1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask; 33 static cpumask_var_t tick_broadcast_on; 34 static cpumask_var_t tmpmask; 35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 36 static int tick_broadcast_force; 37 38 #ifdef CONFIG_TICK_ONESHOT 39 static void tick_broadcast_clear_oneshot(int cpu); 40 #else 41 static inline void tick_broadcast_clear_oneshot(int cpu) { } 42 #endif 43 44 /* 45 * Debugging: see timer_list.c 46 */ 47 struct tick_device *tick_get_broadcast_device(void) 48 { 49 return &tick_broadcast_device; 50 } 51 52 struct cpumask *tick_get_broadcast_mask(void) 53 { 54 return tick_broadcast_mask; 55 } 56 57 /* 58 * Start the device in periodic mode 59 */ 60 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 61 { 62 if (bc) 63 tick_setup_periodic(bc, 1); 64 } 65 66 /* 67 * Check, if the device can be utilized as broadcast device: 68 */ 69 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 70 struct clock_event_device *newdev) 71 { 72 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 73 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 74 return false; 75 76 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 77 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 78 return false; 79 80 return !curdev || newdev->rating > curdev->rating; 81 } 82 83 /* 84 * Conditionally install/replace broadcast device 85 */ 86 void tick_install_broadcast_device(struct clock_event_device *dev) 87 { 88 struct clock_event_device *cur = tick_broadcast_device.evtdev; 89 90 if (!tick_check_broadcast_device(cur, dev)) 91 return; 92 93 if (!try_module_get(dev->owner)) 94 return; 95 96 clockevents_exchange_device(cur, dev); 97 if (cur) 98 cur->event_handler = clockevents_handle_noop; 99 tick_broadcast_device.evtdev = dev; 100 if (!cpumask_empty(tick_broadcast_mask)) 101 tick_broadcast_start_periodic(dev); 102 /* 103 * Inform all cpus about this. We might be in a situation 104 * where we did not switch to oneshot mode because the per cpu 105 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 106 * of a oneshot capable broadcast device. Without that 107 * notification the systems stays stuck in periodic mode 108 * forever. 109 */ 110 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 111 tick_clock_notify(); 112 } 113 114 /* 115 * Check, if the device is the broadcast device 116 */ 117 int tick_is_broadcast_device(struct clock_event_device *dev) 118 { 119 return (dev && tick_broadcast_device.evtdev == dev); 120 } 121 122 static void err_broadcast(const struct cpumask *mask) 123 { 124 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 125 } 126 127 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 128 { 129 if (!dev->broadcast) 130 dev->broadcast = tick_broadcast; 131 if (!dev->broadcast) { 132 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 133 dev->name); 134 dev->broadcast = err_broadcast; 135 } 136 } 137 138 /* 139 * Check, if the device is disfunctional and a place holder, which 140 * needs to be handled by the broadcast device. 141 */ 142 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 143 { 144 struct clock_event_device *bc = tick_broadcast_device.evtdev; 145 unsigned long flags; 146 int ret; 147 148 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 149 150 /* 151 * Devices might be registered with both periodic and oneshot 152 * mode disabled. This signals, that the device needs to be 153 * operated from the broadcast device and is a placeholder for 154 * the cpu local device. 155 */ 156 if (!tick_device_is_functional(dev)) { 157 dev->event_handler = tick_handle_periodic; 158 tick_device_setup_broadcast_func(dev); 159 cpumask_set_cpu(cpu, tick_broadcast_mask); 160 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 161 tick_broadcast_start_periodic(bc); 162 else 163 tick_broadcast_setup_oneshot(bc); 164 ret = 1; 165 } else { 166 /* 167 * Clear the broadcast bit for this cpu if the 168 * device is not power state affected. 