xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 4f3db074)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37 
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45 
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 	return &tick_broadcast_device;
52 }
53 
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 	return tick_broadcast_mask;
57 }
58 
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 	if (bc)
65 		tick_setup_periodic(bc, 1);
66 }
67 
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 					struct clock_event_device *newdev)
73 {
74 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return false;
78 
79 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 		return false;
82 
83 	return !curdev || newdev->rating > curdev->rating;
84 }
85 
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
92 
93 	if (!tick_check_broadcast_device(cur, dev))
94 		return;
95 
96 	if (!try_module_get(dev->owner))
97 		return;
98 
99 	clockevents_exchange_device(cur, dev);
100 	if (cur)
101 		cur->event_handler = clockevents_handle_noop;
102 	tick_broadcast_device.evtdev = dev;
103 	if (!cpumask_empty(tick_broadcast_mask))
104 		tick_broadcast_start_periodic(dev);
105 	/*
106 	 * Inform all cpus about this. We might be in a situation
107 	 * where we did not switch to oneshot mode because the per cpu
108 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 	 * of a oneshot capable broadcast device. Without that
110 	 * notification the systems stays stuck in periodic mode
111 	 * forever.
112 	 */
113 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 		tick_clock_notify();
115 }
116 
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 	return (dev && tick_broadcast_device.evtdev == dev);
123 }
124 
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 	int ret = -ENODEV;
128 
129 	if (tick_is_broadcast_device(dev)) {
130 		raw_spin_lock(&tick_broadcast_lock);
131 		ret = __clockevents_update_freq(dev, freq);
132 		raw_spin_unlock(&tick_broadcast_lock);
133 	}
134 	return ret;
135 }
136 
137 
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142 
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 	if (!dev->broadcast)
146 		dev->broadcast = tick_broadcast;
147 	if (!dev->broadcast) {
148 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 			     dev->name);
150 		dev->broadcast = err_broadcast;
151 	}
152 }
153 
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 	unsigned long flags;
162 	int ret;
163 
164 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 
166 	/*
167 	 * Devices might be registered with both periodic and oneshot
168 	 * mode disabled. This signals, that the device needs to be
169 	 * operated from the broadcast device and is a placeholder for
170 	 * the cpu local device.
171 	 */
172 	if (!tick_device_is_functional(dev)) {
173 		dev->event_handler = tick_handle_periodic;
174 		tick_device_setup_broadcast_func(dev);
175 		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 			tick_broadcast_start_periodic(bc);
178 		else
179 			tick_broadcast_setup_oneshot(bc);
180 		ret = 1;
181 	} else {
182 		/*
183 		 * Clear the broadcast bit for this cpu if the
184 		 * device is not power state affected.
185 		 */
186 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 		else
189 			tick_device_setup_broadcast_func(dev);
190 
191 		/*
192 		 * Clear the broadcast bit if the CPU is not in
193 		 * periodic broadcast on state.
194 		 */
195 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
197 
198 		switch (tick_broadcast_device.mode) {
199 		case TICKDEV_MODE_ONESHOT:
200 			/*
201 			 * If the system is in oneshot mode we can
202 			 * unconditionally clear the oneshot mask bit,
203 			 * because the CPU is running and therefore
204 			 * not in an idle state which causes the power
205 			 * state affected device to stop. Let the
206 			 * caller initialize the device.
207 			 */
208 			tick_broadcast_clear_oneshot(cpu);
209 			ret = 0;
210 			break;
211 
212 		case TICKDEV_MODE_PERIODIC:
213 			/*
214 			 * If the system is in periodic mode, check
215 			 * whether the broadcast device can be
216 			 * switched off now.
217 			 */
218 			if (cpumask_empty(tick_broadcast_mask) && bc)
219 				clockevents_shutdown(bc);
220 			/*
221 			 * If we kept the cpu in the broadcast mask,
222 			 * tell the caller to leave the per cpu device
223 			 * in shutdown state. The periodic interrupt
224 			 * is delivered by the broadcast device.
