigned long flags; 299 unsigned int cpu = *cpup; 300 301 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 302 303 bc = tick_broadcast_device.evtdev; 304 cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); 305 306 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 307 if (bc && cpumask_empty(tick_get_broadcast_mask())) 308 clockevents_shutdown(bc); 309 } 310 311 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 312 } 313 314 void tick_suspend_broadcast(void) 315 { 316 struct clock_event_device *bc; 317 unsigned long flags; 318 319 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 320 321 bc = tick_broadcast_device.evtdev; 322 if (bc) 323 clockevents_shutdown(bc); 324 325 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 326 } 327 328 int tick_resume_broadcast(void) 329 { 330 struct clock_event_device *bc; 331 unsigned long flags; 332 int broadcast = 0; 333 334 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 335 336 bc = tick_broadcast_device.evtdev; 337 338 if (bc) { 339 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 340 341 switch (tick_broadcast_device.mode) { 342 case TICKDEV_MODE_PERIODIC: 343 if (!cpumask_empty(tick_get_broadcast_mask())) 344 tick_broadcast_start_periodic(bc); 345 broadcast = cpumask_test_cpu(smp_processor_id(), 346 tick_get_broadcast_mask()); 347 break; 348 case TICKDEV_MODE_ONESHOT: 349 broadcast = tick_resume_broadcast_oneshot(bc); 350 break; 351 } 352 } 353 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 354 355 return broadcast; 356 } 357 358 359 #ifdef CONFIG_TICK_ONESHOT 360 361 /* FIXME: use cpumask_var_t. */ 362 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS); 363 364 /* 365 * Exposed for debugging: see timer_list.c 366 */ 367 struct cpumask *tick_get_broadcast_oneshot_mask(void) 368 { 369 return to_cpumask(tick_broadcast_oneshot_mask); 370 } 371 372 static int tick_broadcast_set_event(ktime_t expires, int force) 373 { 374 struct clock_event_device *bc = tick_broadcast_device.evtdev; 375 376 return tick_dev_program_event(bc, expires, force); 377 } 378 379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 380 { 381 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 382 return 0; 383 } 384 385 /* 386 * Called from irq_enter() when idle was interrupted to reenable the 387 * per cpu device. 388 */ 389 void tick_check_oneshot_broadcast(int cpu) 390 { 391 if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) { 392 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 393 394 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); 395 } 396 } 397 398 /* 399 * Handle oneshot mode broadcasting 400 */ 401 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 402 { 403 struct tick_device *td; 404 ktime_t now, next_event; 405 int cpu; 406 407 raw_spin_lock(&tick_broadcast_lock); 408 again: 409 dev->next_event.tv64 = KTIME_MAX; 410 next_event.tv64 = KTIME_MAX; 411 cpumask_clear(to_cpumask(tmpmask)); 412 now = ktime_get(); 413 /* Find all expired events */ 414 for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) { 415 td = &per_cpu(tick_cpu_device, cpu); 416 if (td->evtdev->next_event.tv64 <= now.tv64) 417 cpumask_set_cpu(cpu, to_cpumask(tmpmask)); 418 else if (td->evtdev->next_event.tv64 < next_event.tv64) 419 next_event.tv64 = td->evtdev->next_event.tv64; 420 } 421 422 /* 423 * Wakeup the cpus which have an expired event. 424 */ 425 tick_do_broadcast(to_cpumask(tmpmask)); 426 427 /* 428 * Two reasons for reprogram: 429 * 430 * - The global event did not expire any CPU local 431 * events. This happens in dyntick mode, as the maximum PIT 432 * delta is quite small. 433 * 434 * - There are pending events on sleeping CPUs which were not 435 * in the event mask 436 */ 437 if (next_event.tv64 != KTIME_MAX) { 438 /* 439 * Rearm the broadcast device. If event expired, 440 * repeat the above 441 */ 442 if (tick_broadcast_set_event(next_event, 0)) 443 goto again; 444 } 445 raw_spin_unlock(&tick_broadcast_lock); 446 } 447 448 /* 449 * Powerstate information: The system enters/leaves a state, where 450 * affected devices might stop 451 */ 452 void tick_broadcast_oneshot_control(unsigned long reason) 453 { 454 struct clock_event_device *bc, *dev; 455 struct tick_device *td; 456 unsigned long flags; 457 int cpu; 458 459 /* 460 * Periodic mode does not care about the enter/exit of power 461 * states 462 */ 463 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 464 return; 465 466 /* 467 * We are called with preemtion disabled from the depth of the 468 * idle code, so