169 */ 170 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 171 cpumask_clear_cpu(cpu, tick_broadcast_mask); 172 else 173 tick_device_setup_broadcast_func(dev); 174 175 /* 176 * Clear the broadcast bit if the CPU is not in 177 * periodic broadcast on state. 178 */ 179 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 180 cpumask_clear_cpu(cpu, tick_broadcast_mask); 181 182 switch (tick_broadcast_device.mode) { 183 case TICKDEV_MODE_ONESHOT: 184 /* 185 * If the system is in oneshot mode we can 186 * unconditionally clear the oneshot mask bit, 187 * because the CPU is running and therefore 188 * not in an idle state which causes the power 189 * state affected device to stop. Let the 190 * caller initialize the device. 191 */ 192 tick_broadcast_clear_oneshot(cpu); 193 ret = 0; 194 break; 195 196 case TICKDEV_MODE_PERIODIC: 197 /* 198 * If the system is in periodic mode, check 199 * whether the broadcast device can be 200 * switched off now. 201 */ 202 if (cpumask_empty(tick_broadcast_mask) && bc) 203 clockevents_shutdown(bc); 204 /* 205 * If we kept the cpu in the broadcast mask, 206 * tell the caller to leave the per cpu device 207 * in shutdown state. The periodic interrupt 208 * is delivered by the broadcast device. 209 */ 210 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 211 break; 212 default: 213 /* Nothing to do */ 214 ret = 0; 215 break; 216 } 217 } 218 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 219 return ret; 220 } 221 222 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 223 int tick_receive_broadcast(void) 224 { 225 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 226 struct clock_event_device *evt = td->evtdev; 227 228 if (!evt) 229 return -ENODEV; 230 231 if (!evt->event_handler) 232 return -EINVAL; 233 234 evt->event_handler(evt); 235 return 0; 236 } 237 #endif 238 239 /* 240 * Broadcast the event to the cpus, which are set in the mask (mangled). 241 */ 242 static void tick_do_broadcast(struct cpumask *mask) 243 { 244 int cpu = smp_processor_id(); 245 struct tick_device *td; 246 247 /* 248 * Check, if the current cpu is in the mask 249 */ 250 if (cpumask_test_cpu(cpu, mask)) { 251 cpumask_clear_cpu(cpu, mask); 252 td = &per_cpu(tick_cpu_device, cpu); 253 td->evtdev->event_handler(td->evtdev); 254 } 255 256 if (!cpumask_empty(mask)) { 257 /* 258 * It might be necessary to actually check whether the devices 259 * have different broadcast functions. For now, just use the 260 * one of the first device. This works as long as we have this 261 * misfeature only on x86 (lapic) 262 */ 263 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 264 td->evtdev->broadcast(mask); 265 } 266 } 267 268 /* 269 * Periodic broadcast: 270 * - invoke the broadcast handlers 271 */ 272 static void tick_do_periodic_broadcast(void) 273 { 274 raw_spin_lock(&tick_broadcast_lock); 275 276 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 277 tick_do_broadcast(tmpmask); 278 279 raw_spin_unlock(&tick_broadcast_lock); 280 } 281 282 /* 283 * Event handler for periodic broadcast ticks 284 */ 285 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 286 { 287 ktime_t next; 288 289 tick_do_periodic_broadcast(); 290 291 /* 292 * The device is in periodic mode. No reprogramming necessary: 293 */ 294 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 295 return; 296 297 /* 298 * Setup the next period for devices, which do not have 299 * periodic mode. We read dev->next_event first and add to it 300 * when the event already expired. clockevents_program_event() 301 * sets dev->next_event only when the event is really 302 * programmed to the device. 303 */ 304 for (next = dev->next_event; ;) { 305 next = ktime_add(next, tick_period); 306 307 if (!clockevents_program_event(dev, next, false)) 308 return; 309 tick_do_periodic_broadcast(); 310 } 311 } 312 313 /* 314 * Powerstate information: The system enters/leaves a state, where 315 * affected devices might stop 316 */ 317 static void tick_do_broadcast_on_off(unsigned long *reason) 318 { 319 struct clock_event_device *bc, *dev; 320 struct tick_device *td; 321 unsigned long flags; 322 int cpu, bc_stopped; 323 324 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 325 326 cpu = smp_processor_id(); 327 td = &per_cpu(tick_cpu_device, cpu); 328 dev = td->evtdev; 329 bc = tick_broadcast_device.evtdev; 330 331 /* 332 * Is the device not affected by the powerstate ? 