xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 3c84dc7e)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37 
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45 
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 	return &tick_broadcast_device;
52 }
53 
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 	return tick_broadcast_mask;
57 }
58 
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 	if (bc)
65 		tick_setup_periodic(bc, 1);
66 }
67 
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 					struct clock_event_device *newdev)
73 {
74 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return false;
78 
79 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 		return false;
82 
83 	return !curdev || newdev->rating > curdev->rating;
84 }
85 
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
92 
93 	if (!tick_check_broadcast_device(cur, dev))
94 		return;
95 
96 	if (!try_module_get(dev->owner))
97 		return;
98 
99 	clockevents_exchange_device(cur, dev);
100 	if (cur)
101 		cur->event_handler = clockevents_handle_noop;
102 	tick_broadcast_device.evtdev = dev;
103 	if (!cpumask_empty(tick_broadcast_mask))
104 		tick_broadcast_start_periodic(dev);
105 	/*
106 	 * Inform all cpus about this. We might be in a situation
107 	 * where we did not switch to oneshot mode because the per cpu
108 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 	 * of a oneshot capable broadcast device. Without that
110 	 * notification the systems stays stuck in periodic mode
111 	 * forever.
112 	 */
113 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 		tick_clock_notify();
115 }
116 
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 	return (dev && tick_broadcast_device.evtdev == dev);
123 }
124 
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 	int ret = -ENODEV;
128 
129 	if (tick_is_broadcast_device(dev)) {
130 		raw_spin_lock(&tick_broadcast_lock);
131 		ret = __clockevents_update_freq(dev, freq);
132 		raw_spin_unlock(&tick_broadcast_lock);
133 	}
134 	return ret;
135 }
136 
137 
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142 
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 	if (!dev->broadcast)
146 		dev->broadcast = tick_broadcast;
147 	if (!dev->broadcast) {
148 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 			     dev->name);
150 		dev->broadcast = err_broadcast;
151 	}
152 }
153 
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 	unsigned long flags;
162 	int ret = 0;
163 
164 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 
166 	/*
167 	 * Devices might be registered with both periodic and oneshot
168 	 * mode disabled. This signals, that the device needs to be
169 	 * operated from the broadcast device and is a placeholder for
170 	 * the cpu local device.
171 	 */
172 	if (!tick_device_is_functional(dev)) {
173 		dev->event_handler = tick_handle_periodic;
174 		tick_device_setup_broadcast_func(dev);
175 		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 			tick_broadcast_start_periodic(bc);
178 		else
179 			tick_broadcast_setup_oneshot(bc);
180 		ret = 1;
181 	} else {
182 		/*
183 		 * Clear the broadcast bit for this cpu if the
184 		 * device is not power state affected.
185 		 */
186 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 		else
189 			tick_device_setup_broadcast_func(dev);
190 
191 		/*
192 		 * Clear the broadcast bit if the CPU is not in
193 		 * periodic broadcast on state.
194 		 */
195 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
197 
198 		switch (tick_broadcast_device.mode) {
199 		case TICKDEV_MODE_ONESHOT:
200 			/*
201 			 * If the system is in oneshot mode we can
202 			 * unconditionally clear the oneshot mask bit,
203 			 * because the CPU is running and therefore
204 			 * not in an idle state which causes the power
205 			 * state affected device to stop. Let the
206 			 * caller initialize the device.
207 			 */
208 			tick_broadcast_clear_oneshot(cpu);
209 			ret = 0;
210 			break;
211 
212 		case TICKDEV_MODE_PERIODIC:
213 			/*
214 			 * If the system is in periodic mode, check
215 			 * whether the broadcast device can be
216 			 * switched off now.
217 			 */
218 			if (cpumask_empty(tick_broadcast_mask) && bc)
219 				clockevents_shutdown(bc);
220 			/*
221 			 * If we kept the cpu in the broadcast mask,
222 			 * tell the caller to leave the per cpu device
223 			 * in shutdown state. The periodic interrupt
224 			 * is delivered by the broadcast device, if
225 			 * the broadcast device exists and is not
226 			 * hrtimer based.
227 			 */
228 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230 			break;
231 		default:
232 			break;
233 		}
234 	}
235 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 	return ret;
237 }
238 
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243 	struct clock_event_device *evt = td->evtdev;
244 
245 	if (!evt)
246 		return -ENODEV;
247 
248 	if (!evt->event_handler)
249 		return -EINVAL;
250 
251 	evt->event_handler(evt);
252 	return 0;
253 }
254 #endif
255 
256 /*
257  * Broadcast the event to the cpus, which are set in the mask (mangled).