we can't be moved away. 469 */ 470 cpu = smp_processor_id(); 471 td = &per_cpu(tick_cpu_device, cpu); 472 dev = td->evtdev; 473 474 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 475 return; 476 477 bc = tick_broadcast_device.evtdev; 478 479 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 480 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 481 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { 482 cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask()); 483 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 484 if (dev->next_event.tv64 < bc->next_event.tv64) 485 tick_broadcast_set_event(dev->next_event, 1); 486 } 487 } else { 488 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { 489 cpumask_clear_cpu(cpu, 490 tick_get_broadcast_oneshot_mask()); 491 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 492 if (dev->next_event.tv64 != KTIME_MAX) 493 tick_program_event(dev->next_event, 1); 494 } 495 } 496 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 497 } 498 499 /* 500 * Reset the one shot broadcast for a cpu 501 * 502 * Called with tick_broadcast_lock held 503 */ 504 static void tick_broadcast_clear_oneshot(int cpu) 505 { 506 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); 507 } 508 509 static void tick_broadcast_init_next_event(struct cpumask *mask, 510 ktime_t expires) 511 { 512 struct tick_device *td; 513 int cpu; 514 515 for_each_cpu(cpu, mask) { 516 td = &per_cpu(tick_cpu_device, cpu); 517 if (td->evtdev) 518 td->evtdev->next_event = expires; 519 } 520 } 521 522 /** 523 * tick_broadcast_setup_oneshot - setup the broadcast device 524 */ 525 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 526 { 527 int cpu = smp_processor_id(); 528 529 /* Set it up only once ! */ 530 if (bc->event_handler != tick_handle_oneshot_broadcast) { 531 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; 532 533 bc->event_handler = tick_handle_oneshot_broadcast; 534 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 535 536 /* Take the do_timer update */ 537 tick_do_timer_cpu = cpu; 538 539 /* 540 * We must be careful here. There might be other CPUs 541 * waiting for periodic broadcast. We need to set the 542 * oneshot_mask bits for those and program the 543 * broadcast device to fire. 544 */ 545 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask()); 546 cpumask_clear_cpu(cpu, to_cpumask(tmpmask)); 547 cpumask_or(tick_get_broadcast_oneshot_mask(), 548 tick_get_broadcast_oneshot_mask(), 549 to_cpumask(tmpmask)); 550 551 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) { 552 tick_broadcast_init_next_event(to_cpumask(tmpmask), 553 tick_next_period); 554 tick_broadcast_set_event(tick_next_period, 1); 555 } else 556 bc->next_event.tv64 = KTIME_MAX; 557 } else { 558 /* 559 * The first cpu which switches to oneshot mode sets 560 * the bit for all other cpus which are in the general 561 * (periodic) broadcast mask. So the bit is set and 562 * would prevent the first broadcast enter after this 563 * to program the bc device. 564 */ 565 tick_broadcast_clear_oneshot(cpu); 566 } 567 } 568 569 /* 570 * Select oneshot operating mode for the broadcast device 571 */ 572 void tick_broadcast_switch_to_oneshot(void) 573 { 574 struct clock_event_device *bc; 575 unsigned long flags; 576 577 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 578 579 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 580 bc = tick_broadcast_device.evtdev; 581 if (bc) 582 tick_broadcast_setup_oneshot(bc); 583 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 584 } 585 586 587 /* 588 * Remove a dead CPU from broadcasting 589 */ 590 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 591 { 592 unsigned long flags; 593 unsigned int cpu = *cpup; 594 595 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 596 597 /* 598 * Clear the broadcast mask flag for the dead cpu, but do not 599 * stop the broadcast device! 600 */ 601 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); 602 603 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 604 } 605 606 /* 607 * Check, whether the broadcast device is in one shot mode 608 */ 609 int tick_broadcast_oneshot_active(void) 610 { 611 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 612 } 613 614 /* 615 * Check whether the broadcast device supports oneshot. 616 */ 617 bool tick_broadcast_oneshot_available(void) 618 { 619 struct clock_event_device *bc = tick_broadcast_device.evtdev; 620 621 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 622 } 623 624 #endif 625