225 			 */
226 			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227 			break;
228 		default:
229 			/* Nothing to do */
230 			ret = 0;
231 			break;
232 		}
233 	}
234 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235 	return ret;
236 }
237 
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242 	struct clock_event_device *evt = td->evtdev;
243 
244 	if (!evt)
245 		return -ENODEV;
246 
247 	if (!evt->event_handler)
248 		return -EINVAL;
249 
250 	evt->event_handler(evt);
251 	return 0;
252 }
253 #endif
254 
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static void tick_do_broadcast(struct cpumask *mask)
259 {
260 	int cpu = smp_processor_id();
261 	struct tick_device *td;
262 
263 	/*
264 	 * Check, if the current cpu is in the mask
265 	 */
266 	if (cpumask_test_cpu(cpu, mask)) {
267 		cpumask_clear_cpu(cpu, mask);
268 		td = &per_cpu(tick_cpu_device, cpu);
269 		td->evtdev->event_handler(td->evtdev);
270 	}
271 
272 	if (!cpumask_empty(mask)) {
273 		/*
274 		 * It might be necessary to actually check whether the devices
275 		 * have different broadcast functions. For now, just use the
276 		 * one of the first device. This works as long as we have this
277 		 * misfeature only on x86 (lapic)
278 		 */
279 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280 		td->evtdev->broadcast(mask);
281 	}
282 }
283 
284 /*
285  * Periodic broadcast:
286  * - invoke the broadcast handlers
287  */
288 static void tick_do_periodic_broadcast(void)
289 {
290 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
291 	tick_do_broadcast(tmpmask);
292 }
293 
294 /*
295  * Event handler for periodic broadcast ticks
296  */
297 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
298 {
299 	ktime_t next;
300 
301 	raw_spin_lock(&tick_broadcast_lock);
302 
303 	tick_do_periodic_broadcast();
304 
305 	/*
306 	 * The device is in periodic mode. No reprogramming necessary:
307 	 */
308 	if (dev->state == CLOCK_EVT_STATE_PERIODIC)
309 		goto unlock;
310 
311 	/*
312 	 * Setup the next period for devices, which do not have
313 	 * periodic mode. We read dev->next_event first and add to it
314 	 * when the event already expired. clockevents_program_event()
315 	 * sets dev->next_event only when the event is really
316 	 * programmed to the device.
317 	 */
318 	for (next = dev->next_event; ;) {
319 		next = ktime_add(next, tick_period);
320 
321 		if (!clockevents_program_event(dev, next, false))
322 			goto unlock;
323 		tick_do_periodic_broadcast();
324 	}
325 unlock:
326 	raw_spin_unlock(&tick_broadcast_lock);
327 }
328 
329 /**
330  * tick_broadcast_control - Enable/disable or force broadcast mode
331  * @mode:	The selected broadcast mode
332  *
333  * Called when the system enters a state where affected tick devices
334  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
335  *
336  * Called with interrupts disabled, so clockevents_lock is not
337  * required here because the local clock event device cannot go away
338  * under us.
339  */
340 void tick_broadcast_control(enum tick_broadcast_mode mode)
341 {
342 	struct clock_event_device *bc, *dev;
343 	struct tick_device *td;
344 	int cpu, bc_stopped;
345 
346 	td = this_cpu_ptr(&tick_cpu_device);
347 	dev = td->evtdev;
348 
349 	/*
350 	 * Is the device not affected by the powerstate ?