258  */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261 	int cpu = smp_processor_id();
262 	struct tick_device *td;
263 	bool local = false;
264 
265 	/*
266 	 * Check, if the current cpu is in the mask
267 	 */
268 	if (cpumask_test_cpu(cpu, mask)) {
269 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
270 
271 		cpumask_clear_cpu(cpu, mask);
272 		/*
273 		 * We only run the local handler, if the broadcast
274 		 * device is not hrtimer based. Otherwise we run into
275 		 * a hrtimer recursion.
276 		 *
277 		 * local timer_interrupt()
278 		 *   local_handler()
279 		 *     expire_hrtimers()
280 		 *       bc_handler()
281 		 *         local_handler()
282 		 *	     expire_hrtimers()
283 		 */
284 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285 	}
286 
287 	if (!cpumask_empty(mask)) {
288 		/*
289 		 * It might be necessary to actually check whether the devices
290 		 * have different broadcast functions. For now, just use the
291 		 * one of the first device. This works as long as we have this
292 		 * misfeature only on x86 (lapic)
293 		 */
294 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295 		td->evtdev->broadcast(mask);
296 	}
297 	return local;
298 }
299 
300 /*
301  * Periodic broadcast:
302  * - invoke the broadcast handlers
303  */
304 static bool tick_do_periodic_broadcast(void)
305 {
306 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307 	return tick_do_broadcast(tmpmask);
308 }
309 
310 /*
311  * Event handler for periodic broadcast ticks
312  */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316 	bool bc_local;
317 
318 	raw_spin_lock(&tick_broadcast_lock);
319 
320 	/* Handle spurious interrupts gracefully */
321 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322 		raw_spin_unlock(&tick_broadcast_lock);
323 		return;
324 	}
325 
326 	bc_local = tick_do_periodic_broadcast();
327 
328 	if (clockevent_state_oneshot(dev)) {
329 		ktime_t next = ktime_add(dev->next_event, tick_period);
330 
331 		clockevents_program_event(dev, next, true);
332 	}
333 	raw_spin_unlock(&tick_broadcast_lock);
334 
335 	/*
336 	 * We run the handler of the local cpu after dropping
337 	 * tick_broadcast_lock because the handler might deadlock when
338 	 * trying to switch to oneshot mode.
339 	 */
340 	if (bc_local)
341 		td->evtdev->event_handler(td->evtdev);
342 }
343 
344 /**
345  * tick_broadcast_control - Enable/disable or force broadcast mode
346  * @mode:	The selected broadcast mode
347  *
348  * Called when the system enters a state where affected tick devices
349  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350  *
351  * Called with interrupts disabled, so clockevents_lock is not
352  * required here because the local clock event device cannot go away
353  * under us.
354  */
355 void tick_broadcast_control(enum tick_broadcast_mode mode)
356 {
357 	struct clock_event_device *bc, *dev;
358 	struct tick_device *td;
359 	int cpu, bc_stopped;
360 
361 	td = this_cpu_ptr(&tick_cpu_device);
362 	dev = td->evtdev;
363 
364 	/*
365 	 * Is the device not affected by the powerstate ?