333 */ 334 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 335 goto out; 336 337 if (!tick_device_is_functional(dev)) 338 goto out; 339 340 bc_stopped = cpumask_empty(tick_broadcast_mask); 341 342 switch (*reason) { 343 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 344 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 345 cpumask_set_cpu(cpu, tick_broadcast_on); 346 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 347 if (tick_broadcast_device.mode == 348 TICKDEV_MODE_PERIODIC) 349 clockevents_shutdown(dev); 350 } 351 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 352 tick_broadcast_force = 1; 353 break; 354 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 355 if (tick_broadcast_force) 356 break; 357 cpumask_clear_cpu(cpu, tick_broadcast_on); 358 if (!tick_device_is_functional(dev)) 359 break; 360 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 361 if (tick_broadcast_device.mode == 362 TICKDEV_MODE_PERIODIC) 363 tick_setup_periodic(dev, 0); 364 } 365 break; 366 } 367 368 if (cpumask_empty(tick_broadcast_mask)) { 369 if (!bc_stopped) 370 clockevents_shutdown(bc); 371 } else if (bc_stopped) { 372 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 373 tick_broadcast_start_periodic(bc); 374 else 375 tick_broadcast_setup_oneshot(bc); 376 } 377 out: 378 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 379 } 380 381 /* 382 * Powerstate information: The system enters/leaves a state, where 383 * affected devices might stop. 384 */ 385 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 386 { 387 if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) 388 printk(KERN_ERR "tick-broadcast: ignoring broadcast for " 389 "offline CPU #%d\n", *oncpu); 390 else 391 tick_do_broadcast_on_off(&reason); 392 } 393 394 /* 395 * Set the periodic handler depending on broadcast on/off 396 */ 397 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 398 { 399 if (!broadcast) 400 dev->event_handler = tick_handle_periodic; 401 else 402 dev->event_handler = tick_handle_periodic_broadcast; 403 } 404 405 /* 406 * Remove a CPU from broadcasting 407 */ 408 void tick_shutdown_broadcast(unsigned int *cpup) 409 { 410 struct clock_event_device *bc; 411 unsigned long flags; 412 unsigned int cpu = *cpup; 413 414 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 415 416 bc = tick_broadcast_device.evtdev; 417 cpumask_clear_cpu(cpu, tick_broadcast_mask); 418 cpumask_clear_cpu(cpu, tick_broadcast_on); 419 420 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 421 if (bc && cpumask_empty(tick_broadcast_mask)) 422 clockevents_shutdown(bc); 423 } 424 425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 426 } 427 428 void tick_suspend_broadcast(void) 429 { 430 struct clock_event_device *bc; 431 unsigned long flags; 432 433 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 434 435 bc = tick_broadcast_device.evtdev; 436 if (bc) 437 clockevents_shutdown(bc); 438 439 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 440 } 441 442 int tick_resume_broadcast(void) 443 { 444 struct clock_event_device *bc; 445 unsigned long flags; 446 int broadcast = 0; 447 448 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 449 450 bc = tick_broadcast_device.evtdev; 451 452 if (bc) { 453 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 454 455 switch (tick_broadcast_device.mode) { 456 case TICKDEV_MODE_PERIODIC: 457 if (!cpumask_empty(tick_broadcast_mask)) 458 tick_broadcast_start_periodic(bc); 459 broadcast = cpumask_test_cpu(smp_processor_id(), 460 tick_broadcast_mask); 461 break; 462 case TICKDEV_MODE_ONESHOT: 463 if (!cpumask_empty(tick_broadcast_mask)) 464 broadcast = tick_resume_broadcast_oneshot(bc); 465 break; 466 } 467 } 468 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 469 470 return broadcast; 471 } 472 473 474 #ifdef CONFIG_TICK_ONESHOT 475 476 