1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains functions which emulate a local clock-event 4 * device via a broadcast event source. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/profile.h> 16 #include <linux/sched.h> 17 #include <linux/smp.h> 18 #include <linux/module.h> 19 20 #include "tick-internal.h" 21 22 /* 23 * Broadcast support for broken x86 hardware, where the local apic 24 * timer stops in C3 state. 25 */ 26 27 static struct tick_device tick_broadcast_device; 28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 30 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 31 static int tick_broadcast_forced; 32 33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 34 35 #ifdef CONFIG_TICK_ONESHOT 36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); 37 static void tick_broadcast_clear_oneshot(int cpu); 38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 39 # ifdef CONFIG_HOTPLUG_CPU 40 static void tick_broadcast_oneshot_offline(unsigned int cpu); 41 # endif 42 #else 43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } 44 static inline void tick_broadcast_clear_oneshot(int cpu) { } 45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 46 # ifdef CONFIG_HOTPLUG_CPU 47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { } 48 # endif 49 #endif 50 51 /* 52 * Debugging: see timer_list.c 53 */ 54 struct tick_device *tick_get_broadcast_device(void) 55 { 56 return &tick_broadcast_device; 57 } 58 59 struct cpumask *tick_get_broadcast_mask(void) 60 { 61 return tick_broadcast_mask; 62 } 63 64 /* 65 * Start the device in periodic mode 66 */ 67 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 68 { 69 if (bc) 70 tick_setup_periodic(bc, 1); 71 } 72 73 /* 74 * Check, if the device can be utilized as broadcast device: 75 */ 76 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 77 struct clock_event_device *newdev) 78 { 79 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 80 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 81 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 82 return false; 83 84 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 85 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 86 return false; 87 88 return !curdev || newdev->rating > curdev->rating; 89 } 90 91 /* 92 * Conditionally install/replace broadcast device 93 */ 94 void tick_install_broadcast_device(struct clock_event_device *dev) 95 { 96 struct clock_event_device *cur = tick_broadcast_device.evtdev; 97 98 if (!tick_check_broadcast_device(cur, dev)) 99 return; 100 101 if (!try_module_get(dev->owner)) 102 return; 103 104 clockevents_exchange_device(cur, dev); 105 if (cur) 106 cur->event_handler = clockevents_handle_noop; 107 tick_broadcast_device.evtdev = dev; 108 if (!cpumask_empty(tick_broadcast_mask)) 109 tick_broadcast_start_periodic(dev); 110 /* 111 * Inform all cpus about this. We might be in a situation 112 * where we did not switch to oneshot mode because the per cpu 113 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 114 * of a oneshot capable broadcast device. Without that 115 * notification the systems stays stuck in periodic mode 116 * forever. 117 */ 118 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 119 tick_clock_notify(); 120 } 121 122 /* 123 * Check, if the device is the broadcast device 124 */ 125 int tick_is_broadcast_device(struct clock_event_device *dev) 126 { 127 return (dev && tick_broadcast_device.evtdev == dev); 128 } 129 130 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 131 { 132 int ret = -ENODEV; 133 134 if (tick_is_broadcast_device(dev)) { 135 raw_spin_lock(&tick_broadcast_lock); 136 ret = __clockevents_update_freq(dev, freq); 137 raw_spin_unlock(&tick_broadcast_lock); 138 } 139 return ret; 140 } 141 142 143 static void err_broadcast(const struct cpumask *mask) 144 { 145 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 146 } 147 148 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 149 { 150 if (!dev->broadcast) 151 dev->broadcast = tick_broadcast; 152 if (!dev->broadcast) { 153 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 154 dev->name); 155 dev->broadcast = err_broadcast; 156 } 157 } 158 159 /* 160 * Check, if the device is disfunctional and a place holder, which 161 * needs to be handled by the broadcast device. 