366 	 */
367 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368 		return;
369 
370 	if (!tick_device_is_functional(dev))
371 		return;
372 
373 	raw_spin_lock(&tick_broadcast_lock);
374 	cpu = smp_processor_id();
375 	bc = tick_broadcast_device.evtdev;
376 	bc_stopped = cpumask_empty(tick_broadcast_mask);
377 
378 	switch (mode) {
379 	case TICK_BROADCAST_FORCE:
380 		tick_broadcast_forced = 1;
381 	case TICK_BROADCAST_ON:
382 		cpumask_set_cpu(cpu, tick_broadcast_on);
383 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
384 			/*
385 			 * Only shutdown the cpu local device, if:
386 			 *
387 			 * - the broadcast device exists
388 			 * - the broadcast device is not a hrtimer based one
389 			 * - the broadcast device is in periodic mode to
390 			 *   avoid a hickup during switch to oneshot mode
391 			 */
392 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
393 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394 				clockevents_shutdown(dev);
395 		}
396 		break;
397 
398 	case TICK_BROADCAST_OFF:
399 		if (tick_broadcast_forced)
400 			break;
401 		cpumask_clear_cpu(cpu, tick_broadcast_on);
402 		if (!tick_device_is_functional(dev))
403 			break;
404 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
405 			if (tick_broadcast_device.mode ==
406 			    TICKDEV_MODE_PERIODIC)
407 				tick_setup_periodic(dev, 0);
408 		}
409 		break;
410 	}
411 
412 	if (bc) {
413 		if (cpumask_empty(tick_broadcast_mask)) {
414 			if (!bc_stopped)
415 				clockevents_shutdown(bc);
416 		} else if (bc_stopped) {
417 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
418 				tick_broadcast_start_periodic(bc);
419 			else
420 				tick_broadcast_setup_oneshot(bc);
421 		}
422 	}
423 	raw_spin_unlock(&tick_broadcast_lock);
424 }
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
426 
427 /*
428  * Set the periodic handler depending on broadcast on/off
429  */
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431 {
432 	if (!broadcast)
433 		dev->event_handler = tick_handle_periodic;
434 	else
435 		dev->event_handler = tick_handle_periodic_broadcast;
436 }
437 
438 #ifdef CONFIG_HOTPLUG_CPU
439 /*
440  * Remove a CPU from broadcasting
441  */
442 void tick_shutdown_broadcast(unsigned int cpu)
443 {
444 	struct clock_event_device *bc;
445 	unsigned long flags;
446 
447 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448 
449 	bc = tick_broadcast_device.evtdev;
450 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 	cpumask_clear_cpu(cpu, tick_broadcast_on);
452 
453 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 		if (bc && cpumask_empty(tick_broadcast_mask))
455 			clockevents_shutdown(bc);
456 	}
457 
458 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459 }
460 #endif
461 
462 void tick_suspend_broadcast(void)
463 {
464 	struct clock_event_device *bc;
465 	unsigned long flags;
466 
467 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468 
469 	bc = tick_broadcast_device.evtdev;
470 	if (bc)
471 		clockevents_shutdown(bc);
472 
473 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474 }
475 
476 /*
477  * This is called from tick_resume_local() on a resuming CPU. That's
478  * called from the core resume function, tick_unfreeze() and the magic XEN
479  * resume hackery.
480  *
481  * In none of these cases the broadcast device mode can change and the
482  * bit of the resuming CPU in the broadcast mask is safe as well.
483  */
484 bool tick_resume_check_broadcast(void)
485 {
486 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 		return false;
488 	else
489 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490 }
491 
492 void tick_resume_broadcast(void)
493 {
494 	struct clock_event_device *bc;
495 	unsigned long flags;
496 
497 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498 
499 	bc = tick_broadcast_device.evtdev;
500 
501 	if (bc) {
502 		clockevents_tick_resume(bc);
503 
504 		switch (tick_broadcast_device.mode) {
505 		case TICKDEV_MODE_PERIODIC:
506 			if (!cpumask_empty(tick_broadcast_mask))
507 				tick_broadcast_start_periodic(bc);
508 			break;
509 		case TICKDEV_MODE_ONESHOT:
510 			if (!cpumask_empty(tick_broadcast_mask))
511 				tick_resume_broadcast_oneshot(bc);
512 			break;
513 		}
514 	}
515 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516 }
517 
518 #ifdef CONFIG_TICK_ONESHOT
519 
520 static cpumask_var_t tick_broadcast_oneshot_mask;
521 static cpumask_var_t tick_broadcast_pending_mask;
522 static cpumask_var_t tick_broadcast_force_mask;
523 
524 /*
525  * Exposed for debugging: see timer_list.c
526  */
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
528 {
529 	return tick_broadcast_oneshot_mask;
530 }
531 
532 /*
533  * Called before going idle with interrupts disabled. Checks whether a
534  * broadcast event from the other core is about to happen. We detected
535  * that in tick_broadcast_oneshot_control(). The callsite can use this
536  * to avoid a deep idle transition as we are about to get the
537  * broadcast IPI right away.