static cpumask_var_t tick_broadcast_oneshot_mask; 477 static cpumask_var_t tick_broadcast_pending_mask; 478 static cpumask_var_t tick_broadcast_force_mask; 479 480 /* 481 * Exposed for debugging: see timer_list.c 482 */ 483 struct cpumask *tick_get_broadcast_oneshot_mask(void) 484 { 485 return tick_broadcast_oneshot_mask; 486 } 487 488 /* 489 * Called before going idle with interrupts disabled. Checks whether a 490 * broadcast event from the other core is about to happen. We detected 491 * that in tick_broadcast_oneshot_control(). The callsite can use this 492 * to avoid a deep idle transition as we are about to get the 493 * broadcast IPI right away. 494 */ 495 int tick_check_broadcast_expired(void) 496 { 497 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 498 } 499 500 /* 501 * Set broadcast interrupt affinity 502 */ 503 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 504 const struct cpumask *cpumask) 505 { 506 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 507 return; 508 509 if (cpumask_equal(bc->cpumask, cpumask)) 510 return; 511 512 bc->cpumask = cpumask; 513 irq_set_affinity(bc->irq, bc->cpumask); 514 } 515 516 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 517 ktime_t expires, int force) 518 { 519 int ret; 520 521 if (bc->mode != CLOCK_EVT_MODE_ONESHOT) 522 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 523 524 ret = clockevents_program_event(bc, expires, force); 525 if (!ret) 526 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 527 return ret; 528 } 529 530 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 531 { 532 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 533 return 0; 534 } 535 536 /* 537 * Called from irq_enter() when idle was interrupted to reenable the 538 * per cpu device. 539 */ 540 void tick_check_oneshot_broadcast(int cpu) 541 { 542 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) { 543 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 544 545 /* 546 * We might be in the middle of switching over from 547 * periodic to oneshot. If the CPU has not yet 548 * switched over, leave the device alone. 549 */ 550 if (td->mode == TICKDEV_MODE_ONESHOT) { 551 clockevents_set_mode(td->evtdev, 552 CLOCK_EVT_MODE_ONESHOT); 553 } 554 } 555 } 556 557 /* 558 * Handle oneshot mode broadcasting 559 */ 560 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 561 { 562 struct tick_device *td; 563 ktime_t now, next_event; 564 int cpu, next_cpu = 0; 565 566 raw_spin_lock(&tick_broadcast_lock); 567 again: 568 dev->next_event.tv64 = KTIME_MAX; 569 next_event.tv64 = KTIME_MAX; 570 cpumask_clear(tmpmask); 571 now = ktime_get(); 572 /* Find all expired events */ 573 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 574 td = &per_cpu(tick_cpu_device, cpu); 575 if (td->evtdev->next_event.tv64 <= now.tv64) { 576 cpumask_set_cpu(cpu, tmpmask); 577 /* 578 * Mark the remote cpu in the pending mask, so 579 * it can avoid reprogramming the cpu local 580 * timer in tick_broadcast_oneshot_control(). 581 */ 582 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 583 } else if (td->evtdev->next_event.tv64 < next_event.tv64) { 584 next_event.tv64 = td->evtdev->next_event.tv64; 585 next_cpu = cpu; 586 } 587 } 588 589 /* 590 * Remove the current cpu from the pending mask. The event is 591 * delivered immediately in tick_do_broadcast() ! 592 */ 593 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 594 595 /* Take care of enforced broadcast requests */ 596 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 597 cpumask_clear(tick_broadcast_force_mask); 598 599 /* 600 * Sanity check. Catch the case where we try to broadcast to 601 * offline cpus. 602 */ 603 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 604 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 605 606 /* 607 * Wakeup the cpus which have an expired event. 608 */ 609 tick_do_broadcast(tmpmask); 610 611 /* 612 * Two reasons for reprogram: 613 * 614 * - The global event did not expire any CPU local 615 * events. This happens in dyntick mode, as the maximum PIT 616 * delta is quite small. 