351 	 */
352 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
353 		return;
354 
355 	if (!tick_device_is_functional(dev))
356 		return;
357 
358 	raw_spin_lock(&tick_broadcast_lock);
359 	cpu = smp_processor_id();
360 	bc = tick_broadcast_device.evtdev;
361 	bc_stopped = cpumask_empty(tick_broadcast_mask);
362 
363 	switch (mode) {
364 	case TICK_BROADCAST_FORCE:
365 		tick_broadcast_forced = 1;
366 	case TICK_BROADCAST_ON:
367 		cpumask_set_cpu(cpu, tick_broadcast_on);
368 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
369 			if (tick_broadcast_device.mode ==
370 			    TICKDEV_MODE_PERIODIC)
371 				clockevents_shutdown(dev);
372 		}
373 		break;
374 
375 	case TICK_BROADCAST_OFF:
376 		if (tick_broadcast_forced)
377 			break;
378 		cpumask_clear_cpu(cpu, tick_broadcast_on);
379 		if (!tick_device_is_functional(dev))
380 			break;
381 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
382 			if (tick_broadcast_device.mode ==
383 			    TICKDEV_MODE_PERIODIC)
384 				tick_setup_periodic(dev, 0);
385 		}
386 		break;
387 	}
388 
389 	if (cpumask_empty(tick_broadcast_mask)) {
390 		if (!bc_stopped)
391 			clockevents_shutdown(bc);
392 	} else if (bc_stopped) {
393 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394 			tick_broadcast_start_periodic(bc);
395 		else
396 			tick_broadcast_setup_oneshot(bc);
397 	}
398 	raw_spin_unlock(&tick_broadcast_lock);
399 }
400 EXPORT_SYMBOL_GPL(tick_broadcast_control);
401 
402 /*
403  * Set the periodic handler depending on broadcast on/off
404  */
405 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
406 {
407 	if (!broadcast)
408 		dev->event_handler = tick_handle_periodic;
409 	else
410 		dev->event_handler = tick_handle_periodic_broadcast;
411 }
412 
413 #ifdef CONFIG_HOTPLUG_CPU
414 /*
415  * Remove a CPU from broadcasting
416  */
417 void tick_shutdown_broadcast(unsigned int cpu)
418 {
419 	struct clock_event_device *bc;
420 	unsigned long flags;
421 
422 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
423 
424 	bc = tick_broadcast_device.evtdev;
425 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
426 	cpumask_clear_cpu(cpu, tick_broadcast_on);
427 
428 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
429 		if (bc && cpumask_empty(tick_broadcast_mask))
430 			clockevents_shutdown(bc);
431 	}
432 
433 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
434 }
435 #endif
436 
437 void tick_suspend_broadcast(void)
438 {
439 	struct clock_event_device *bc;
440 	unsigned long flags;
441 
442 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
443 
444 	bc = tick_broadcast_device.evtdev;
445 	if (bc)
446 		clockevents_shutdown(bc);
447 
448 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
449 }
450 
451 /*
452  * This is called from tick_resume_local() on a resuming CPU. That's
453  * called from the core resume function, tick_unfreeze() and the magic XEN
454  * resume hackery.
455  *
456  * In none of these cases the broadcast device mode can change and the
457  * bit of the resuming CPU in the broadcast mask is safe as well.
458  */
459 bool tick_resume_check_broadcast(void)
460 {
461 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
462 		return false;
463 	else
464 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
465 }
466 
467 void tick_resume_broadcast(void)
468 {
469 	struct clock_event_device *bc;
470 	unsigned long flags;
471 
472 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
473 
474 	bc = tick_broadcast_device.evtdev;
475 
476 	if (bc) {
477 		clockevents_tick_resume(bc);
478 
479 		switch (tick_broadcast_device.mode) {
480 		case TICKDEV_MODE_PERIODIC:
481 			if (!cpumask_empty(tick_broadcast_mask))
482 				tick_broadcast_start_periodic(bc);
483 			break;
484 		case TICKDEV_MODE_ONESHOT:
485 			if (!cpumask_empty(tick_broadcast_mask))
486 				tick_resume_broadcast_oneshot(bc);
487 			break;
488 		}
489 	}
490 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
491 }
492 
493 #ifdef CONFIG_TICK_ONESHOT
494 
495 static cpumask_var_t tick_broadcast_oneshot_mask;
496 static cpumask_var_t tick_broadcast_pending_mask;
497 static cpumask_var_t tick_broadcast_force_mask;
498 
499 /*
500  * Exposed for debugging: see timer_list.c
501  */
502 struct cpumask *tick_get_broadcast_oneshot_mask(void)
503 {
504 	return tick_broadcast_oneshot_mask;
505 }
506 
507 /*
508  * Called before going idle with interrupts disabled. Checks whether a
509  * broadcast event from the other core is about to happen. We detected
510  * that in tick_broadcast_oneshot_control(). The callsite can use this
511  * to avoid a deep idle transition as we are about to get the
512  * broadcast IPI right away.