538  */
539 int tick_check_broadcast_expired(void)
540 {
541 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542 }
543 
544 /*
545  * Set broadcast interrupt affinity
546  */
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 					const struct cpumask *cpumask)
549 {
550 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 		return;
552 
553 	if (cpumask_equal(bc->cpumask, cpumask))
554 		return;
555 
556 	bc->cpumask = cpumask;
557 	irq_set_affinity(bc->irq, bc->cpumask);
558 }
559 
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 				     ktime_t expires)
562 {
563 	if (!clockevent_state_oneshot(bc))
564 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565 
566 	clockevents_program_event(bc, expires, 1);
567 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568 }
569 
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571 {
572 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573 }
574 
575 /*
576  * Called from irq_enter() when idle was interrupted to reenable the
577  * per cpu device.
578  */
579 void tick_check_oneshot_broadcast_this_cpu(void)
580 {
581 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583 
584 		/*
585 		 * We might be in the middle of switching over from
586 		 * periodic to oneshot. If the CPU has not yet
587 		 * switched over, leave the device alone.
588 		 */
589 		if (td->mode == TICKDEV_MODE_ONESHOT) {
590 			clockevents_switch_state(td->evtdev,
591 					      CLOCK_EVT_STATE_ONESHOT);
592 		}
593 	}
594 }
595 
596 /*
597  * Handle oneshot mode broadcasting
598  */
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600 {
601 	struct tick_device *td;
602 	ktime_t now, next_event;
603 	int cpu, next_cpu = 0;
604 	bool bc_local;
605 
606 	raw_spin_lock(&tick_broadcast_lock);
607 	dev->next_event = KTIME_MAX;
608 	next_event = KTIME_MAX;
609 	cpumask_clear(tmpmask);
610 	now = ktime_get();
611 	/* Find all expired events */
612 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613 		td = &per_cpu(tick_cpu_device, cpu);
614 		if (td->evtdev->next_event <= now) {
615 			cpumask_set_cpu(cpu, tmpmask);
616 			/*
617 			 * Mark the remote cpu in the pending mask, so
618 			 * it can avoid reprogramming the cpu local
619 			 * timer in tick_broadcast_oneshot_control().
620 			 */
621 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
622 		} else if (td->evtdev->next_event < next_event) {
623 			next_event = td->evtdev->next_event;
624 			next_cpu = cpu;
625 		}
626 	}
627 
628 	/*
629 	 * Remove the current cpu from the pending mask. The event is
630 	 * delivered immediately in tick_do_broadcast() !
631 	 */
632 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
633 
634 	/* Take care of enforced broadcast requests */
635 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
636 	cpumask_clear(tick_broadcast_force_mask);
637 
638 	/*
639 	 * Sanity check. Catch the case where we try to broadcast to
640 	 * offline cpus.
641 	 */
642 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
643 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
644 
645 	/*
646 	 * Wakeup the cpus which have an expired event.
647 	 */
648 	bc_local = tick_do_broadcast(tmpmask);
649 
650 	/*
651 	 * Two reasons for reprogram:
652 	 *
653 	 * - The global event did not expire any CPU local
654 	 * events. This happens in dyntick mode, as the maximum PIT
655 	 * delta is quite small.
656 	 *
657 	 * - There are pending events on sleeping CPUs which were not
658 	 * in the event mask
659 	 */
660 	if (next_event != KTIME_MAX)
661 		tick_broadcast_set_event(dev, next_cpu, next_event);
662 
663 	raw_spin_unlock(&tick_broadcast_lock);
664 
665 	if (bc_local) {
666 		td = this_cpu_ptr(&tick_cpu_device);
667 		td->evtdev->event_handler(td->evtdev);
668 	}
669 }
670 
671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
672 {
673 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
674 		return 0;
675 	if (bc->next_event == KTIME_MAX)
676 		return 0;
677 	return bc->bound_on == cpu ? -EBUSY : 0;
678 }
679 
680 static void broadcast_shutdown_local(struct clock_event_device *bc,
681 				     struct clock_event_device *dev)
682 {
683 	/*
684 	 * For hrtimer based broadcasting we cannot shutdown the cpu
685 	 * local device if our own event is the first one to expire or
686 	 * if we own the broadcast timer.
687 	 */
688 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
689 		if (broadcast_needs_cpu(bc, smp_processor_id()))
690 			return;
691 		if (dev->next_event < bc->next_event)
692 			return;
693 	}
694 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
695 }
696 
697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
698 {
699 	struct clock_event_device *bc, *dev;
700 	int cpu, ret = 0;
701 	ktime_t now;
702 
703 	/*
704 	 * If there is no broadcast device, tell the caller not to go
705 	 * into deep idle.
