1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 34 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 35 static int tick_broadcast_forced; 36 37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 38 39 #ifdef CONFIG_TICK_ONESHOT 40 static void tick_broadcast_clear_oneshot(int cpu); 41 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 42 #else 43 static inline void tick_broadcast_clear_oneshot(int cpu) { } 44 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 45 #endif 46 47 /* 48 * Debugging: see timer_list.c 49 */ 50 struct tick_device *tick_get_broadcast_device(void) 51 { 52 return &tick_broadcast_device; 53 } 54 55 struct cpumask *tick_get_broadcast_mask(void) 56 { 57 return tick_broadcast_mask; 58 } 59 60 /* 61 * Start the device in periodic mode 62 */ 63 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 64 { 65 if (bc) 66 tick_setup_periodic(bc, 1); 67 } 68 69 /* 70 * Check, if the device can be utilized as broadcast device: 71 */ 72 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 73 struct clock_event_device *newdev) 74 { 75 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 76 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 77 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return false; 79 80 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 81 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 82 return false; 83 84 return !curdev || newdev->rating > curdev->rating; 85 } 86 87 /* 88 * Conditionally install/replace broadcast device 89 */ 90 void tick_install_broadcast_device(struct clock_event_device *dev) 91 { 92 struct clock_event_device *cur = tick_broadcast_device.evtdev; 93 94 if (!tick_check_broadcast_device(cur, dev)) 95 return; 96 97 if (!try_module_get(dev->owner)) 98 return; 99 100 clockevents_exchange_device(cur, dev); 101 if (cur) 102 cur->event_handler = clockevents_handle_noop; 103 tick_broadcast_device.evtdev = dev; 104 if (!cpumask_empty(tick_broadcast_mask)) 105 tick_broadcast_start_periodic(dev); 106 /* 107 * Inform all cpus about this. We might be in a situation 108 * where we did not switch to oneshot mode because the per cpu 109 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 110 * of a oneshot capable broadcast device. Without that 111 * notification the systems stays stuck in periodic mode 112 * forever. 113 */ 114 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 115 tick_clock_notify(); 116 } 117 118 /* 119 * Check, if the device is the broadcast device 120 */ 121 int tick_is_broadcast_device(struct clock_event_device *dev) 122 { 123 return (dev && tick_broadcast_device.evtdev == dev); 124 } 125 126 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 127 { 128 int ret = -ENODEV; 129 130 if (tick_is_broadcast_device(dev)) { 131 raw_spin_lock(&tick_broadcast_lock); 132 ret = __clockevents_update_freq(dev, freq); 133 raw_spin_unlock(&tick_broadcast_lock); 134 } 135 return ret; 136 } 137 138 139 static void err_broadcast(const struct cpumask *mask) 140 { 141 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 142 } 143 144 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 145 { 146 if (!dev->broadcast) 147 dev->broadcast = tick_broadcast; 148 if (!dev->broadcast) { 149 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 150 dev->name); 151 dev->broadcast = err_broadcast; 152 } 153 } 154 155 /* 156 * Check, if the device is disfunctional and a place holder, which 157 * needs to be handled by the broadcast device. 158 */ 159 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 160 { 161 struct clock_event_device *bc = tick_broadcast_device.evtdev; 162 unsigned long flags; 163 int ret = 0; 164 165 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 166 167 /* 168 * Devices might be registered with both periodic and oneshot 169 * mode disabled. This signals, that the device needs to be 170 * operated from the broadcast device and is a placeholder for 171 * the cpu local device. 172 */ 173 if (!tick_device_is_functional(dev)) { 174 dev->event_handler = tick_handle_periodic; 175 tick_device_setup_broadcast_func(dev); 176 cpumask_set_cpu(cpu, tick_broadcast_mask); 177 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 178 tick_broadcast_start_periodic(bc); 179 else 180 tick_broadcast_setup_oneshot(bc); 181 ret = 1; 182 } else { 183 /* 184 * Clear the broadcast bit for this cpu if the 185 * device is not power state affected. 186 */ 187 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 188 cpumask_clear_cpu(cpu, tick_broadcast_mask); 189 else 190 tick_device_setup_broadcast_func(dev); 191 192 /* 193 * Clear the broadcast bit if the CPU is not in 194 * periodic broadcast on state. 