513  */
514 int tick_check_broadcast_expired(void)
515 {
516 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
517 }
518 
519 /*
520  * Set broadcast interrupt affinity
521  */
522 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
523 					const struct cpumask *cpumask)
524 {
525 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
526 		return;
527 
528 	if (cpumask_equal(bc->cpumask, cpumask))
529 		return;
530 
531 	bc->cpumask = cpumask;
532 	irq_set_affinity(bc->irq, bc->cpumask);
533 }
534 
535 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
536 				    ktime_t expires, int force)
537 {
538 	int ret;
539 
540 	if (bc->state != CLOCK_EVT_STATE_ONESHOT)
541 		clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
542 
543 	ret = clockevents_program_event(bc, expires, force);
544 	if (!ret)
545 		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
546 	return ret;
547 }
548 
549 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
550 {
551 	clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
552 }
553 
554 /*
555  * Called from irq_enter() when idle was interrupted to reenable the
556  * per cpu device.
557  */
558 void tick_check_oneshot_broadcast_this_cpu(void)
559 {
560 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
561 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
562 
563 		/*
564 		 * We might be in the middle of switching over from
565 		 * periodic to oneshot. If the CPU has not yet
566 		 * switched over, leave the device alone.
567 		 */
568 		if (td->mode == TICKDEV_MODE_ONESHOT) {
569 			clockevents_set_state(td->evtdev,
570 					      CLOCK_EVT_STATE_ONESHOT);
571 		}
572 	}
573 }
574 
575 /*
576  * Handle oneshot mode broadcasting
577  */
578 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
579 {
580 	struct tick_device *td;
581 	ktime_t now, next_event;
582 	int cpu, next_cpu = 0;
583 
584 	raw_spin_lock(&tick_broadcast_lock);
585 again:
586 	dev->next_event.tv64 = KTIME_MAX;
587 	next_event.tv64 = KTIME_MAX;
588 	cpumask_clear(tmpmask);
589 	now = ktime_get();
590 	/* Find all expired events */
591 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
592 		td = &per_cpu(tick_cpu_device, cpu);
593 		if (td->evtdev->next_event.tv64 <= now.tv64) {
594 			cpumask_set_cpu(cpu, tmpmask);
595 			/*
596 			 * Mark the remote cpu in the pending mask, so
597 			 * it can avoid reprogramming the cpu local
598 			 * timer in tick_broadcast_oneshot_control().
599 			 */
600 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
601 		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
602 			next_event.tv64 = td->evtdev->next_event.tv64;
603 			next_cpu = cpu;
604 		}
605 	}
606 
607 	/*
608 	 * Remove the current cpu from the pending mask. The event is
609 	 * delivered immediately in tick_do_broadcast() !
610 	 */
611 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
612 
613 	/* Take care of enforced broadcast requests */
614 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
615 	cpumask_clear(tick_broadcast_force_mask);
616 
617 	/*
618 	 * Sanity check. Catch the case where we try to broadcast to
619 	 * offline cpus.
620 	 */
621 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
622 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
623 
624 	/*
625 	 * Wakeup the cpus which have an expired event.
626 	 */
627 	tick_do_broadcast(tmpmask);
628 
629 	/*
630 	 * Two reasons for reprogram:
631 	 *
632 	 * - The global event did not expire any CPU local
633 	 * events. This happens in dyntick mode, as the maximum PIT
634 	 * delta is quite small.
635 	 *
636 	 * - There are pending events on sleeping CPUs which were not
637 	 * in the event mask
638 	 */
639 	if (next_event.tv64 != KTIME_MAX) {
640 		/*
641 		 * Rearm the broadcast device. If event expired,
642 		 * repeat the above
643 		 */
644 		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
645 			goto again;
646 	}
647 	raw_spin_unlock(&tick_broadcast_lock);
648 }
649 
650 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
651 {
652 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
653 		return 0;
654 	if (bc->next_event.tv64 == KTIME_MAX)
655 		return 0;
656 	return bc->bound_on == cpu ? -EBUSY : 0;
657 }
658 
659 static void broadcast_shutdown_local(struct clock_event_device *bc,
660 				     struct clock_event_device *dev)
661 {
662 	/*
663 	 * For hrtimer based broadcasting we cannot shutdown the cpu
664 	 * local device if our own event is the first one to expire or
665 	 * if we own the broadcast timer.