706 	 */
707 	if (!tick_broadcast_device.evtdev)
708 		return -EBUSY;
709 
710 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
711 
712 	raw_spin_lock(&tick_broadcast_lock);
713 	bc = tick_broadcast_device.evtdev;
714 	cpu = smp_processor_id();
715 
716 	if (state == TICK_BROADCAST_ENTER) {
717 		/*
718 		 * If the current CPU owns the hrtimer broadcast
719 		 * mechanism, it cannot go deep idle and we do not add
720 		 * the CPU to the broadcast mask. We don't have to go
721 		 * through the EXIT path as the local timer is not
722 		 * shutdown.
723 		 */
724 		ret = broadcast_needs_cpu(bc, cpu);
725 		if (ret)
726 			goto out;
727 
728 		/*
729 		 * If the broadcast device is in periodic mode, we
730 		 * return.
731 		 */
732 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
733 			/* If it is a hrtimer based broadcast, return busy */
734 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
735 				ret = -EBUSY;
736 			goto out;
737 		}
738 
739 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
740 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
741 
742 			/* Conditionally shut down the local timer. */
743 			broadcast_shutdown_local(bc, dev);
744 
745 			/*
746 			 * We only reprogram the broadcast timer if we
747 			 * did not mark ourself in the force mask and
748 			 * if the cpu local event is earlier than the
749 			 * broadcast event. If the current CPU is in
750 			 * the force mask, then we are going to be
751 			 * woken by the IPI right away; we return
752 			 * busy, so the CPU does not try to go deep
753 			 * idle.
754 			 */
755 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
756 				ret = -EBUSY;
757 			} else if (dev->next_event < bc->next_event) {
758 				tick_broadcast_set_event(bc, cpu, dev->next_event);
759 				/*
760 				 * In case of hrtimer broadcasts the
761 				 * programming might have moved the
762 				 * timer to this cpu. If yes, remove
763 				 * us from the broadcast mask and
764 				 * return busy.
765 				 */
766 				ret = broadcast_needs_cpu(bc, cpu);
767 				if (ret) {
768 					cpumask_clear_cpu(cpu,
769 						tick_broadcast_oneshot_mask);
770 				}
771 			}
772 		}
773 	} else {
774 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
775 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
776 			/*
777 			 * The cpu which was handling the broadcast
778 			 * timer marked this cpu in the broadcast
779 			 * pending mask and fired the broadcast
780 			 * IPI. So we are going to handle the expired
781 			 * event anyway via the broadcast IPI
782 			 * handler. No need to reprogram the timer
783 			 * with an already expired event.
784 			 */
785 			if (cpumask_test_and_clear_cpu(cpu,
786 				       tick_broadcast_pending_mask))
787 				goto out;
788 
789 			/*
790 			 * Bail out if there is no next event.
791 			 */
792 			if (dev->next_event == KTIME_MAX)
793 				goto out;
794 			/*
795 			 * If the pending bit is not set, then we are
796 			 * either the CPU handling the broadcast
797 			 * interrupt or we got woken by something else.
798 			 *
799 			 * We are not longer in the broadcast mask, so
800 			 * if the cpu local expiry time is already
801 			 * reached, we would reprogram the cpu local
802 			 * timer with an already expired event.
803 			 *
804 			 * This can lead to a ping-pong when we return
805 			 * to idle and therefor rearm the broadcast
806 			 * timer before the cpu local timer was able
807 			 * to fire. This happens because the forced
808 			 * reprogramming makes sure that the event
809 			 * will happen in the future and depending on
810 			 * the min_delta setting this might be far
811 			 * enough out that the ping-pong starts.
812 			 *
813 			 * If the cpu local next_event has expired
814 			 * then we know that the broadcast timer
815 			 * next_event has expired as well and
816 			 * broadcast is about to be handled. So we
817 			 * avoid reprogramming and enforce that the
818 			 * broadcast handler, which did not run yet,
819 			 * will invoke the cpu local handler.
820 			 *
821 			 * We cannot call the handler directly from
822 			 * here, because we might be in a NOHZ phase
823 			 * and we did not go through the irq_enter()
824 			 * nohz fixups.
825 			 */
826 			now = ktime_get();
827 			if (dev->next_event <= now) {
828 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
829 				goto out;
830 			}
831 			/*
832 			 * We got woken by something else. Reprogram
833 			 * the cpu local timer device.