195 */ 196 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 197 cpumask_clear_cpu(cpu, tick_broadcast_mask); 198 199 switch (tick_broadcast_device.mode) { 200 case TICKDEV_MODE_ONESHOT: 201 /* 202 * If the system is in oneshot mode we can 203 * unconditionally clear the oneshot mask bit, 204 * because the CPU is running and therefore 205 * not in an idle state which causes the power 206 * state affected device to stop. Let the 207 * caller initialize the device. 208 */ 209 tick_broadcast_clear_oneshot(cpu); 210 ret = 0; 211 break; 212 213 case TICKDEV_MODE_PERIODIC: 214 /* 215 * If the system is in periodic mode, check 216 * whether the broadcast device can be 217 * switched off now. 218 */ 219 if (cpumask_empty(tick_broadcast_mask) && bc) 220 clockevents_shutdown(bc); 221 /* 222 * If we kept the cpu in the broadcast mask, 223 * tell the caller to leave the per cpu device 224 * in shutdown state. The periodic interrupt 225 * is delivered by the broadcast device, if 226 * the broadcast device exists and is not 227 * hrtimer based. 228 */ 229 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 230 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 231 break; 232 default: 233 break; 234 } 235 } 236 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 237 return ret; 238 } 239 240 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 241 int tick_receive_broadcast(void) 242 { 243 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 244 struct clock_event_device *evt = td->evtdev; 245 246 if (!evt) 247 return -ENODEV; 248 249 if (!evt->event_handler) 250 return -EINVAL; 251 252 evt->event_handler(evt); 253 return 0; 254 } 255 #endif 256 257 /* 258 * Broadcast the event to the cpus, which are set in the mask (mangled). 259 */ 260 static bool tick_do_broadcast(struct cpumask *mask) 261 { 262 int cpu = smp_processor_id(); 263 struct tick_device *td; 264 bool local = false; 265 266 /* 267 * Check, if the current cpu is in the mask 268 */ 269 if (cpumask_test_cpu(cpu, mask)) { 270 struct clock_event_device *bc = tick_broadcast_device.evtdev; 271 272 cpumask_clear_cpu(cpu, mask); 273 /* 274 * We only run the local handler, if the broadcast 275 * device is not hrtimer based. Otherwise we run into 276 * a hrtimer recursion. 277 * 278 * local timer_interrupt() 279 * local_handler() 280 * expire_hrtimers() 281 * bc_handler() 282 * local_handler() 283 * expire_hrtimers() 284 */ 285 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 286 } 287 288 if (!cpumask_empty(mask)) { 289 /* 290 * It might be necessary to actually check whether the devices 291 * have different broadcast functions. For now, just use the 292 * one of the first device. This works as long as we have this 293 * misfeature only on x86 (lapic) 294 */ 295 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 296 td->evtdev->broadcast(mask); 297 } 298 return local; 299 } 300 301 /* 302 * Periodic broadcast: 303 * - invoke the broadcast handlers 304 */ 305 static bool tick_do_periodic_broadcast(void) 306 { 307 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 308 return tick_do_broadcast(tmpmask); 309 } 310 311 /* 312 * Event handler for periodic broadcast ticks 313 */ 314 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 315 { 316 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 317 bool bc_local; 318 319 raw_spin_lock(&tick_broadcast_lock); 320 321 /* Handle spurious interrupts gracefully */ 322 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 323 raw_spin_unlock(&tick_broadcast_lock); 324 return; 325 } 326 327 bc_local = tick_do_periodic_broadcast(); 328 329 if (clockevent_state_oneshot(dev)) { 330 ktime_t next = ktime_add(dev->next_event, tick_period); 331 332 clockevents_program_event(dev, next, true); 333 } 334 raw_spin_unlock(&tick_broadcast_lock); 335 336 /* 337 * We run the handler of the local cpu after dropping 338 * tick_broadcast_lock because the handler might deadlock when 339 * trying to switch to oneshot mode. 340 */ 341 if (bc_local) 342 td->evtdev->event_handler(td->evtdev); 343 } 344 345 /** 346 * tick_broadcast_control - Enable/disable or force broadcast mode 347 * @mode: The selected broadcast mode 348 * 349 * Called when the system enters a state where affected tick devices 350 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 351 */ 352 void tick_broadcast_control(enum tick_broadcast_mode mode) 353 { 354 struct clock_event_device *bc, *dev; 355 struct tick_device *td; 356 int cpu, bc_stopped; 357 unsigned long flags; 358 359 /* Protects also the local clockevent device. */ 360 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 361 td = this_cpu_ptr(&tick_cpu_device); 362 dev = td->evtdev; 363 364 /* 365 * Is the device not affected by the powerstate ? 