666 	 */
667 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
668 		if (broadcast_needs_cpu(bc, smp_processor_id()))
669 			return;
670 		if (dev->next_event.tv64 < bc->next_event.tv64)
671 			return;
672 	}
673 	clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
674 }
675 
676 /**
677  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
678  * @state:	The target state (enter/exit)
679  *
680  * The system enters/leaves a state, where affected devices might stop
681  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
682  *
683  * Called with interrupts disabled, so clockevents_lock is not
684  * required here because the local clock event device cannot go away
685  * under us.
686  */
687 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
688 {
689 	struct clock_event_device *bc, *dev;
690 	struct tick_device *td;
691 	int cpu, ret = 0;
692 	ktime_t now;
693 
694 	/*
695 	 * Periodic mode does not care about the enter/exit of power
696 	 * states
697 	 */
698 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
699 		return 0;
700 
701 	/*
702 	 * We are called with preemtion disabled from the depth of the
703 	 * idle code, so we can't be moved away.
704 	 */
705 	td = this_cpu_ptr(&tick_cpu_device);
706 	dev = td->evtdev;
707 
708 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
709 		return 0;
710 
711 	raw_spin_lock(&tick_broadcast_lock);
712 	bc = tick_broadcast_device.evtdev;
713 	cpu = smp_processor_id();
714 
715 	if (state == TICK_BROADCAST_ENTER) {
716 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
717 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
718 			broadcast_shutdown_local(bc, dev);
719 			/*
720 			 * We only reprogram the broadcast timer if we
721 			 * did not mark ourself in the force mask and
722 			 * if the cpu local event is earlier than the
723 			 * broadcast event. If the current CPU is in
724 			 * the force mask, then we are going to be
725 			 * woken by the IPI right away.
726 			 */
727 			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
728 			    dev->next_event.tv64 < bc->next_event.tv64)
729 				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
730 		}
731 		/*
732 		 * If the current CPU owns the hrtimer broadcast
733 		 * mechanism, it cannot go deep idle and we remove the
734 		 * CPU from the broadcast mask. We don't have to go
735 		 * through the EXIT path as the local timer is not
736 		 * shutdown.
737 		 */
738 		ret = broadcast_needs_cpu(bc, cpu);
739 		if (ret)
740 			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
741 	} else {
742 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
743 			clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
744 			/*
745 			 * The cpu which was handling the broadcast
746 			 * timer marked this cpu in the broadcast
747 			 * pending mask and fired the broadcast
748 			 * IPI. So we are going to handle the expired
749 			 * event anyway via the broadcast IPI
750 			 * handler. No need to reprogram the timer
751 			 * with an already expired event.
752 			 */
753 			if (cpumask_test_and_clear_cpu(cpu,
754 				       tick_broadcast_pending_mask))
755 				goto out;
756 
757 			/*
758 			 * Bail out if there is no next event.
759 			 */
760 			if (dev->next_event.tv64 == KTIME_MAX)
761 				goto out;
762 			/*
763 			 * If the pending bit is not set, then we are
764 			 * either the CPU handling the broadcast
765 			 * interrupt or we got woken by something else.
766 			 *
767 			 * We are not longer in the broadcast mask, so
768 			 * if the cpu local expiry time is already
769 			 * reached, we would reprogram the cpu local
770 			 * timer with an already expired event.
771 			 *
772 			 * This can lead to a ping-pong when we return
773 			 * to idle and therefor rearm the broadcast
774 			 * timer before the cpu local timer was able
775 			 * to fire. This happens because the forced
776 			 * reprogramming makes sure that the event
777 			 * will happen in the future and depending on
778 			 * the min_delta setting this might be far
779 			 * enough out that the ping-pong starts.
780 			 *
781 			 * If the cpu local next_event has expired
782 			 * then we know that the broadcast timer
783 			 * next_event has expired as well and
784 			 * broadcast is about to be handled. So we
785 			 * avoid reprogramming and enforce that the
786 			 * broadcast handler, which did not run yet,
787 			 * will invoke the cpu local handler.
788 			 *
789 			 * We cannot call the handler directly from
790 			 * here, because we might be in a NOHZ phase
791 			 * and we did not go through the irq_enter()
792 			 * nohz fixups.
793 			 */
794 			now = ktime_get();
795 			if (dev->next_event.tv64 <= now.tv64) {
796 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
797 				goto out;
798 			}
799 			/*
800 			 * We got woken by something else. Reprogram
801 			 * the cpu local timer device.