162 */ 163 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 164 { 165 struct clock_event_device *bc = tick_broadcast_device.evtdev; 166 unsigned long flags; 167 int ret = 0; 168 169 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 170 171 /* 172 * Devices might be registered with both periodic and oneshot 173 * mode disabled. This signals, that the device needs to be 174 * operated from the broadcast device and is a placeholder for 175 * the cpu local device. 176 */ 177 if (!tick_device_is_functional(dev)) { 178 dev->event_handler = tick_handle_periodic; 179 tick_device_setup_broadcast_func(dev); 180 cpumask_set_cpu(cpu, tick_broadcast_mask); 181 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 182 tick_broadcast_start_periodic(bc); 183 else 184 tick_broadcast_setup_oneshot(bc); 185 ret = 1; 186 } else { 187 /* 188 * Clear the broadcast bit for this cpu if the 189 * device is not power state affected. 190 */ 191 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 192 cpumask_clear_cpu(cpu, tick_broadcast_mask); 193 else 194 tick_device_setup_broadcast_func(dev); 195 196 /* 197 * Clear the broadcast bit if the CPU is not in 198 * periodic broadcast on state. 199 */ 200 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 201 cpumask_clear_cpu(cpu, tick_broadcast_mask); 202 203 switch (tick_broadcast_device.mode) { 204 case TICKDEV_MODE_ONESHOT: 205 /* 206 * If the system is in oneshot mode we can 207 * unconditionally clear the oneshot mask bit, 208 * because the CPU is running and therefore 209 * not in an idle state which causes the power 210 * state affected device to stop. Let the 211 * caller initialize the device. 212 */ 213 tick_broadcast_clear_oneshot(cpu); 214 ret = 0; 215 break; 216 217 case TICKDEV_MODE_PERIODIC: 218 /* 219 * If the system is in periodic mode, check 220 * whether the broadcast device can be 221 * switched off now. 222 */ 223 if (cpumask_empty(tick_broadcast_mask) && bc) 224 clockevents_shutdown(bc); 225 /* 226 * If we kept the cpu in the broadcast mask, 227 * tell the caller to leave the per cpu device 228 * in shutdown state. The periodic interrupt 229 * is delivered by the broadcast device, if 230 * the broadcast device exists and is not 231 * hrtimer based. 232 */ 233 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 234 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 235 break; 236 default: 237 break; 238 } 239 } 240 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 241 return ret; 242 } 243 244 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 245 int tick_receive_broadcast(void) 246 { 247 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 248 struct clock_event_device *evt = td->evtdev; 249 250 if (!evt) 251 return -ENODEV; 252 253 if (!evt->event_handler) 254 return -EINVAL; 255 256 evt->event_handler(evt); 257 return 0; 258 } 259 #endif 260 261 /* 262 * Broadcast the event to the cpus, which are set in the mask (mangled). 263 */ 264 static bool tick_do_broadcast(struct cpumask *mask) 265 { 266 int cpu = smp_processor_id(); 267 struct tick_device *td; 268 bool local = false; 269 270 /* 271 * Check, if the current cpu is in the mask 272 */ 273 if (cpumask_test_cpu(cpu, mask)) { 274 struct clock_event_device *bc = tick_broadcast_device.evtdev; 275 276 cpumask_clear_cpu(cpu, mask); 277 /* 278 * We only run the local handler, if the broadcast 279 * device is not hrtimer based. Otherwise we run into 280 * a hrtimer recursion. 