617 * 618 * - There are pending events on sleeping CPUs which were not 619 * in the event mask 620 */ 621 if (next_event.tv64 != KTIME_MAX) { 622 /* 623 * Rearm the broadcast device. If event expired, 624 * repeat the above 625 */ 626 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0)) 627 goto again; 628 } 629 raw_spin_unlock(&tick_broadcast_lock); 630 } 631 632 /* 633 * Powerstate information: The system enters/leaves a state, where 634 * affected devices might stop 635 */ 636 void tick_broadcast_oneshot_control(unsigned long reason) 637 { 638 struct clock_event_device *bc, *dev; 639 struct tick_device *td; 640 unsigned long flags; 641 ktime_t now; 642 int cpu; 643 644 /* 645 * Periodic mode does not care about the enter/exit of power 646 * states 647 */ 648 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 649 return; 650 651 /* 652 * We are called with preemtion disabled from the depth of the 653 * idle code, so we can't be moved away. 654 */ 655 cpu = smp_processor_id(); 656 td = &per_cpu(tick_cpu_device, cpu); 657 dev = td->evtdev; 658 659 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 660 return; 661 662 bc = tick_broadcast_device.evtdev; 663 664 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 665 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 666 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 667 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 668 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 669 /* 670 * We only reprogram the broadcast timer if we 671 * did not mark ourself in the force mask and 672 * if the cpu local event is earlier than the 673 * broadcast event. If the current CPU is in 674 * the force mask, then we are going to be 675 * woken by the IPI right away. 676 */ 677 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) && 678 dev->next_event.tv64 < bc->next_event.tv64) 679 tick_broadcast_set_event(bc, cpu, dev->next_event, 1); 680 } 681 } else { 682 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 683 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 684 /* 685 * The cpu which was handling the broadcast 686 * timer marked this cpu in the broadcast 687 * pending mask and fired the broadcast 688 * IPI. So we are going to handle the expired 689 * event anyway via the broadcast IPI 690 * handler. No need to reprogram the timer 691 * with an already expired event. 692 */ 693 if (cpumask_test_and_clear_cpu(cpu, 694 tick_broadcast_pending_mask)) 695 goto out; 696 697 /* 698 * Bail out if there is no next event. 699 */ 700 if (dev->next_event.tv64 == KTIME_MAX) 701 goto out; 702 /* 703 * If the pending bit is not set, then we are 704 * either the CPU handling the broadcast 705 * interrupt or we got woken by something else. 706 * 707 * We are not longer in the broadcast mask, so 708 * if the cpu local expiry time is already 709 * reached, we would reprogram the cpu local 710 * timer with an already expired event. 711 * 712 * This can lead to a ping-pong when we return 713 * to idle and therefor rearm the broadcast 714 * timer before the cpu local timer was able 715 * to fire. This happens because the forced 716 * reprogramming makes sure that the event 717 * will happen in the future and depending on 718 * the min_delta setting this might be far 719 * enough out that the ping-pong starts. 720 * 721 * If the cpu local next_event has expired 722 * then we know that the broadcast timer 723 * next_event has expired as well and 724 * broadcast is about to be handled. So we 725 * avoid reprogramming and enforce that the 726 * broadcast handler, which did not run yet, 727 * will invoke the cpu local handler. 728 * 729 * We cannot call the handler directly from 730 * here, because we might be in a NOHZ phase 731 * and we did not go through the irq_enter() 732 * nohz fixups. 733 */ 734 now = ktime_get(); 735 if (dev->next_event.tv64 <= now.tv64) { 736 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 737 goto out; 738 } 739 /* 740 * We got woken by something else. Reprogram 741 * the cpu local timer device. 