xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 54525552)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 
22 #include "tick-internal.h"
23 
24 /*
25  * Broadcast support for broken x86 hardware, where the local apic
26  * timer stops in C3 state.
27  */
28 
29 static struct tick_device tick_broadcast_device;
30 /* FIXME: Use cpumask_var_t. */
31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
32 static DECLARE_BITMAP(tmpmask, NR_CPUS);
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35 
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41 
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47 	return &tick_broadcast_device;
48 }
49 
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52 	return to_cpumask(tick_broadcast_mask);
53 }
54 
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60 	if (bc)
61 		tick_setup_periodic(bc, 1);
62 }
63 
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69 	if ((tick_broadcast_device.evtdev &&
70 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
71 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 		return 0;
73 
74 	clockevents_exchange_device(NULL, dev);
75 	tick_broadcast_device.evtdev = dev;
76 	if (!cpumask_empty(tick_get_broadcast_mask()))
77 		tick_broadcast_start_periodic(dev);
78 	return 1;
79 }
80 
81 /*
82  * Check, if the device is the broadcast device
83  */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86 	return (dev && tick_broadcast_device.evtdev == dev);
87 }
88 
89 /*
90  * Check, if the device is disfunctional and a place holder, which
91  * needs to be handled by the broadcast device.
92  */
93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 {
95 	unsigned long flags;
96 	int ret = 0;
97 
98 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
99 
100 	/*
101 	 * Devices might be registered with both periodic and oneshot
102 	 * mode disabled. This signals, that the device needs to be
103 	 * operated from the broadcast device and is a placeholder for
104 	 * the cpu local device.
105 	 */
106 	if (!tick_device_is_functional(dev)) {
107 		dev->event_handler = tick_handle_periodic;
108 		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
110 		ret = 1;
111 	} else {
112 		/*
113 		 * When the new device is not affected by the stop
114 		 * feature and the cpu is marked in the broadcast mask
115 		 * then clear the broadcast bit.
116 		 */
117 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118 			int cpu = smp_processor_id();
119 
120 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
121 			tick_broadcast_clear_oneshot(cpu);
122 		}
123 	}
124 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125 	return ret;
126 }
127 
128 /*
129  * Broadcast the event to the cpus, which are set in the mask (mangled).
130  */
131 static void tick_do_broadcast(struct cpumask *mask)
132 {
133 	int cpu = smp_processor_id();
134 	struct tick_device *td;
135 
136 	/*
137 	 * Check, if the current cpu is in the mask
138 	 */
139 	if (cpumask_test_cpu(cpu, mask)) {
140 		cpumask_clear_cpu(cpu, mask);
141 		td = &per_cpu(tick_cpu_device, cpu);
142 		td->evtdev->event_handler(td->evtdev);
143 	}
144 
145 	if (!cpumask_empty(mask)) {
146 		/*
147 		 * It might be necessary to actually check whether the devices
148 		 * have different broadcast functions. For now, just use the
149 		 * one of the first device. This works as long as we have this
150 		 * misfeature only on x86 (lapic)
151 		 */
152 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153 		td->evtdev->broadcast(mask);
154 	}
155 }
156 
157 /*
158  * Periodic broadcast:
159  * - invoke the broadcast handlers
160  */
161 static void tick_do_periodic_broadcast(void)
162 {
163 	raw_spin_lock(&tick_broadcast_lock);
164 
165 	cpumask_and(to_cpumask(tmpmask),
166 		    cpu_online_mask, tick_get_broadcast_mask());
167 	tick_do_broadcast(to_cpumask(tmpmask));
168 
169 	raw_spin_unlock(&tick_broadcast_lock);
170 }
171 
172 /*
173  * Event handler for periodic broadcast ticks
174  */
175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176 {
177 	ktime_t next;
178 
179 	tick_do_periodic_broadcast();
180 
181 	/*
182 	 * The device is in periodic mode. No reprogramming necessary:
183 	 */
184 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185 		return;
186 
187 	/*
188 	 * Setup the next period for devices, which do not have
189 	 * periodic mode. We read dev->next_event first and add to it
190 	 * when the event already expired. clockevents_program_event()
191 	 * sets dev->next_event only when the event is really
192 	 * programmed to the device.