281 * 282 * local timer_interrupt() 283 * local_handler() 284 * expire_hrtimers() 285 * bc_handler() 286 * local_handler() 287 * expire_hrtimers() 288 */ 289 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 290 } 291 292 if (!cpumask_empty(mask)) { 293 /* 294 * It might be necessary to actually check whether the devices 295 * have different broadcast functions. For now, just use the 296 * one of the first device. This works as long as we have this 297 * misfeature only on x86 (lapic) 298 */ 299 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 300 td->evtdev->broadcast(mask); 301 } 302 return local; 303 } 304 305 /* 306 * Periodic broadcast: 307 * - invoke the broadcast handlers 308 */ 309 static bool tick_do_periodic_broadcast(void) 310 { 311 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 312 return tick_do_broadcast(tmpmask); 313 } 314 315 /* 316 * Event handler for periodic broadcast ticks 317 */ 318 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 319 { 320 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 321 bool bc_local; 322 323 raw_spin_lock(&tick_broadcast_lock); 324 325 /* Handle spurious interrupts gracefully */ 326 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 327 raw_spin_unlock(&tick_broadcast_lock); 328 return; 329 } 330 331 bc_local = tick_do_periodic_broadcast(); 332 333 if (clockevent_state_oneshot(dev)) { 334 ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC); 335 336 clockevents_program_event(dev, next, true); 337 } 338 raw_spin_unlock(&tick_broadcast_lock); 339 340 /* 341 * We run the handler of the local cpu after dropping 342 * tick_broadcast_lock because the handler might deadlock when 343 * trying to switch to oneshot mode. 344 */ 345 if (bc_local) 346 td->evtdev->event_handler(td->evtdev); 347 } 348 349 /** 350 * tick_broadcast_control - Enable/disable or force broadcast mode 351 * @mode: The selected broadcast mode 352 * 353 * Called when the system enters a state where affected tick devices 354 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 355 */ 356 void tick_broadcast_control(enum tick_broadcast_mode mode) 357 { 358 struct clock_event_device *bc, *dev; 359 struct tick_device *td; 360 int cpu, bc_stopped; 361 unsigned long flags; 362 363 /* Protects also the local clockevent device. */ 364 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 365 td = this_cpu_ptr(&tick_cpu_device); 366 dev = td->evtdev; 367 368 /* 369 * Is the device not affected by the powerstate ? 370 */ 371 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 372 goto out; 373 374 if (!tick_device_is_functional(dev)) 375 goto out; 376 377 cpu = smp_processor_id(); 378 bc = tick_broadcast_device.evtdev; 379 bc_stopped = cpumask_empty(tick_broadcast_mask); 380 381 switch (mode) { 382 case TICK_BROADCAST_FORCE: 383 tick_broadcast_forced = 1; 384 fallthrough; 385 case TICK_BROADCAST_ON: 386 cpumask_set_cpu(cpu, tick_broadcast_on); 387 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 388 /* 389 * Only shutdown the cpu local device, if: 390 * 391 * - the broadcast device exists 392 * - the broadcast device is not a hrtimer based one 393 * - the broadcast device is in periodic mode to 394 * avoid a hickup during switch to oneshot mode 395 */ 396 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 397 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 398 clockevents_shutdown(dev); 399 } 400 break; 401 402 case TICK_BROADCAST_OFF: 403 if (tick_broadcast_forced) 404 break; 405 cpumask_clear_cpu(cpu, tick_broadcast_on); 406 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 407 if (tick_broadcast_device.mode == 408 TICKDEV_MODE_PERIODIC) 409 tick_setup_periodic(dev, 0); 410 } 411 break; 412 } 413 414 if (bc) { 415 if (cpumask_empty(tick_broadcast_mask)) { 416 if (!bc_stopped) 417 clockevents_shutdown(bc); 418 } else if (bc_stopped) { 419 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 420 tick_broadcast_start_periodic(bc); 421 else 422 tick_broadcast_setup_oneshot(bc); 423 } 424 } 425 out: 426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 427 } 428 EXPORT_SYMBOL_GPL(tick_broadcast_control); 429 430 /* 431 * Set the periodic handler depending on broadcast on/off 432 */ 433 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 434 { 435 if (!broadcast) 436 dev->event_handler = tick_handle_periodic; 437 else 438 dev->event_handler = tick_handle_periodic_broadcast; 439 } 440 441 #ifdef CONFIG_HOTPLUG_CPU 442 static void tick_shutdown_broadcast(void) 443 { 444 struct clock_event_device *bc = tick_broadcast_device.evtdev; 445 446 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 447 if (bc && cpumask_empty(tick_broadcast_mask)) 448 clockevents_shutdown(bc); 449 } 450 } 451 452 /* 453 * Remove a CPU from broadcasting 454 */ 455 void tick_broadcast_offline(unsigned