802 			 */
803 			tick_program_event(dev->next_event, 1);
804 		}
805 	}
806 out:
807 	raw_spin_unlock(&tick_broadcast_lock);
808 	return ret;
809 }
810 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
811 
812 /*
813  * Reset the one shot broadcast for a cpu
814  *
815  * Called with tick_broadcast_lock held
816  */
817 static void tick_broadcast_clear_oneshot(int cpu)
818 {
819 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821 }
822 
823 static void tick_broadcast_init_next_event(struct cpumask *mask,
824 					   ktime_t expires)
825 {
826 	struct tick_device *td;
827 	int cpu;
828 
829 	for_each_cpu(cpu, mask) {
830 		td = &per_cpu(tick_cpu_device, cpu);
831 		if (td->evtdev)
832 			td->evtdev->next_event = expires;
833 	}
834 }
835 
836 /**
837  * tick_broadcast_setup_oneshot - setup the broadcast device
838  */
839 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840 {
841 	int cpu = smp_processor_id();
842 
843 	/* Set it up only once ! */
844 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
845 		int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
846 
847 		bc->event_handler = tick_handle_oneshot_broadcast;
848 
849 		/*
850 		 * We must be careful here. There might be other CPUs
851 		 * waiting for periodic broadcast. We need to set the
852 		 * oneshot_mask bits for those and program the
853 		 * broadcast device to fire.
854 		 */
855 		cpumask_copy(tmpmask, tick_broadcast_mask);
856 		cpumask_clear_cpu(cpu, tmpmask);
857 		cpumask_or(tick_broadcast_oneshot_mask,
858 			   tick_broadcast_oneshot_mask, tmpmask);
859 
860 		if (was_periodic && !cpumask_empty(tmpmask)) {
861 			clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
862 			tick_broadcast_init_next_event(tmpmask,
863 						       tick_next_period);
864 			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
865 		} else
866 			bc->next_event.tv64 = KTIME_MAX;
867 	} else {
868 		/*
869 		 * The first cpu which switches to oneshot mode sets
870 		 * the bit for all other cpus which are in the general
871 		 * (periodic) broadcast mask. So the bit is set and
872 		 * would prevent the first broadcast enter after this
873 		 * to program the bc device.
874 		 */
875 		tick_broadcast_clear_oneshot(cpu);
876 	}
877 }
878 
879 /*
880  * Select oneshot operating mode for the broadcast device
881  */
882 void tick_broadcast_switch_to_oneshot(void)
883 {
884 	struct clock_event_device *bc;
885 	unsigned long flags;
886 
887 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888 
889 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890 	bc = tick_broadcast_device.evtdev;
891 	if (bc)
892 		tick_broadcast_setup_oneshot(bc);
893 
894 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895 }
896 
897 #ifdef CONFIG_HOTPLUG_CPU
898 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
899 {
900 	struct clock_event_device *bc;
901 	unsigned long flags;
902 
903 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
904 	bc = tick_broadcast_device.evtdev;
905 
906 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
907 		/* This moves the broadcast assignment to this CPU: */
908 		clockevents_program_event(bc, bc->next_event, 1);
909 	}
910 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
911 }
912 
913 /*
914  * Remove a dead CPU from broadcasting
915  */
916 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
917 {
918 	unsigned long flags;
919 
920 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
921 
922 	/*
923 	 * Clear the broadcast masks for the dead cpu, but do not stop
924 	 * the broadcast device!
925 	 */
926 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
927 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
928 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
929 
930 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
931 }
932 #endif
933 
934 /*
935  * Check, whether the broadcast device is in one shot mode
936  */
937 int tick_broadcast_oneshot_active(void)
938 {
939 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
940 }
941 
942 /*
943  * Check whether the broadcast device supports oneshot.
944  */
945 bool tick_broadcast_oneshot_available(void)
946 {
947 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
948 
949 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
950 }
951 
952 #endif
953 
954 void __init tick_broadcast_init(void)
955 {
956 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
957 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
958 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
959 #ifdef CONFIG_TICK_ONESHOT
960 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
961 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
962 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
963 #endif
964 }
965