366 */ 367 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 368 goto out; 369 370 if (!tick_device_is_functional(dev)) 371 goto out; 372 373 cpu = smp_processor_id(); 374 bc = tick_broadcast_device.evtdev; 375 bc_stopped = cpumask_empty(tick_broadcast_mask); 376 377 switch (mode) { 378 case TICK_BROADCAST_FORCE: 379 tick_broadcast_forced = 1; 380 case TICK_BROADCAST_ON: 381 cpumask_set_cpu(cpu, tick_broadcast_on); 382 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 383 /* 384 * Only shutdown the cpu local device, if: 385 * 386 * - the broadcast device exists 387 * - the broadcast device is not a hrtimer based one 388 * - the broadcast device is in periodic mode to 389 * avoid a hickup during switch to oneshot mode 390 */ 391 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 392 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 393 clockevents_shutdown(dev); 394 } 395 break; 396 397 case TICK_BROADCAST_OFF: 398 if (tick_broadcast_forced) 399 break; 400 cpumask_clear_cpu(cpu, tick_broadcast_on); 401 if (!tick_device_is_functional(dev)) 402 break; 403 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 404 if (tick_broadcast_device.mode == 405 TICKDEV_MODE_PERIODIC) 406 tick_setup_periodic(dev, 0); 407 } 408 break; 409 } 410 411 if (bc) { 412 if (cpumask_empty(tick_broadcast_mask)) { 413 if (!bc_stopped) 414 clockevents_shutdown(bc); 415 } else if (bc_stopped) { 416 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 417 tick_broadcast_start_periodic(bc); 418 else 419 tick_broadcast_setup_oneshot(bc); 420 } 421 } 422 out: 423 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 424 } 425 EXPORT_SYMBOL_GPL(tick_broadcast_control); 426 427 /* 428 * Set the periodic handler depending on broadcast on/off 429 */ 430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 431 { 432 if (!broadcast) 433 dev->event_handler = tick_handle_periodic; 434 else 435 dev->event_handler = tick_handle_periodic_broadcast; 436 } 437 438 #ifdef CONFIG_HOTPLUG_CPU 439 /* 440 * Remove a CPU from broadcasting 441 */ 442 void tick_shutdown_broadcast(unsigned int cpu) 443 { 444 struct clock_event_device *bc; 445 unsigned long flags; 446 447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 448 449 bc = tick_broadcast_device.evtdev; 450 cpumask_clear_cpu(cpu, tick_broadcast_mask); 451 cpumask_clear_cpu(cpu, tick_broadcast_on); 452 453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 454 if (bc && cpumask_empty(tick_broadcast_mask)) 455 clockevents_shutdown(bc); 456 } 457 458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 459 } 460 #endif 461 462 void tick_suspend_broadcast(void) 463 { 464 struct clock_event_device *bc; 465 unsigned long flags; 466 467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 468 469 bc = tick_broadcast_device.evtdev; 470 if (bc) 471 clockevents_shutdown(bc); 472 473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 474 } 475 476 /* 477 * This is called from tick_resume_local() on a resuming CPU. That's 478 * called from the core resume function, tick_unfreeze() and the magic XEN 479 * resume hackery. 480 * 481 * In none of these cases the broadcast device mode can change and the 482 * bit of the resuming CPU in the broadcast mask is safe as well. 483 */ 484 bool tick_resume_check_broadcast(void) 485 { 486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 487 return false; 488 else 489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 490 } 491 492 void tick_resume_broadcast(void) 493 { 494 struct clock_event_device *bc; 495 unsigned long flags; 496 497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 498 499 bc = tick_broadcast_device.evtdev; 500 501 if (bc) { 502 clockevents_tick_resume(bc); 503 504 switch (tick_broadcast_device.mode) { 505 case TICKDEV_MODE_PERIODIC: 506 if (!cpumask_empty(tick_broadcast_mask)) 507 tick_broadcast_start_periodic(bc); 508 break; 509 case TICKDEV_MODE_ONESHOT: 510 if (!cpumask_empty(tick_broadcast_mask)) 511 tick_resume_broadcast_oneshot(bc); 512 break; 513 } 514 } 515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 516 } 517 518 #ifdef CONFIG_TICK_ONESHOT 519 520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 523 524 /* 525 * Exposed for debugging: see timer_list.c 526 */ 527 struct cpumask *tick_get_broadcast_oneshot_mask(void) 528 { 529 return tick_broadcast_oneshot_mask; 530 } 531 532 /* 533 * Called before going idle with interrupts