742 */ 743 tick_program_event(dev->next_event, 1); 744 } 745 } 746 out: 747 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 748 } 749 750 /* 751 * Reset the one shot broadcast for a cpu 752 * 753 * Called with tick_broadcast_lock held 754 */ 755 static void tick_broadcast_clear_oneshot(int cpu) 756 { 757 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 758 } 759 760 static void tick_broadcast_init_next_event(struct cpumask *mask, 761 ktime_t expires) 762 { 763 struct tick_device *td; 764 int cpu; 765 766 for_each_cpu(cpu, mask) { 767 td = &per_cpu(tick_cpu_device, cpu); 768 if (td->evtdev) 769 td->evtdev->next_event = expires; 770 } 771 } 772 773 /** 774 * tick_broadcast_setup_oneshot - setup the broadcast device 775 */ 776 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 777 { 778 int cpu = smp_processor_id(); 779 780 /* Set it up only once ! */ 781 if (bc->event_handler != tick_handle_oneshot_broadcast) { 782 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; 783 784 bc->event_handler = tick_handle_oneshot_broadcast; 785 786 /* 787 * We must be careful here. There might be other CPUs 788 * waiting for periodic broadcast. We need to set the 789 * oneshot_mask bits for those and program the 790 * broadcast device to fire. 791 */ 792 cpumask_copy(tmpmask, tick_broadcast_mask); 793 cpumask_clear_cpu(cpu, tmpmask); 794 cpumask_or(tick_broadcast_oneshot_mask, 795 tick_broadcast_oneshot_mask, tmpmask); 796 797 if (was_periodic && !cpumask_empty(tmpmask)) { 798 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 799 tick_broadcast_init_next_event(tmpmask, 800 tick_next_period); 801 tick_broadcast_set_event(bc, cpu, tick_next_period, 1); 802 } else 803 bc->next_event.tv64 = KTIME_MAX; 804 } else { 805 /* 806 * The first cpu which switches to oneshot mode sets 807 * the bit for all other cpus which are in the general 808 * (periodic) broadcast mask. So the bit is set and 809 * would prevent the first broadcast enter after this 810 * to program the bc device. 811 */ 812 tick_broadcast_clear_oneshot(cpu); 813 } 814 } 815 816 /* 817 * Select oneshot operating mode for the broadcast device 818 */ 819 void tick_broadcast_switch_to_oneshot(void) 820 { 821 struct clock_event_device *bc; 822 unsigned long flags; 823 824 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 825 826 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 827 bc = tick_broadcast_device.evtdev; 828 if (bc) 829 tick_broadcast_setup_oneshot(bc); 830 831 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 832 } 833 834 835 /* 836 * Remove a dead CPU from broadcasting 837 */ 838 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 839 { 840 unsigned long flags; 841 unsigned int cpu = *cpup; 842 843 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 844 845 /* 846 * Clear the broadcast masks for the dead cpu, but do not stop 847 * the broadcast device! 848 */ 849 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 850 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 851 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 852 853 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 854 } 855 856 /* 857 * Check, whether the broadcast device is in one shot mode 858 */ 859 int tick_broadcast_oneshot_active(void) 860 { 861 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 862 } 863 864 /* 865 * Check whether the broadcast device supports oneshot. 866 */ 867 bool tick_broadcast_oneshot_available(void) 868 { 869 struct clock_event_device *bc = tick_broadcast_device.evtdev; 870 871 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 872 } 873 874 #endif 875 876 void __init tick_broadcast_init(void) 877 { 878 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 879 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 880 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 881 #ifdef CONFIG_TICK_ONESHOT 882 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 883 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 884 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 885 #endif 886 } 887