int cpu) 456 { 457 raw_spin_lock(&tick_broadcast_lock); 458 cpumask_clear_cpu(cpu, tick_broadcast_mask); 459 cpumask_clear_cpu(cpu, tick_broadcast_on); 460 tick_broadcast_oneshot_offline(cpu); 461 tick_shutdown_broadcast(); 462 raw_spin_unlock(&tick_broadcast_lock); 463 } 464 465 #endif 466 467 void tick_suspend_broadcast(void) 468 { 469 struct clock_event_device *bc; 470 unsigned long flags; 471 472 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 473 474 bc = tick_broadcast_device.evtdev; 475 if (bc) 476 clockevents_shutdown(bc); 477 478 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 479 } 480 481 /* 482 * This is called from tick_resume_local() on a resuming CPU. That's 483 * called from the core resume function, tick_unfreeze() and the magic XEN 484 * resume hackery. 485 * 486 * In none of these cases the broadcast device mode can change and the 487 * bit of the resuming CPU in the broadcast mask is safe as well. 488 */ 489 bool tick_resume_check_broadcast(void) 490 { 491 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 492 return false; 493 else 494 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 495 } 496 497 void tick_resume_broadcast(void) 498 { 499 struct clock_event_device *bc; 500 unsigned long flags; 501 502 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 503 504 bc = tick_broadcast_device.evtdev; 505 506 if (bc) { 507 clockevents_tick_resume(bc); 508 509 switch (tick_broadcast_device.mode) { 510 case TICKDEV_MODE_PERIODIC: 511 if (!cpumask_empty(tick_broadcast_mask)) 512 tick_broadcast_start_periodic(bc); 513 break; 514 case TICKDEV_MODE_ONESHOT: 515 if (!cpumask_empty(tick_broadcast_mask)) 516 tick_resume_broadcast_oneshot(bc); 517 break; 518 } 519 } 520 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 521 } 522 523 #ifdef CONFIG_TICK_ONESHOT 524 525 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 526 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 527 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 528 529 /* 530 * Exposed for debugging: see timer_list.c 531 */ 532 struct cpumask *tick_get_broadcast_oneshot_mask(void) 533 { 534 return tick_broadcast_oneshot_mask; 535 } 536 537 /* 538 * Called before going idle with interrupts disabled. Checks whether a 539 * broadcast event from the other core is about to happen. We detected 540 * that in tick_broadcast_oneshot_control(). The callsite can use this 541 * to avoid a deep idle transition as we are about to get the 542 * broadcast IPI right away. 543 */ 544 int tick_check_broadcast_expired(void) 545 { 546 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 547 } 548 549 /* 550 * Set broadcast interrupt affinity 551 */ 552 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 553 const struct cpumask *cpumask) 554 { 555 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 556 return; 557 558 if (cpumask_equal(bc->cpumask, cpumask)) 559 return; 560 561 bc->cpumask = cpumask; 562 irq_set_affinity(bc->irq, bc->cpumask); 563 } 564 565 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 566 ktime_t expires) 567 { 568 if (!clockevent_state_oneshot(bc)) 569 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 570 571 clockevents_program_event(bc, expires, 1); 572 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 573 } 574 575 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 576 { 577 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 578 } 579 580 /* 581 * Called from irq_enter() when idle was interrupted to reenable the 582 * per cpu device. 583 */ 584 void tick_check_oneshot_broadcast_this_cpu(void) 585 { 586 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 587 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 588 589 /* 590 * We might be in the middle of switching over from 591 * periodic to oneshot. If the CPU has not yet 592 * switched over, leave the device alone. 