disabled. Checks whether a 534 * broadcast event from the other core is about to happen. We detected 535 * that in tick_broadcast_oneshot_control(). The callsite can use this 536 * to avoid a deep idle transition as we are about to get the 537 * broadcast IPI right away. 538 */ 539 int tick_check_broadcast_expired(void) 540 { 541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 542 } 543 544 /* 545 * Set broadcast interrupt affinity 546 */ 547 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 548 const struct cpumask *cpumask) 549 { 550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 551 return; 552 553 if (cpumask_equal(bc->cpumask, cpumask)) 554 return; 555 556 bc->cpumask = cpumask; 557 irq_set_affinity(bc->irq, bc->cpumask); 558 } 559 560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 561 ktime_t expires) 562 { 563 if (!clockevent_state_oneshot(bc)) 564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 565 566 clockevents_program_event(bc, expires, 1); 567 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 568 } 569 570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 571 { 572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 573 } 574 575 /* 576 * Called from irq_enter() when idle was interrupted to reenable the 577 * per cpu device. 578 */ 579 void tick_check_oneshot_broadcast_this_cpu(void) 580 { 581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 583 584 /* 585 * We might be in the middle of switching over from 586 * periodic to oneshot. If the CPU has not yet 587 * switched over, leave the device alone. 588 */ 589 if (td->mode == TICKDEV_MODE_ONESHOT) { 590 clockevents_switch_state(td->evtdev, 591 CLOCK_EVT_STATE_ONESHOT); 592 } 593 } 594 } 595 596 /* 597 * Handle oneshot mode broadcasting 598 */ 599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 600 { 601 struct tick_device *td; 602 ktime_t now, next_event; 603 int cpu, next_cpu = 0; 604 bool bc_local; 605 606 raw_spin_lock(&tick_broadcast_lock); 607 dev->next_event = KTIME_MAX; 608 next_event = KTIME_MAX; 609 cpumask_clear(tmpmask); 610 now = ktime_get(); 611 /* Find all expired events */ 612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 613 td = &per_cpu(tick_cpu_device, cpu); 614 if (td->evtdev->next_event <= now) { 615 cpumask_set_cpu(cpu, tmpmask); 616 /* 617 * Mark the remote cpu in the pending mask, so 618 * it can avoid reprogramming the cpu local 619 * timer in tick_broadcast_oneshot_control(). 620 */ 621 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 622 } else if (td->evtdev->next_event < next_event) { 623 next_event = td->evtdev->next_event; 624 next_cpu = cpu; 625 } 626 } 627 628 /* 629 * Remove the current cpu from the pending mask. The event is 630 * delivered immediately in tick_do_broadcast() ! 631 */ 632 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 633 634 /* Take care of enforced broadcast requests */ 635 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 636 cpumask_clear(tick_broadcast_force_mask); 637 638 /* 639 * Sanity check. Catch the case where we try to broadcast to 640 * offline cpus. 641 */ 642 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 643 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 644 645 /* 646 * Wakeup the cpus which have an expired event. 647 */ 648 bc_local = tick_do_broadcast(tmpmask); 649 650 /* 651 * Two reasons for reprogram: 652 * 653 * - The global event did not expire any CPU local 654 * events. This happens in dyntick mode, as the maximum PIT 655 * delta is quite small. 656 * 657 * - There are pending events on sleeping CPUs which were not 658 * in the event mask 659 */ 660 if (next_event != KTIME_MAX) 661 tick_broadcast_set_event(dev, next_cpu, next_event); 662 663 raw_spin_unlock(&tick_broadcast_lock); 664 665 if (bc_local) { 666 td = this_cpu_ptr(&tick_cpu_device); 667 td->evtdev->event_handler(td->evtdev); 668 } 669 } 670 671 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 672 { 673 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 674 return 0; 675 if (bc->next_event == KTIME_MAX) 676 return 0; 677 return bc->bound_on == cpu ? -EBUSY : 0; 678 } 679 680 static void broadcast_shutdown_local(struct clock_event_device *bc, 681 struct clock_event_device *dev) 682 { 683 /* 684 * For hrtimer based broadcasting we cannot shutdown the cpu 685 * local device if our own event is the first one to expire or 686 * if we own the broadcast timer. 