834 			 */
835 			tick_program_event(dev->next_event, 1);
836 		}
837 	}
838 out:
839 	raw_spin_unlock(&tick_broadcast_lock);
840 	return ret;
841 }
842 
843 /*
844  * Reset the one shot broadcast for a cpu
845  *
846  * Called with tick_broadcast_lock held
847  */
848 static void tick_broadcast_clear_oneshot(int cpu)
849 {
850 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 }
853 
854 static void tick_broadcast_init_next_event(struct cpumask *mask,
855 					   ktime_t expires)
856 {
857 	struct tick_device *td;
858 	int cpu;
859 
860 	for_each_cpu(cpu, mask) {
861 		td = &per_cpu(tick_cpu_device, cpu);
862 		if (td->evtdev)
863 			td->evtdev->next_event = expires;
864 	}
865 }
866 
867 /**
868  * tick_broadcast_setup_oneshot - setup the broadcast device
869  */
870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
871 {
872 	int cpu = smp_processor_id();
873 
874 	if (!bc)
875 		return;
876 
877 	/* Set it up only once ! */
878 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
879 		int was_periodic = clockevent_state_periodic(bc);
880 
881 		bc->event_handler = tick_handle_oneshot_broadcast;
882 
883 		/*
884 		 * We must be careful here. There might be other CPUs
885 		 * waiting for periodic broadcast. We need to set the
886 		 * oneshot_mask bits for those and program the
887 		 * broadcast device to fire.
888 		 */
889 		cpumask_copy(tmpmask, tick_broadcast_mask);
890 		cpumask_clear_cpu(cpu, tmpmask);
891 		cpumask_or(tick_broadcast_oneshot_mask,
892 			   tick_broadcast_oneshot_mask, tmpmask);
893 
894 		if (was_periodic && !cpumask_empty(tmpmask)) {
895 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
896 			tick_broadcast_init_next_event(tmpmask,
897 						       tick_next_period);
898 			tick_broadcast_set_event(bc, cpu, tick_next_period);
899 		} else
900 			bc->next_event = KTIME_MAX;
901 	} else {
902 		/*
903 		 * The first cpu which switches to oneshot mode sets
904 		 * the bit for all other cpus which are in the general
905 		 * (periodic) broadcast mask. So the bit is set and
906 		 * would prevent the first broadcast enter after this
907 		 * to program the bc device.
908 		 */
909 		tick_broadcast_clear_oneshot(cpu);
910 	}
911 }
912 
913 /*
914  * Select oneshot operating mode for the broadcast device
915  */
916 void tick_broadcast_switch_to_oneshot(void)
917 {
918 	struct clock_event_device *bc;
919 	unsigned long flags;
920 
921 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
922 
923 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
924 	bc = tick_broadcast_device.evtdev;
925 	if (bc)
926 		tick_broadcast_setup_oneshot(bc);
927 
928 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
929 }
930 
931 #ifdef CONFIG_HOTPLUG_CPU
932 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
933 {
934 	struct clock_event_device *bc;
935 	unsigned long flags;
936 
937 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
938 	bc = tick_broadcast_device.evtdev;
939 
940 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
941 		/* This moves the broadcast assignment to this CPU: */
942 		clockevents_program_event(bc, bc->next_event, 1);
943 	}
944 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
945 }
946 
947 /*
948  * Remove a dead CPU from broadcasting
949  */
950 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
951 {
952 	unsigned long flags;
953 
954 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
955 
956 	/*
957 	 * Clear the broadcast masks for the dead cpu, but do not stop
958 	 * the broadcast device!
959 	 */
960 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
961 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
962 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
963 
964 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
965 }
966 #endif
967 
968 /*
969  * Check, whether the broadcast device is in one shot mode
970  */
971 int tick_broadcast_oneshot_active(void)
972 {
973 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
974 }
975 
976 /*
977  * Check whether the broadcast device supports oneshot.
978  */
979 bool tick_broadcast_oneshot_available(void)
980 {
981 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
982 
983 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
984 }
985 
986 #else
987 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
988 {
989 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
990 
991 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
992 		return -EBUSY;
993 
994 	return 0;
995 }
996 #endif
997 
998 void __init tick_broadcast_init(void)
999 {
1000 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1001 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1002 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1003 #ifdef CONFIG_TICK_ONESHOT
1004 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1005 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1006 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1007 #endif
1008 }
1009