593 */ 594 if (td->mode == TICKDEV_MODE_ONESHOT) { 595 clockevents_switch_state(td->evtdev, 596 CLOCK_EVT_STATE_ONESHOT); 597 } 598 } 599 } 600 601 /* 602 * Handle oneshot mode broadcasting 603 */ 604 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 605 { 606 struct tick_device *td; 607 ktime_t now, next_event; 608 int cpu, next_cpu = 0; 609 bool bc_local; 610 611 raw_spin_lock(&tick_broadcast_lock); 612 dev->next_event = KTIME_MAX; 613 next_event = KTIME_MAX; 614 cpumask_clear(tmpmask); 615 now = ktime_get(); 616 /* Find all expired events */ 617 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 618 /* 619 * Required for !SMP because for_each_cpu() reports 620 * unconditionally CPU0 as set on UP kernels. 621 */ 622 if (!IS_ENABLED(CONFIG_SMP) && 623 cpumask_empty(tick_broadcast_oneshot_mask)) 624 break; 625 626 td = &per_cpu(tick_cpu_device, cpu); 627 if (td->evtdev->next_event <= now) { 628 cpumask_set_cpu(cpu, tmpmask); 629 /* 630 * Mark the remote cpu in the pending mask, so 631 * it can avoid reprogramming the cpu local 632 * timer in tick_broadcast_oneshot_control(). 633 */ 634 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 635 } else if (td->evtdev->next_event < next_event) { 636 next_event = td->evtdev->next_event; 637 next_cpu = cpu; 638 } 639 } 640 641 /* 642 * Remove the current cpu from the pending mask. The event is 643 * delivered immediately in tick_do_broadcast() ! 644 */ 645 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 646 647 /* Take care of enforced broadcast requests */ 648 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 649 cpumask_clear(tick_broadcast_force_mask); 650 651 /* 652 * Sanity check. Catch the case where we try to broadcast to 653 * offline cpus. 654 */ 655 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 656 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 657 658 /* 659 * Wakeup the cpus which have an expired event. 660 */ 661 bc_local = tick_do_broadcast(tmpmask); 662 663 /* 664 * Two reasons for reprogram: 665 * 666 * - The global event did not expire any CPU local 667 * events. This happens in dyntick mode, as the maximum PIT 668 * delta is quite small. 669 * 670 * - There are pending events on sleeping CPUs which were not 671 * in the event mask 672 */ 673 if (next_event != KTIME_MAX) 674 tick_broadcast_set_event(dev, next_cpu, next_event); 675 676 raw_spin_unlock(&tick_broadcast_lock); 677 678 if (bc_local) { 679 td = this_cpu_ptr(&tick_cpu_device); 680 td->evtdev->event_handler(td->evtdev); 681 } 682 } 683 684 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 685 { 686 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 687 return 0; 688 if (bc->next_event == KTIME_MAX) 689 return 0; 690 return bc->bound_on == cpu ? -EBUSY : 0; 691 } 692 693 static void broadcast_shutdown_local(struct clock_event_device *bc, 694 struct clock_event_device *dev) 695 { 696 /* 697 * For hrtimer based broadcasting we cannot shutdown the cpu 698 * local device if our own event is the first one to expire or 699 * if we own the broadcast timer. 700 */ 701 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 702 if (broadcast_needs_cpu(bc, smp_processor_id())) 703 return; 704 if (dev->next_event < bc->next_event) 705 return; 706 } 707 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 708 } 709 710 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 711 { 712 struct clock_event_device *bc, *dev; 713 int cpu, ret = 0; 714 ktime_t now; 715 716 /* 717 * If there is no broadcast device, tell the caller not to go 718 * into deep idle. 719 */ 720 if (!tick_broadcast_device.evtdev) 721 return -EBUSY; 722 723 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 724 725 raw_spin_lock(&tick_broadcast_lock); 726 bc = tick_broadcast_device.evtdev; 727 cpu = smp_processor_id(); 728 729 if (state == TICK_BROADCAST_ENTER) { 730 /* 731 * If the current CPU owns the hrtimer broadcast 732 * mechanism, it cannot go deep idle and we do not add 733 * the CPU to the broadcast mask. We don't have to go 734 * through the EXIT path as the local timer is not 735 * shutdown. 736 */ 737 ret = broadcast_needs_cpu(bc, cpu); 738 if (ret) 739 goto out; 740 741 /* 742 * If the broadcast device is in periodic mode, we 743 * return. 