687 */ 688 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 689 if (broadcast_needs_cpu(bc, smp_processor_id())) 690 return; 691 if (dev->next_event < bc->next_event) 692 return; 693 } 694 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 695 } 696 697 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 698 { 699 struct clock_event_device *bc, *dev; 700 int cpu, ret = 0; 701 ktime_t now; 702 703 /* 704 * If there is no broadcast device, tell the caller not to go 705 * into deep idle. 706 */ 707 if (!tick_broadcast_device.evtdev) 708 return -EBUSY; 709 710 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 711 712 raw_spin_lock(&tick_broadcast_lock); 713 bc = tick_broadcast_device.evtdev; 714 cpu = smp_processor_id(); 715 716 if (state == TICK_BROADCAST_ENTER) { 717 /* 718 * If the current CPU owns the hrtimer broadcast 719 * mechanism, it cannot go deep idle and we do not add 720 * the CPU to the broadcast mask. We don't have to go 721 * through the EXIT path as the local timer is not 722 * shutdown. 723 */ 724 ret = broadcast_needs_cpu(bc, cpu); 725 if (ret) 726 goto out; 727 728 /* 729 * If the broadcast device is in periodic mode, we 730 * return. 731 */ 732 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 733 /* If it is a hrtimer based broadcast, return busy */ 734 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 735 ret = -EBUSY; 736 goto out; 737 } 738 739 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 740 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 741 742 /* Conditionally shut down the local timer. */ 743 broadcast_shutdown_local(bc, dev); 744 745 /* 746 * We only reprogram the broadcast timer if we 747 * did not mark ourself in the force mask and 748 * if the cpu local event is earlier than the 749 * broadcast event. If the current CPU is in 750 * the force mask, then we are going to be 751 * woken by the IPI right away; we return 752 * busy, so the CPU does not try to go deep 753 * idle. 754 */ 755 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 756 ret = -EBUSY; 757 } else if (dev->next_event < bc->next_event) { 758 tick_broadcast_set_event(bc, cpu, dev->next_event); 759 /* 760 * In case of hrtimer broadcasts the 761 * programming might have moved the 762 * timer to this cpu. If yes, remove 763 * us from the broadcast mask and 764 * return busy. 765 */ 766 ret = broadcast_needs_cpu(bc, cpu); 767 if (ret) { 768 cpumask_clear_cpu(cpu, 769 tick_broadcast_oneshot_mask); 770 } 771 } 772 } 773 } else { 774 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 775 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 776 /* 777 * The cpu which was handling the broadcast 778 * timer marked this cpu in the broadcast 779 * pending mask and fired the broadcast 780 * IPI. So we are going to handle the expired 781 * event anyway via the broadcast IPI 782 * handler. No need to reprogram the timer 783 * with an already expired event. 784 */ 785 if (cpumask_test_and_clear_cpu(cpu, 786 tick_broadcast_pending_mask)) 787 goto out; 788 789 /* 790 * Bail out if there is no next event. 791 */ 792 if (dev->next_event == KTIME_MAX) 793 goto out; 794 /* 795 * If the pending bit is not set, then we are 796 * either the CPU handling the broadcast 797 * interrupt or we got woken by something else. 798 * 799 * We are not longer in the broadcast mask, so 800 * if the cpu local expiry time is already 801 * reached, we would reprogram the cpu local 802 * timer with an already expired event. 803 * 804 * This can lead to a ping-pong when we return 805 * to idle and therefor rearm the broadcast 806 * timer before the cpu local timer was able 807 * to fire. This happens because the forced 808 * reprogramming makes sure that the event 809 * will happen in the future and depending on 810 * the min_delta setting this might be far 811 * enough out that the ping-pong starts. 812 * 813 * If the cpu local next_event has expired 814 * then we know that the broadcast timer 815 * next_event has expired as well and 816 * broadcast is about to be handled. So we 817 * avoid reprogramming and enforce that the 818 * broadcast handler, which did not run yet, 819 * will invoke the cpu local handler. 820 * 821 * We cannot call the handler directly from 822 * here, because we might be in a NOHZ phase 823 * and we did not go through the irq_enter() 824 * nohz fixups. 825 */ 826 now = ktime_get(); 827 if (dev->next_event <= now) { 828 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 829 goto out; 830 } 831 /* 832 * We got woken by something else. Reprogram 833 * the cpu local timer device. 