193 	 */
194 	for (next = dev->next_event; ;) {
195 		next = ktime_add(next, tick_period);
196 
197 		if (!clockevents_program_event(dev, next, ktime_get()))
198 			return;
199 		tick_do_periodic_broadcast();
200 	}
201 }
202 
203 /*
204  * Powerstate information: The system enters/leaves a state, where
205  * affected devices might stop
206  */
207 static void tick_do_broadcast_on_off(unsigned long *reason)
208 {
209 	struct clock_event_device *bc, *dev;
210 	struct tick_device *td;
211 	unsigned long flags;
212 	int cpu, bc_stopped;
213 
214 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215 
216 	cpu = smp_processor_id();
217 	td = &per_cpu(tick_cpu_device, cpu);
218 	dev = td->evtdev;
219 	bc = tick_broadcast_device.evtdev;
220 
221 	/*
222 	 * Is the device not affected by the powerstate ?
223 	 */
224 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225 		goto out;
226 
227 	if (!tick_device_is_functional(dev))
228 		goto out;
229 
230 	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231 
232 	switch (*reason) {
233 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236 			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237 			if (tick_broadcast_device.mode ==
238 			    TICKDEV_MODE_PERIODIC)
239 				clockevents_shutdown(dev);
240 		}
241 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242 			tick_broadcast_force = 1;
243 		break;
244 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245 		if (!tick_broadcast_force &&
246 		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247 			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
248 			if (tick_broadcast_device.mode ==
249 			    TICKDEV_MODE_PERIODIC)
250 				tick_setup_periodic(dev, 0);
251 		}
252 		break;
253 	}
254 
255 	if (cpumask_empty(tick_get_broadcast_mask())) {
256 		if (!bc_stopped)
257 			clockevents_shutdown(bc);
258 	} else if (bc_stopped) {
259 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260 			tick_broadcast_start_periodic(bc);
261 		else
262 			tick_broadcast_setup_oneshot(bc);
263 	}
264 out:
265 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266 }
267 
268 /*
269  * Powerstate information: The system enters/leaves a state, where
270  * affected devices might stop.
271  */
272 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273 {
274 	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276 		       "offline CPU #%d\n", *oncpu);
277 	else
278 		tick_do_broadcast_on_off(&reason);
279 }
280 
281 /*
282  * Set the periodic handler depending on broadcast on/off
283  */
284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285 {
286 	if (!broadcast)
287 		dev->event_handler = tick_handle_periodic;
288 	else
289 		dev->event_handler = tick_handle_periodic_broadcast;
290 }
291 
292 /*
293  * Remove a CPU from broadcasting
294  */
295 void tick_shutdown_broadcast(unsigned int *cpup)
296 {
297 	struct clock_event_device *bc;
298 	unsigned long flags;
299 	unsigned int cpu = *cpup;
300 
301 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302 
303 	bc = tick_broadcast_device.evtdev;
304 	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
305 
306 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307 		if (bc && cpumask_empty(tick_get_broadcast_mask()))
308 			clockevents_shutdown(bc);
309 	}
310 
311 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312 }
313 
314 void tick_suspend_broadcast(void)
315 {
316 	struct clock_event_device *bc;
317 	unsigned long flags;
318 
319 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320 
321 	bc = tick_broadcast_device.evtdev;
322 	if (bc)
323 		clockevents_shutdown(bc);
324 
325 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326 }
327 
328 int tick_resume_broadcast(void)
329 {
330 	struct clock_event_device *bc;
331 	unsigned long flags;
332 	int broadcast = 0;