744 */ 745 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 746 /* If it is a hrtimer based broadcast, return busy */ 747 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 748 ret = -EBUSY; 749 goto out; 750 } 751 752 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 753 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 754 755 /* Conditionally shut down the local timer. */ 756 broadcast_shutdown_local(bc, dev); 757 758 /* 759 * We only reprogram the broadcast timer if we 760 * did not mark ourself in the force mask and 761 * if the cpu local event is earlier than the 762 * broadcast event. If the current CPU is in 763 * the force mask, then we are going to be 764 * woken by the IPI right away; we return 765 * busy, so the CPU does not try to go deep 766 * idle. 767 */ 768 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 769 ret = -EBUSY; 770 } else if (dev->next_event < bc->next_event) { 771 tick_broadcast_set_event(bc, cpu, dev->next_event); 772 /* 773 * In case of hrtimer broadcasts the 774 * programming might have moved the 775 * timer to this cpu. If yes, remove 776 * us from the broadcast mask and 777 * return busy. 778 */ 779 ret = broadcast_needs_cpu(bc, cpu); 780 if (ret) { 781 cpumask_clear_cpu(cpu, 782 tick_broadcast_oneshot_mask); 783 } 784 } 785 } 786 } else { 787 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 788 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 789 /* 790 * The cpu which was handling the broadcast 791 * timer marked this cpu in the broadcast 792 * pending mask and fired the broadcast 793 * IPI. So we are going to handle the expired 794 * event anyway via the broadcast IPI 795 * handler. No need to reprogram the timer 796 * with an already expired event. 797 */ 798 if (cpumask_test_and_clear_cpu(cpu, 799 tick_broadcast_pending_mask)) 800 goto out; 801 802 /* 803 * Bail out if there is no next event. 804 */ 805 if (dev->next_event == KTIME_MAX) 806 goto out; 807 /* 808 * If the pending bit is not set, then we are 809 * either the CPU handling the broadcast 810 * interrupt or we got woken by something else. 811 * 812 * We are no longer in the broadcast mask, so 813 * if the cpu local expiry time is already 814 * reached, we would reprogram the cpu local 815 * timer with an already expired event. 816 * 817 * This can lead to a ping-pong when we return 818 * to idle and therefore rearm the broadcast 819 * timer before the cpu local timer was able 820 * to fire. This happens because the forced 821 * reprogramming makes sure that the event 822 * will happen in the future and depending on 823 * the min_delta setting this might be far 824 * enough out that the ping-pong starts. 825 * 826 * If the cpu local next_event has expired 827 * then we know that the broadcast timer 828 * next_event has expired as well and 829 * broadcast is about to be handled. So we 830 * avoid reprogramming and enforce that the 831 * broadcast handler, which did not run yet, 832 * will invoke the cpu local handler. 833 * 834 * We cannot call the handler directly from 835 * here, because we might be in a NOHZ phase 836 * and we did not go through the irq_enter() 837 * nohz fixups. 838 */ 839 now = ktime_get(); 840 if (dev->next_event <= now) { 841 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 842 goto out; 843 } 844 /* 845 * We got woken by something else. Reprogram 846 * the cpu local timer device. 847 */ 848 tick_program_event(dev->next_event, 1); 849 } 850 } 851 out: 852 raw_spin_unlock(&tick_broadcast_lock); 853 return ret; 854 } 855 856 /* 857 * Reset the one shot broadcast for a cpu 858 * 859 * Called with tick_broadcast_lock held 860 */ 861 static void tick_broadcast_clear_oneshot(int cpu) 862 { 863 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 864 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 865 } 866 867 static void tick_broadcast_init_next_event(struct cpumask *mask, 868 ktime_t expires) 869 { 870 struct tick_device *td; 871 int cpu; 872 873 for_each_cpu(cpu, mask) { 874 td = &per_cpu(tick_cpu_device, cpu); 875 if (td->evtdev) 876 td->evtdev->next_event = expires; 877 } 878 } 879 880 static inline ktime_t tick_get_next_period(void) 881 { 882 ktime_t next; 883 884 /* 885 * Protect against concurrent updates (store /load tearing on 886 * 32bit). It does not matter if the time is already in the 887 * past. The broadcast device which is about to be programmed will 888 * fire in any case. 