834 */ 835 tick_program_event(dev->next_event, 1); 836 } 837 } 838 out: 839 raw_spin_unlock(&tick_broadcast_lock); 840 return ret; 841 } 842 843 /* 844 * Reset the one shot broadcast for a cpu 845 * 846 * Called with tick_broadcast_lock held 847 */ 848 static void tick_broadcast_clear_oneshot(int cpu) 849 { 850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 852 } 853 854 static void tick_broadcast_init_next_event(struct cpumask *mask, 855 ktime_t expires) 856 { 857 struct tick_device *td; 858 int cpu; 859 860 for_each_cpu(cpu, mask) { 861 td = &per_cpu(tick_cpu_device, cpu); 862 if (td->evtdev) 863 td->evtdev->next_event = expires; 864 } 865 } 866 867 /** 868 * tick_broadcast_setup_oneshot - setup the broadcast device 869 */ 870 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 871 { 872 int cpu = smp_processor_id(); 873 874 if (!bc) 875 return; 876 877 /* Set it up only once ! */ 878 if (bc->event_handler != tick_handle_oneshot_broadcast) { 879 int was_periodic = clockevent_state_periodic(bc); 880 881 bc->event_handler = tick_handle_oneshot_broadcast; 882 883 /* 884 * We must be careful here. There might be other CPUs 885 * waiting for periodic broadcast. We need to set the 886 * oneshot_mask bits for those and program the 887 * broadcast device to fire. 888 */ 889 cpumask_copy(tmpmask, tick_broadcast_mask); 890 cpumask_clear_cpu(cpu, tmpmask); 891 cpumask_or(tick_broadcast_oneshot_mask, 892 tick_broadcast_oneshot_mask, tmpmask); 893 894 if (was_periodic && !cpumask_empty(tmpmask)) { 895 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 896 tick_broadcast_init_next_event(tmpmask, 897 tick_next_period); 898 tick_broadcast_set_event(bc, cpu, tick_next_period); 899 } else 900 bc->next_event = KTIME_MAX; 901 } else { 902 /* 903 * The first cpu which switches to oneshot mode sets 904 * the bit for all other cpus which are in the general 905 * (periodic) broadcast mask. So the bit is set and 906 * would prevent the first broadcast enter after this 907 * to program the bc device. 908 */ 909 tick_broadcast_clear_oneshot(cpu); 910 } 911 } 912 913 /* 914 * Select oneshot operating mode for the broadcast device 915 */ 916 void tick_broadcast_switch_to_oneshot(void) 917 { 918 struct clock_event_device *bc; 919 unsigned long flags; 920 921 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 922 923 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 924 bc = tick_broadcast_device.evtdev; 925 if (bc) 926 tick_broadcast_setup_oneshot(bc); 927 928 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 929 } 930 931 #ifdef CONFIG_HOTPLUG_CPU 932 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 933 { 934 struct clock_event_device *bc; 935 unsigned long flags; 936 937 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 938 bc = tick_broadcast_device.evtdev; 939 940 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 941 /* This moves the broadcast assignment to this CPU: */ 942 clockevents_program_event(bc, bc->next_event, 1); 943 } 944 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 945 } 946 947 /* 948 * Remove a dead CPU from broadcasting 949 */ 950 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 951 { 952 unsigned long flags; 953 954 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 955 956 /* 957 * Clear the broadcast masks for the dead cpu, but do not stop 958 * the broadcast device! 959 */ 960 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 961 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 962 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 963 964 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 965 } 966 #endif 967 968 /* 969 * Check, whether the broadcast device is in one shot mode 970 */ 971 int tick_broadcast_oneshot_active(void) 972 { 973 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 974 } 975 976 /* 977 * Check whether the broadcast device supports oneshot. 978 */ 979 bool tick_broadcast_oneshot_available(void) 980 { 981 struct clock_event_device *bc = tick_broadcast_device.evtdev; 982 983 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 984 } 985 986 #else 987 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 988 { 989 struct clock_event_device *bc = tick_broadcast_device.evtdev; 990 991 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 992 return -EBUSY; 993 994 return 0; 995 } 996 #endif 997 998 void __init tick_broadcast_init(void) 999 { 1000 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1001 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1002 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1003 #ifdef CONFIG_TICK_ONESHOT 1004 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1005 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1006 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1007 #endif 1008 } 1009