333 
334 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335 
336 	bc = tick_broadcast_device.evtdev;
337 
338 	if (bc) {
339 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340 
341 		switch (tick_broadcast_device.mode) {
342 		case TICKDEV_MODE_PERIODIC:
343 			if (!cpumask_empty(tick_get_broadcast_mask()))
344 				tick_broadcast_start_periodic(bc);
345 			broadcast = cpumask_test_cpu(smp_processor_id(),
346 						     tick_get_broadcast_mask());
347 			break;
348 		case TICKDEV_MODE_ONESHOT:
349 			broadcast = tick_resume_broadcast_oneshot(bc);
350 			break;
351 		}
352 	}
353 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
354 
355 	return broadcast;
356 }
357 
358 
359 #ifdef CONFIG_TICK_ONESHOT
360 
361 /* FIXME: use cpumask_var_t. */
362 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
363 
364 /*
365  * Exposed for debugging: see timer_list.c
366  */
367 struct cpumask *tick_get_broadcast_oneshot_mask(void)
368 {
369 	return to_cpumask(tick_broadcast_oneshot_mask);
370 }
371 
372 static int tick_broadcast_set_event(ktime_t expires, int force)
373 {
374 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
375 
376 	return tick_dev_program_event(bc, expires, force);
377 }
378 
379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
380 {
381 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382 	return 0;
383 }
384 
385 /*
386  * Called from irq_enter() when idle was interrupted to reenable the
387  * per cpu device.
388  */
389 void tick_check_oneshot_broadcast(int cpu)
390 {
391 	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
392 		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
393 
394 		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
395 	}
396 }
397 
398 /*
399  * Handle oneshot mode broadcasting
400  */
401 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
402 {
403 	struct tick_device *td;
404 	ktime_t now, next_event;
405 	int cpu;
406 
407 	raw_spin_lock(&tick_broadcast_lock);
408 again:
409 	dev->next_event.tv64 = KTIME_MAX;
410 	next_event.tv64 = KTIME_MAX;
411 	cpumask_clear(to_cpumask(tmpmask));
412 	now = ktime_get();
413 	/* Find all expired events */
414 	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
415 		td = &per_cpu(tick_cpu_device, cpu);
416 		if (td->evtdev->next_event.tv64 <= now.tv64)
417 			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
418 		else if (td->evtdev->next_event.tv64 < next_event.tv64)
419 			next_event.tv64 = td->evtdev->next_event.tv64;
420 	}
421 
422 	/*
423 	 * Wakeup the cpus which have an expired event.
424 	 */
425 	tick_do_broadcast(to_cpumask(tmpmask));
426 
427 	/*
428 	 * Two reasons for reprogram:
429 	 *
430 	 * - The global event did not expire any CPU local
431 	 * events. This happens in dyntick mode, as the maximum PIT
432 	 * delta is quite small.
433 	 *
434 	 * - There are pending events on sleeping CPUs which were not
435 	 * in the event mask
436 	 */
437 	if (next_event.tv64 != KTIME_MAX) {
438 		/*
439 		 * Rearm the broadcast device. If event expired,
440 		 * repeat the above
441 		 */
442 		if (tick_broadcast_set_event(next_event, 0))
443 			goto again;
444 	}
445 	raw_spin_unlock(&tick_broadcast_lock);
446 }
447 
448 /*
449  * Powerstate information: The system enters/leaves a state, where
450  * affected devices might stop
451  */
452 void tick_broadcast_oneshot_control(unsigned long reason)
453 {
454 	struct clock_event_device *bc, *dev;
455 	struct tick_device *td;
456 	unsigned long flags;
457 	int cpu;
458 
459 	/*
460 	 * Periodic mode does not care about the enter/exit of power
461 	 * states
462 	 */
463 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
464 		return;
465 
466 	/*
467 	 * We are called with preemtion disabled from the depth of the
468 	 * idle code, so we can't be moved away.