889 */ 890 raw_spin_lock(&jiffies_lock); 891 next = tick_next_period; 892 raw_spin_unlock(&jiffies_lock); 893 return next; 894 } 895 896 /** 897 * tick_broadcast_setup_oneshot - setup the broadcast device 898 */ 899 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 900 { 901 int cpu = smp_processor_id(); 902 903 if (!bc) 904 return; 905 906 /* Set it up only once ! */ 907 if (bc->event_handler != tick_handle_oneshot_broadcast) { 908 int was_periodic = clockevent_state_periodic(bc); 909 910 bc->event_handler = tick_handle_oneshot_broadcast; 911 912 /* 913 * We must be careful here. There might be other CPUs 914 * waiting for periodic broadcast. We need to set the 915 * oneshot_mask bits for those and program the 916 * broadcast device to fire. 917 */ 918 cpumask_copy(tmpmask, tick_broadcast_mask); 919 cpumask_clear_cpu(cpu, tmpmask); 920 cpumask_or(tick_broadcast_oneshot_mask, 921 tick_broadcast_oneshot_mask, tmpmask); 922 923 if (was_periodic && !cpumask_empty(tmpmask)) { 924 ktime_t nextevt = tick_get_next_period(); 925 926 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 927 tick_broadcast_init_next_event(tmpmask, nextevt); 928 tick_broadcast_set_event(bc, cpu, nextevt); 929 } else 930 bc->next_event = KTIME_MAX; 931 } else { 932 /* 933 * The first cpu which switches to oneshot mode sets 934 * the bit for all other cpus which are in the general 935 * (periodic) broadcast mask. So the bit is set and 936 * would prevent the first broadcast enter after this 937 * to program the bc device. 938 */ 939 tick_broadcast_clear_oneshot(cpu); 940 } 941 } 942 943 /* 944 * Select oneshot operating mode for the broadcast device 945 */ 946 void tick_broadcast_switch_to_oneshot(void) 947 { 948 struct clock_event_device *bc; 949 unsigned long flags; 950 951 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 952 953 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 954 bc = tick_broadcast_device.evtdev; 955 if (bc) 956 tick_broadcast_setup_oneshot(bc); 957 958 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 959 } 960 961 #ifdef CONFIG_HOTPLUG_CPU 962 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 963 { 964 struct clock_event_device *bc; 965 unsigned long flags; 966 967 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 968 bc = tick_broadcast_device.evtdev; 969 970 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 971 /* This moves the broadcast assignment to this CPU: */ 972 clockevents_program_event(bc, bc->next_event, 1); 973 } 974 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 975 } 976 977 /* 978 * Remove a dying CPU from broadcasting 979 */ 980 static void tick_broadcast_oneshot_offline(unsigned int cpu) 981 { 982 /* 983 * Clear the broadcast masks for the dead cpu, but do not stop 984 * the broadcast device! 985 */ 986 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 987 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 988 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 989 } 990 #endif 991 992 /* 993 * Check, whether the broadcast device is in one shot mode 994 */ 995 int tick_broadcast_oneshot_active(void) 996 { 997 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 998 } 999 1000 /* 1001 * Check whether the broadcast device supports oneshot. 1002 */ 1003 bool tick_broadcast_oneshot_available(void) 1004 { 1005 struct clock_event_device *bc = tick_broadcast_device.evtdev; 1006 1007 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 1008 } 1009 1010 #else 1011 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 1012 { 1013 struct clock_event_device *bc = tick_broadcast_device.evtdev; 1014 1015 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 1016 return -EBUSY; 1017 1018 return 0; 1019 } 1020 #endif 1021 1022 void __init tick_broadcast_init(void) 1023 { 1024 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1025 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1026 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1027 #ifdef CONFIG_TICK_ONESHOT 1028 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1029 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1030 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1031 #endif 1032 } 1033