469 	 */
470 	cpu = smp_processor_id();
471 	td = &per_cpu(tick_cpu_device, cpu);
472 	dev = td->evtdev;
473 
474 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
475 		return;
476 
477 	bc = tick_broadcast_device.evtdev;
478 
479 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
481 		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
482 			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
483 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
484 			if (dev->next_event.tv64 < bc->next_event.tv64)
485 				tick_broadcast_set_event(dev->next_event, 1);
486 		}
487 	} else {
488 		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
489 			cpumask_clear_cpu(cpu,
490 					  tick_get_broadcast_oneshot_mask());
491 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
492 			if (dev->next_event.tv64 != KTIME_MAX)
493 				tick_program_event(dev->next_event, 1);
494 		}
495 	}
496 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
497 }
498 
499 /*
500  * Reset the one shot broadcast for a cpu
501  *
502  * Called with tick_broadcast_lock held
503  */
504 static void tick_broadcast_clear_oneshot(int cpu)
505 {
506 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
507 }
508 
509 static void tick_broadcast_init_next_event(struct cpumask *mask,
510 					   ktime_t expires)
511 {
512 	struct tick_device *td;
513 	int cpu;
514 
515 	for_each_cpu(cpu, mask) {
516 		td = &per_cpu(tick_cpu_device, cpu);
517 		if (td->evtdev)
518 			td->evtdev->next_event = expires;
519 	}
520 }
521 
522 /**
523  * tick_broadcast_setup_oneshot - setup the broadcast device
524  */
525 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
526 {
527 	int cpu = smp_processor_id();
528 
529 	/* Set it up only once ! */
530 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
531 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
532 
533 		bc->event_handler = tick_handle_oneshot_broadcast;
534 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
535 
536 		/* Take the do_timer update */
537 		tick_do_timer_cpu = cpu;
538 
539 		/*
540 		 * We must be careful here. There might be other CPUs
541 		 * waiting for periodic broadcast. We need to set the
542 		 * oneshot_mask bits for those and program the
543 		 * broadcast device to fire.
544 		 */
545 		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
546 		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
547 		cpumask_or(tick_get_broadcast_oneshot_mask(),
548 			   tick_get_broadcast_oneshot_mask(),
549 			   to_cpumask(tmpmask));
550 
551 		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
552 			tick_broadcast_init_next_event(to_cpumask(tmpmask),
553 						       tick_next_period);
554 			tick_broadcast_set_event(tick_next_period, 1);
555 		} else
556 			bc->next_event.tv64 = KTIME_MAX;
557 	} else {
558 		/*
559 		 * The first cpu which switches to oneshot mode sets
560 		 * the bit for all other cpus which are in the general
561 		 * (periodic) broadcast mask. So the bit is set and
562 		 * would prevent the first broadcast enter after this
563 		 * to program the bc device.
564 		 */
565 		tick_broadcast_clear_oneshot(cpu);
566 	}
567 }
568 
569 /*
570  * Select oneshot operating mode for the broadcast device
571  */
572 void tick_broadcast_switch_to_oneshot(void)
573 {
574 	struct clock_event_device *bc;
575 	unsigned long flags;
576 
577 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
578 
579 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
580 	bc = tick_broadcast_device.evtdev;
581 	if (bc)
582 		tick_broadcast_setup_oneshot(bc);
583 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
584 }
585 
586 
587 /*
588  * Remove a dead CPU from broadcasting
589  */
590 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
591 {
592 	unsigned long flags;
593 	unsigned int cpu = *cpup;
594 
595 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
596 
597 	/*
598 	 * Clear the broadcast mask flag for the dead cpu, but do not
599 	 * stop the broadcast device!
600 	 */
601 	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
602 
603 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
604 }
605 
606 /*
607  * Check, whether the broadcast device is in one shot mode
608  */
609 int tick_broadcast_oneshot_active(void)
610 {
611 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
612 }
613 
614 /*
615  * Check whether the broadcast device supports oneshot.
616  */
617 bool tick_broadcast_oneshot_available(void)
618 {
619 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
620 
621 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
622 }
623 
624 #endif
625